
derivatives appear very often in Computer 

Science, under several forms

How to compute Derivatives

,,:
2

2

dx

fd
f

dx

df
ff →

 ,,,,,:
2

2

f

n f
x

f

x

f
f H








→

,: f

mnf J→



we have 3 approaches

How to compute Derivatives

1 )    Numerical Differentiation

2 )    Symbolic Differentiation

3 )    Automatic Differentiation



compute the symbolic expression of the

derivative of a function

Symbolic Differentiation 

it needs manipulation in computer algebra systems

such as Mathematica, Maxima, Maple, Matlab’s

Symbolic Toolbox, Python’s sympy

input:

• the symbolic expression of the function

output:

• the symbolic expression of the derivative



>> syms x

>> diff(sin(x))

ans =

cos(x)

>> diff(sin(x),2)

ans =

-sin(x)

>> diff(x*sin(2*x)) 

ans =

sin(2*x) + 2*x*cos(2*x)



>> syms y

>> diff(x*y^2+cos(x*y),x)

ans =

y^2 - y*sin(x*y)

>> diff(x*y^2+cos(x*y),y)

ans =

2*x*y - x*sin(x*y)

>> diff(x*y^2+cos(x*y),x,2)

ans =

-y^2*cos(x*y)



>> f(x,y) = x*y^2+cos(x*y);

>> gradient(f,[x,y])

ans(x, y) =

y^2 - y*sin(x*y)

2*x*y - x*sin(x*y)

>> laplacian(f,[x,y])

ans(x, y) =

2*x - x^2*cos(x*y) - y^2*cos(x*y)

>> diff(f,x,2)+diff(f,y,2)

ans(x, y) =

2*x - x^2*cos(x*y) - y^2*cos(x*y)



compute the exact value of derivatives of a

function at a given point (called differentiation

point)

Automatic Differentiation (AD)

its basic idea is to apply repeatedly the chain rule from

Calculus

input:

• the point where the derivative has to be

evaluated

• the symbolic expression of the function OR a

program that evaluates the function at any point



compute the exact value of derivatives of a

function at a given point (called differentiation

point)

Automatic Differentiation (AD)

the idea is to apply repeatedly the chain rule from

Calculus to either the basic functions that compose the

function to be differentiated or the lines of the program

that implements such function

output:

• the exact value of the derivative at the differentiation

point



AD does not compute either the symbolic 

expression of the derivatives or generate a 

program that implements such an expression

Automatic Differentiation (AD)

▪ AD, like finite difference, computes the value 

of the derivatives at a given point

▪ unlike finite difference, AD provides the exact

value of the derivatives

▪ if we want to evaluate the derivative 

(gradient,..) of the same function at several 

distinct points we need to run several times 

the AD code



Automatic Differentiation (AD)

▪ AD is used in many Machine Learning

optimization problems, e.g. deep neural

networks, which are parametrized by

(millions/billions of) weights that are

computed by Stochastic Gradient descent

or its variants (GD with momentum, ADAM,..)

to find the minimum of the loss function

defined in terms of a trained set

▪ AD may also be used in Newton’s

minimization method and Levenberg-

Marquardt method



Automatic Differentiation (AD)

AD may operate in two ways: 

✓ Forward mode 

✓ Reverse mode (also called Backpropagation)

Forward mode evaluates a derivative of a

function at a given point by performing

elementary derivative operations concurrently

with the operations of evaluating the function

itself at a given point

AD relies on the computational graph that 

represents the function to be differentiated



Automatic Differentiation (AD)

Reverse mode uses an extension of the forward 

mode computational graph to enable the 

computation of derivatives (gradient) by a reverse 

traversal of the computational graph 

AD relies on the computational graph that 

represents the function to be differentiated

AD may operate in two ways: 

✓ Forward mode 

✓ Reverse mode (also called Backpropagation)



Automatic Differentiation (AD)

computational graph of  f

Forward mode

evaluation (differentiation) point: (2,5)  



Forward mode

evaluation (differentiation) point: (2,5)  

Automatic Differentiation (AD)

a forward traversal of the computational graph (i.e. 

from left to right) allows us to compute  f (2,5)

2

5

log

*

+

sin

-



Automatic Differentiation (AD)

Forward mode  



Automatic Differentiation (AD)

Forward mode  

using the computational graph enriched with the 

derivatives of the variables  (     ) we compute the 

value of the gradient, by first computing the value of 

the partial derivative respect to  x1 and then the 

value of the partial derivative respect to x2

iv



Automatic Differentiation (AD)

Forward mode  

derivatives are computed by recursively 

applying the chain rule

the chain rule is the formula that expresses the 

derivative of the composition of two differentiable 

functions in terms of the derivatives of each function



recap chain rule

remind the chain rule in one-dimension: 

given

then
( )xgy =



recap chain rule

remind the chain rule in two-dimension: 

given

then



Automatic Differentiation (AD)

Forward mode  



Automatic Differentiation (AD)

Forward mode  

the choice               

implies that we are computing  

the choice

implies that we are computing 



Automatic Differentiation (AD)

Forward mode  



Automatic Differentiation (AD)

Forward mode  

we need 2 (forward) traversals of the 

tangent computational graph to compute 

the gradient of f, 
one for each component of the gradient 

with n variables, we need n (forward) traversals 

to compute the gradient of f



Automatic Differentiation (AD)

Reverse mode  

the Reverse mode corresponds to a generalized 

backpropagation algorithm, in that it propagates 

derivatives backward from the output y toward 

the input variables x1 and x2. 

Reverse mode must be used after the 

forward traversal of the computational graph



Automatic Differentiation (AD)

Reverse mode  

Reverse mode requires  to complement each 

intermediate variable with the so called 

adjoint variable

the adjoint variable     represents the sensitivity of 

a considered output  with respect to changes in
iv

iv



Automatic Differentiation (AD)

Reverse mode  



Automatic Differentiation (AD)

Reverse mode  

the general rule for   isiv



Automatic Differentiation (AD)

one more example ( ) )sin(,, yzxyzyxf =

computational 

graph of f



Automatic Differentiation (AD)

one more example ( ) )sin(,, yzxyzyxf =

computational 

graph of f



Forward pass on

the computational 

graph

(evaluating f at the

 differentiation point 

(3,-1,2)

Automatic Differentiation (AD)

Forward mode  



Backward pass on

the computational graph

Reverse mode  



Automatic Differentiation (AD)

Reverse mode  

note that the Reverse mode needs just 

one forward pass and one reverse pass 

to compute the gradient (all partial 

derivatives) at a given point, 

regardless of the 

number of independent variables

Reverse mode is more efficient than Forward mode in 

computing  gradient of functions of several variables



Automatic Differentiation (AD) in Matlab

>> x0=2; y0=5;

>> xdl = dlarray([x0,y0]);

>>[fval,AD_grad]=dlfeval(@simplefg1,xdl)

fval = 

1×1 dlarray

11.6521

AD_grad = 

1×2 dlarray

5.5000    1.7163

function [f,grad] = simplefg1(x)

f = log(x(1))+x(1)*x(2)-sin(x(2));

grad = dlgradient(f,x);

end



AD in Machine Learning

training of a (deep) neural network find weights wi

Gradient Descent, 

learning rate  

update  wi

training sample 

x1,x2,t

( )m
www

wwwE
m

,,,min 21
,,, 21




( ) ( ) 2

22121 ,,,,,, mm wwwwwwE  yt −=

( ) ( ) ( )( )kkk E www −=+ 1

activation function (i.e. 

ReLU)

Loss function

the computational graph is the neural network 



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

forward mode

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

𝑉1
(1)

=𝑊11
(1)

𝑥1 + 𝑊12
(1)

𝑥2+ 𝑏1
(1)

𝑉2
(1)

=𝑊21
(1)

𝑥1 + 𝑊22
(1)

𝑥2+ 𝑏2
(1)

𝑣
(2)

=𝑤1
(2)

𝑉1
(1)

+ 𝑤2
(2)

𝑉2
(1)

+ 𝑏
(2)



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

𝑉
(1)

=𝑊
(1)

𝑥 + 𝑏
(1)

𝑣
(2)

=𝑤
2 𝑇

𝑉
(1)

+ 𝑏
(2)

matrix-vector notation

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

forward mode



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

𝐿 =
1

𝑇
 σ 𝑇 𝑣(2) − 𝑇𝑡𝑟𝑢𝑒

2

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

Training set T



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

𝐿 = 
1

𝑇
 σ 𝑇 𝑣(2) − 𝑇𝑡𝑟𝑢𝑒

2

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

backward mode

𝜕𝐿

𝜕𝑣(2)= 
2

𝑇
𝑣(2) − 𝑇𝑡𝑟𝑢𝑒

this is the gradient of the 

Loss respect to each 

individual prediction of the 

network



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

backward mode

ҧ𝑣(2) =
𝜕𝐿

𝜕𝑣(2)= 
2

𝑇
𝑣(2) − 𝑇𝑡𝑟𝑢𝑒

ഥ𝑤(2) = ഥ𝑤1
(2)

, ഥ𝑤2
(2)

=
𝜕𝐿

𝜕𝑤(2)=
𝜕𝐿

𝜕𝑣(2)

𝜕𝑣(2)

𝜕𝑤(2)= ҧ𝑣(2) 𝜕𝑣(2)

𝜕𝑤(2)



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

backward mode

ഥ𝑤(2) = ഥ𝑤1
(2)

, ഥ𝑤2
(2)

=
𝜕𝐿

𝜕𝑤(2)=
𝜕𝐿

𝜕𝑣(2)

𝜕𝑣(2)

𝜕𝑤(2)= ҧ𝑣(2) 𝜕𝑣(2)

𝜕𝑤(2)

ഥ𝑤(2) = ഥ𝑤1
(2)

, ഥ𝑤2
(2)

= ҧ𝑣(2)𝑉(1)

𝑣
(2)

=𝑤
2 𝑇

𝑉
(1)

+ 𝑏
(2)



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

backward mode

ത𝑏(2) =
𝜕𝐿

𝜕𝑏(2)=
𝜕𝐿

𝜕𝑣(2)

𝜕𝑣(2)

𝜕𝑏(2)= ҧ𝑣(2) 𝜕𝑣(2)

𝜕𝑏(2) = ҧ𝑣(2)

𝑣
(2)

=𝑤
2 𝑇

𝑉
(1)

+ 𝑏
(2)



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

backward mode

ത𝑉(1) =
𝜕𝐿

𝜕𝑉(1)= ҧ𝑣(2)𝑤(2)

ഥ𝑊(1) =
ഥ𝑊11

(1) ഥ𝑊12
(1)

ഥ𝑊21
(1) ഥ𝑊22

(1)
=

𝜕𝐿

𝜕𝑊(1)=
𝜕𝐿

𝜕𝑉(1)

𝜕𝑉(1)

𝜕𝑊(1)= ҧ𝑣(2)𝑤(2)𝑥

𝑉
(1)

=𝑊
(1)

𝑥 + 𝑏
(1)



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

backward mode

ത𝑉(1) =
𝜕𝐿

𝜕𝑉(1)= ҧ𝑣(2)𝑤(2)

ത𝑏(1) = ത𝑏1
(1)

, ത𝑏2
(1)

=
𝜕𝐿

𝜕𝑏(1)=
𝜕𝐿

𝜕𝑉(1)

𝜕𝑉(1)

𝜕𝑏(1)= ҧ𝑣(2)𝑤(2)

𝑉
(1)

=𝑊
(1)

𝑥 + 𝑏
(1)



AD in Machine Learning

training of a neural network Neural network with two 

linear layers

x1

x2

𝑣
(2)

Loss L

𝑉1
(1)

𝑉2
(1)

Parameters Upgrade 

in backward mode

(GD)

𝑤𝑛𝑒𝑤
(2)

= 𝑤𝑜𝑙𝑑
(2)

− 𝛼 ഥ𝑤(2)

𝑏𝑛𝑒𝑤
(2)

= 𝑏𝑜𝑙𝑑
(2)

− 𝛼 ത𝑏(2)

𝑊𝑛𝑒𝑤
(1)

= 𝑊𝑜𝑙𝑑
(1)

− 𝛼 ഥ𝑊(1) 𝑏𝑛𝑒𝑤
(1)

= 𝑏𝑜𝑙𝑑
(1)

− 𝛼 ത𝑏(1)


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44

