
Peer-to-Peer Networking

Acknowledgements: Most materials presented in the slides are based on the tutorial
slides made by Dr. Raouf Boutaba, Dr. Keith W. Ross, and Dr. Dan Rubenstein.

Client/Server Computing Model

Client: Process wishing to access data, use resources
or perform operations on a different computer �

Server: Process managing data and all other shared
resources amongst servers and clients, allows clients
access to resource and performs computation�

Interaction: invocation / result message pairs

The Peer-to-Peer Model
Applications based on peer processes

Not Client-Server

processes that have largely identical functionality

The Peer-to-Peer Mania
Started in the middle of 2000

When the Internet fallen into predictable patterns

Computer field shocks:

Napster, SETI@home, Freenet, Gnutella, Jabber, …

many early P2P projects have an overtly political mission

Emergence of sporadically connected Internet nodes (laptops,
handhelds, cell phones, appliances, …)

These developments return content, choice, and control to ordinary

users. Tiny endpoints on the Internet, sometimes without even

knowing each other, exchange information and form communities.

The Peer-to-Peer Mania (cont.)
A new energy erupting in the computing field�
Yet, P2P is the oldest architecture in the world of
communications

Telephones are peer-to-peer�
Usenet implementation of UUCP�
Routing in the Internet�
Internet endpoints have historically been peers

P2P technologies return the Internet to its original

vision, in which everyone creates as well as consumes

Outline
General overview

Definition
Overlay networks
Goals
Classification of P2P systems

P2P Search activities
Applications
Search
Security
Resource management

Case Studies
File-sharing systems
Distributed Hash Tables (DHT)
Trust and reputation management

Outline
General overview

Definition
Overlay networks
Goals
Classification of P2P systems

P2P research activities

Case Studies

Definitions
Everything except the
client/server model
Network of nodes with
equivalent
capabilities/responsibili
ties (symmetrical)
Nodes are both Servers
and clients called
“Servents”
Direct exchange of
information between
hosts at the edge of the
Internet

Definitions (cont.)
A transient network that allows a group of computer
users to connect with each other and collaborate by
sharing resources (CPU, storage, content).

The connected peers construct a virtual overlay
network on top of the underlying network
infrastructure

Examples of overlays:
BGP routers and their peering relationships
Content distribution networks (CDNs)
Application-level multicast
And P2P apps !

Outline
General overview

Definition
Overlay networks
Goals
Classification of P2P systems

P2P research activities

Case Studies

Overlay Networks
An overlay network is a
set of logical connections
between end hosts

Overlay networks can be
unstructured or
structured

Proximity not necessarily
taken into account

Overlay maintenance is an
issue

Overlays: All in the application layer

Design flexibility

Topology
Protocol
Messaging over TCP,
UDP, ICMP

Underlying physical
net is transparent to
developer

Outline
General overview

Definition
Overlay networks
Goals
Classification of P2P systems

P2P research activities

Case Studies

Future research directions

Goals
Cost reduction through cost sharing

Client/Server: Server bears most of the cost
P2P: Cost spread over all the peers (+Napster, ++Gnutella,…)
aggregation of otherwise unused resources (e.g., seti@home)

Improved scalability/reliability
resource discovery and search algorithms (eg. Chord, CAN, …)

Interoperability
for the aggregation of diverse resources (storage, CPU, …)

Increased autonomy
independence from servers, hence providers (e.g., A way
around censorship, licensing restrictions, etc.)

Goals (cont.)
Anonymity/privacy

Difficult to ensure with a central server
Required by users who do not want a server/provider to know
their involvement in the system
Freenetis a prime example

Dynamism and Ad hoc communications
Resources (e.g., compute nodes) enter and leave the system
continuously
Mechanisms are required to avoid polling (e.g., “buddy lists”
in Instant messaging)
P2P systems typically do not rely on an established
infrastructure
they build their own, e.g. logical overlay in CAN

Outline
General overview

Definition
Overlay networks
Goals
Classification of P2P systems

P2P research activities

Case Studies

P2P Classification
Degree of P2P decentralization

Hybrid decentralized P2P
Purely decentralized P2P
Partially centralized P2P

Degree of P2P structure
Structured P2P
Loosely structured P2P
Unstructured P2P

Hybrid decentralized P2P
Central server facilitates the interaction b/w peers.
Central server performs the lookups and identifies
the nodes of the network.
example: Napster
(-) Single point of failure, scalability?, …

Purely decentralized P2P
network nodes perform the same tasks (Servents)�
no central coordination activity�
examples: original Gnutella, Freenet�
(-) data consistency?, Manageability?, Security?,
Comm. overhead

Partially centralized P2P
some of the nodes assume a more important role
Supernodes act as local central indexes
examples: Kazaa, recent Gnutella

Unstructured P2P
data is distributed randomly over the peers and
broadcasting mechanisms are used for searching.
placement of data is unrelated to the overlay topology.
examples: Napster, Gnutella, KaZaa

Reporting a file list

Structured P2P
Network topology is tightly controlled and files are
placed at precisely specified locations.
Provide a mapping between the file identifier and
location
Examples: Chord, CAN, PAST, Tapestry, Pastry, etc.

Loosely Structured P2P
Between structured and unstructured
File locations are affected by routing hints, but they
are not completely specified.
example: Freenet

P2P classification summary

Unstructured
Networks

Loosely
Structured
Networks

Structured
Networks

Hybrid
Decentralized Napster

Pure
Decentralized Gnutella Freenet Chord, CAN,

Tapestry

Partially
Centralized

KaZaa, new-
Gnutella

Outline
General overview

P2P research activities
Applications
Search
Security
Resource Management

Case Studies

Future research directions

Outline
General overview

P2P research activities
Applications
Search
Security
Resource Management

Case Studies

P2P Applications
File Sharing

Communication

Collaboration

Computation

Databases

Others

P2P File Sharing
File exchange: Killer application!
(+) Potentially unlimited file exchange areas
(+) High available safe storage: duplication
and redundancy
(+) Anonymity : preserve anonymity of authors
and publishers
(+) Manageability
(-) Network bandwidth consumption
(-) Security
(-) Search capabilities

P2P File Sharing (cont.)
Examples of P2P file sharing applications:

Napster
disruptive; proof of concept

Gnutella
open source

KaZaA
at some point, more KaZaAtraffic than Web traffic!

eDonkey
popular in Europe
Some implementations use Kademlia(DHT) for search

BitTorrent:
53% of all P2P traffic in June 2004 was BitTorrenttraffic

and many others…

How do you explain this success?

P2P Communication
Instant Messaging (IM)

User A runs IM client on her PC
Intermittently connects to Internet; gets new IP
address for each connection
Registers herself with “system”
Learns from “system”that user B in her “buddy list”is
active
User A initiates direct TCP connection with User B: P2P
User A and User B chat.
Can also be voice, video and text.

Audio-Video Conferencing
Example: Voice-over-IP (Skype)

P2P Collaboration
Application-level user collaboration

Shared Applications
Shared file editing (eg. Distributed Powerpoint)
Example: Groove

Online games
Multi-players, distributed
Example: Descent (www.planetdescent.com)

Technical challenges
Locating of peers
Fault tolerance
Real-time constraints

http://www.planetdescent.com/

P2P Computation
Achieves processing scalability by aggregating
the resources of large number of individual PC.
Application areas

Financial applications
Biotechnology
Astronomy,…

Related projects
seti@home
Avaki
Entropia
Gridella

P2P Databases
Fragments large database over physically distributed
nodes
Overcomes limitations of distributed DBMS

Static topology
Heavy administration work

Dissemination of data sources over the Internet
Each peer is a node with a database
Set of peers changes often (site availability, usage patterns)

Examples:
AmbientDB (http://homepages.cwi.nl/~boncz/ambientdb.html)
XPeer: self-organizing XML DB

No global schema

Outline
General overview

P2P research activities
Applications
Search
Security
Resource Management

Case Studies

Search
Challenges:

Efficiency
Measure: resource (mostly bandwidth)
consumed

Autonomy:.
Level of control at individual node on
data/index placement, connectivity &
message routing

Robustness
Stability in the presence of transient
population of peers

Scalability
Accommodate millions of nodes without
degrading efficiency

Expressiveness
of query expression: e.g. key lookup,
keyword lookup, range queries etc.

Completeness:
Guarantee on successful search and
retrieval of all matches

/

Search taxonomy
Blind search
Informed search

Local Index
ØProactive
ØReactive

Distributed Index
ØDHT-based systems

Search taxonomy
Various Blind Search Methods:

BFS/Flooding (Gnutella)
• forward incoming query to every neighbor.
• Flooding is restricted by TTL (time-to-live)

Modified BFS
• Flood only a portion of the neighbors,
• Reduces search traffic at the cost of lower hit rate.

Random walk
• forward query message to randomly chosen neighbors
• Uses a number of walkers in parallel

Iterative Deepening
• uses consecutive BFS at increasing depth.
• Suitable when number of hits required is pre-specified and the

possibility of matches at neighbors within a small radius.

Search Taxonomy
Local index: example proactive methods�

Neighborhood Signature Search
• Each node maintains a set of bloom-filters (hash summary)

of the keywords stored at peers within a small radius (r)
• Query is forwarded to a peer out of neighborhood radius in

case no match is found in neighborhood

Search Taxonomy
Local index: example proactive methods�

Associative Search
• Nodes are arranged into interest groups.
• Query is flooded in one or more target interest group(s)

Search Taxonomy
Local Index: example reactive methods

Distributed Resource Location Protocol (DRLP)
• Uses random walk when no information is available
• In case of a hit, the document location is stored at

each node along the reverse path to the requester

Intelligent BFS:
• Informed version of modified-BFS
• Query routing is guided by past routing decision
• Nodes store query-neighborID tuples
• In case of a hit, routing information at all nodes on the

reverse path is updated.

What is a DHT?
Hash Table

data structure that maps “keys” to “values”

Interface
put(key, value)
get(key)

Distributed Hash Table (DHT)
similar, but spread across the Internet
challenge: locate content

What is a DHT? (cont.)
Single-node hash table:

Key = hash (data)
put(key, value)
get(key)->value

Distributed Hash Table (DHT):
Key = hash (data)
Lookup (key) -> node-IP@
Route (node-IP@, PUT, key, value)
Route (node-IP@, GET, key) -> value

Idea:
Assign particular nodes to hold particular content (or reference
to content)
Every node supports a routing function (given a key, route
messages to node holding key)

What is a DHT? (cont.)

DHT in action

DHT in action: put()

DHT in action: put()

DHT in action: put()

DHT in action: get()

Iterative vs. Recursive Routing

Peers vs Infrastructure
Peer Based DHT:

Application users provide nodes for DHT
Examples: file sharing, etc

Infrastructure Based DHT
Set of managed nodes provide DHT service
Perhaps serve many applications

DHT Design Goals
An “overlay” network with:

Decentralization and self-organization, i.e. no central
authority, local routing decisions
Flexibility in mapping keys to physical nodes and routing
Robustness to joining/leaving
Scalability, i.e. low communication overhead
Efficiency, i.e. low latency

A consistent “storage” mechanism with
No guarantees on persistence
Maintenance via soft state

Comparison to Other Facilities

Facility Abstraction Easy Use/Prg Scalability Load-Balance
DHT high high high yes
Centralized Lookup medium medium low no
P2P flooding queries medium high low no
Distributed FS low medium medium no

Facility Fault-Tolerance Self-Org Admin
DHT high yes low
Centralized Lookup low no medium
P2P flooding queries depends yes low
Distributed FS medium no high

Outline
General overview

P2P research activities
Applications
Search
Security
Resource Management

Case Studies

Security
Protection against:

Routing attacks
Redirect queries in wrong direction or to non-existing nodes
Misleading updates
Partition

Storage/Retrieval attacks
Node responsible for holding data item does not store or deliver it as
required

Inconsistent behavior
Node sometimes behaves and sometimes does not

Identity spoofing
Node claims to have an identity that belongs to another node
Node delivers bogus content

DoS attacks
Let legitimate (authenticated) users through

Rapid joins/leaves

In P2P systems, security issues are raised by the presence of
malicious peers

Trust assessment and management

Security
Need for providing levels of:

Data availability
Privacy
Confidentiality
Integrity
Authenticity

Challenges:
Secure storage
Secure routing
Access control, authentication and identity management
Anonymity
Reputation management

Security (cont.)
Secure storage: cryptographic algorithms
and protocols for securing the published and
stored content

Self-certifying data (integrity)

Information Dispersal (availability)

SHA (confidentiality and availability)

Security (cont.)

Secure routing: relies on 3 primitives

Secure assignment of IDs to nodes

Secure maintenance of routing tables

Secure forwarding of messages

Security (cont.)
Access control, authentication and identity
management: often ignored but essential to
counter attacks like Sybil attacks, denial of
service, etc.

Central authentication/identification authority

Access keys and author-based access control list

Intellectual property and digital rights
management

Anonymity
The degree to which a system allows for anonymous transactions
Do not want someone to identify author, publisher, reader, server,
or document on the systems

Project
Types and techniques of Anonymity

Publisher Reader Server Document

Gnutella Multicasting,
covert paths N/A N/A N/A

Freenet covert paths,
identity spoofing

covert paths Non-voluntary
placement encryption

APFS covert paths covert paths N/A N/A

FreeHaven Covert paths
(remailer) covert paths broadcast Encryprion/split

files into shares

Publius Covert paths
(remailer) N/A Non-voluntary

placement
Encryption/split

key

PAST N/A N/A Non-voluntary
placement encryption

Outline
General overview

P2P research activities
Applications
Search
Security
Resource Management

Case Studies

Resource Management

Focus here is on p2p content
distribution systems

Main resources to be managed:
Content

Storage capacity

Bandwidth

Resource Management (cont.)
Content management: deletion, update
and versioning

Often not supported for security, robustness
to attacks, lack of synchronization between
peers

Update and deletion provided to publishers
(Publius)

Complex content history archival
(OceanStore)

Resource Management (cont.)
Storage capacity management:content
expiration, storage vs. contribution

Contracts with duration in FreeHaven;
expired content is evicted

Used capacity storage in exchange for
compensation (MojoNation)

Peer contribution in exchange to the used
disk space (PAST)

Resource Management (cont.)

Bandwidth management: routing
performance, search facility

Structured systems for an optimized
network overhead

Indirect files for an optimized network
overhead in key-word based search
• Indirect files point to regular files

Outline
General overview

P2P research activities

Case Studies
File-sharing systems
Distributed Hash Tables (DHT)
Distributed Computing
Trust and reputation management

Outline
General overview
P2P research activities
Case Studies

File-sharing systems
Napster
Gnutella
Freenet
KazaA

Distributed Hash Tables (DHT)
Distributed Computing
Trust and reputation management

Napster
Hybrid decentralized,
unstructured�
Combination of client/server
and P2P approaches�
A network of registered
users running a client
software, and a central
directory server
The server maintains 3
tables:

(File_Index, File_Metadata)
(User_ID, User_Info)�
(User_ID, File_Index)

Napster (cont.)
History

5/99: Shawn Fanning
(freshman, Northeasten U.)
founds Napster Online music
service
12/99: first lawsuit
3/00: 25% UWisc traffic
Napster
2/01: US Circuit Court of
Appeals: Napster knew users
violating copyright laws
7/01: # simultaneous online
users: Napster 160K, Gnutella:
40K, Morpheus (KaZaA): 300K

Napster (cont.)
judge orders Napster to pull
plug in July ’01
other file sharing apps take
over!

Gnutella
Pure decentralized, unstructured�

Characteristic:�
Few nodes with high connectivity.�
Most nodes with sparse connectivity.�

Goal: distributed and anonymous file sharing

Each application instance (node) :�
stores/serves files�
routes queries to its neighbors�
responds to request queries

Gnutella (cont.)
History:�

3/14/00: released by AOL, almost immediately
withdrawn
Became open source
Many iterations to fix poor initial design (poor
design turned many people off)

Issues�
How much traffic does one query generate?
How many hosts can it support at once?
What is the latency associated with querying?
Is there a bottleneck?

Gnutella (cont.)

Gnutella (cont.)
Advantages:�

Robustness to random node failure
Completeness (constrained by the TTL)

Disadvantages:�
Communication overhead�
Network partition (controlled flooding)
Security�

Free riding problem�

Tradeoff: �
Low TTL => low communication overhead
High TTL => high search horizon

Freenet
Purely decentralized, loosely structured

Goal: provide anonymous method for storing and
retrieving data (files)�

2 operations:�
Insertion�
Search�

Indexes (keys) are used for:�
file clustering�
Assisting in routing�
Search optimization�

Each node maintains local data-store (files with
similar keys) and routing table

Freenet (cont.)
Bootstrapping�

No explicit solution�

File insertion�
User assigns a hash key to file�
sends an insert message to the user’s own node�
Node checks its data store for collision�
Node looks up the closest key and forwards the message to
another node �
This is done recursively until TTL expires or collision
detected.�
If no collision, user sends data down the path established by
the insert message.�
Each node along the path stores it and creates a routing
table entry

Freenet (cont.)
Search�

Freenet (cont.)
Advantages:�

Anonymity�
Robustness to random node failure�
Low communication overhead�
More scalable�
Self-organized�

Disadvantages:�
Poor routing decision�
Spam�
Security

�

KaZaA
Partially centralized,
unstructured

Every peer is either a
supernode(SN) or an
ordinary node (ON)
assigned to a supernode

Each supernode knows
where the other
supernodes are (Mesh
structure)

KaZaA (cont.)
Bootstrap:

Connection to a known SN
Upload METADATA for shared files

file name
file size
file descriptor
ContentHash

Search:
ON -> SN (-> SN)*
Keyword-based
ContentHash in result

Download:
HTTP
ContentHash-based
Failure -> automatic search on ContentHash�

KaZaA (cont.)

Advantages:
Scalability
Efficiency
Exploits heterogeneity of peer
Fault-tolerance

Disadvantages
Pollution
DoS attacks on SN

BitTorrent

BitTorrent (cont.)

File is broken into pieces
Typically piece is 256 KBytes
Upload pieces while downloading pieces

Piece selection
Select rarest piece
Except at beginning, select random pieces

Tit-for-tat
Bit-torrent uploads to at most four peers
Among the uploaders, upload to the four that are
downloading to you at the highest rates
A little randomness too, for probing

Outline General overview

P2P research activities

Case Studies
File-sharing systems
Distributed Hash Tables (DHT)

Consistent hashing
Kademlia
Analysis of DHT systems

Distributed Computing

Trust and reputation management

DHT Approaches
Consistent Hashing

CAN (Content Addressable Network)

Kademlia

Consistent Hashing
Consistent hashing
[Karger97]
Overlay network is a circle
Each node has randomly
chosen id

Example: hash on the IP
address
Keys in same id space

Node’s successor in circle is
node with next largest id

Each node knows IP address
of its successor

Key is stored in closest
successor

Consistent Hashing (cont.)
Principles:

neighbors = s+1: O(1)�

Routing table: (neighbor_id, neighbor_ip@)�

Average # of messages to find key:

Node departures Node joins
Each node must track
s ≥ 2 successors

If your successor leaves,
take next one

Ask your new successor for
list of its successors; update
your s successors

You are a new node, id k

Ask any node n to find the node n’ successor for id k

Get successor list from n’

Tell your predecessors to update their successor lists

Thus, each node must track its predecessor

Can we do
better?

CAN
Routing geometry: Hypercube
A hash value = a point in a D-dimensional
Cartesian space
Each node responsible of a D-dimensional cube
Neighbors are nodes that “touch” in more than a
point

Example: D=2
• 2,3,4,5 are 1’s neighbors
• 6 is a neighbor of 2
neighbors: 0(D)

CAN (cont.)
Routing:�

Recursively, from (n1, ..., nD) to (m1, …, mD),
choose the closest neighbor to (m1, …, mD)
expected # overlay hops: 0(DN1/D)/4�

Node Join:�
find some node in the CAN (via bootstrap
process) (9)
choose a point in the space uniformly at
random (X)�
using CAN, inform the node that currently
covers the space (8)
that node (8)splits its space in half
• 1st split along 1st dimension, if last split

along dimension i< D, next split along i+1st
dimension

keeps half the space and gives other half to
joining node

CAN (cont.)
Node Leave:

leaf (3) removed
Find a leaf node that is either
• a sibling
• descendant of a sibling where its sibling is also a leaf node (5)

(5) takes over (3)’s region (moves to (3)’s position on the tree)
(5)’s sibling (2)takes over (5)’s previous region
The cube structure remains intact

Kademlia

• Nodes are treated as leaves in a binary tree
• Node’s position in the tree is determined by the shortest unique prefix of its ID
• A Node is responsible for all “closest” IDs, i.e. IDs having same prefix as itself
• Distance between ID x and y is measured as d(x,y) = x ⊕y

• e.g. d(010101b, 110001b) = 100100b⇔d(2110, 4910) = 3610

• Nodes/IDs tree (i.e. with longest common prefix) are closer

Kademlia: Index distribution

• For any node (say the red node with prefix 0011) the binary tree is divided into
a series of maximal subtrees that do not contain the node.

• A node must know at least one node in each of these subtrees.

Kademlia: Query Routing

• Consider a query for ID 1110… initiated by node 00111…

DHT Challenges
Consistency

Soft-state publication
Tradeoff between consistency and communication overhead

Performance
Load-balancing
Query Response time (optimize # of hops)

=> Replication?
Reduce latency in routing

Neighbors in a ring and far away in the internet
=> Location-awareness

Geometry
Ring topology adds flexibility and helps in resilience

Bootstrapping
Relies on known node

DHT Applications
Global file systems [OceanStore, CFS, PAST,
Pastiche, UsenetDHT]
naming services [Chord-DNS, Twine, SFR]
DB query processing [PIER, Wisc]
Internet-scale data structures [PHT, Cone,
SkipGraphs]
Communication services [i3, MCAN, Bayeux]
File sharing [OverNet, eMule, eDonkey, etc.]
Event notification [Scribe, Herald]

Outline
General overview
P2P research activities
Case Studies

File-sharing systems
Distributed Hash Tables (DHT)
Distributed Computing
Trust and reputation management
Measurements of existing P2P systems

Future research directions

seti@home
Goal : to discover alien
civilizations�
Analyzes the radio
emission from the space
collected by the radio
telescopes using
processing power of
millions of unused internet PCs�
Two major components : a database server and clients
Supported platforms : Windows, Linux, Solaris, and HP-UX

Outline
General overview
P2P research activities
Case Studies

File-sharing systems
Distributed Hash Tables (DHT)
Distributed Computing
Trust and reputation management
Measurements of existing P2P systems

Future research directions

File Sharing in a P2P system

Need for a Reputation Management scheme

�

File Sharing in a Reputation-Based P2P
system

�

Reputation-based Systems

�

RM in partially-decentralized p2p
systems

KaZaA Reputation System
Integrity Rating of Files :
• Excellent, average, poor, delete
Participation Level for rating peers:
• (Uploads in MB/Downloads in MB)* 100
Drawbacks of KaZaA reputation system:
• No distinction between good and malicious peers
• Designed to reward who are practicing good behavior
• Does not punish malicious peers

The Inauthentic Detector Algorithm (IDA)
The Malicious Detector Algorithm (MDA)

�

RM Design: Completely Decentralized

�

Proposed Approach: Use Supernodes for RM

RM Design: Partially Decentralized

�

Peer

Supernode

Data

Control
& Reputation
Data

RM Overhead

�

Peer

Supernode

Data

Control

Effect of liar peers

No liar peers
Good peers get high reputation values
Malicious peers get low reputation values

With liar peers
Good peers can have low reputation values
Malicious peers can have high reputation values

Need for a mechanism to detect liar peers

�

IDA and MDA

�

RM Challenges
Reputation systems have the following
challenges:

Eliciting feedbacks:
• Peers may not send feedbacks
• It is difficult to ensure an honest feedback

Distributing the feedback history is challenging:
• Peers may change their pseudonyms easily to erase prior

feedback history.
• The lack of portability from system to system.
• The use of a more universal framework will be beneficial.

Aggregating feedbacks is a difficult task

�

Outline
General overview

P2P research activities

Case Studies

Future research directions

Future Research Directions
P2P research is an exciting area with many open
problems and opportunities, including the design
of:

New distributed object placement and query routing
New hash table data structures and algorithms
Efficient security and privacy
Semantic grouping of information in P2P networks
Incentive mechanisms and reputation systems
Convergence of Grid and P2P systems
Providing transactional and atomic guarantees on P2P

�

Future Research Directions
P2P and Management:

Content management is key
Autonomic behavior (e.g., self-organizing communities
of interest)
Trust and reputation management is a challenge
Further exploiting P2P architectures for management
apps

�

