Master Degree in Information Technology Engineering for Health and Communication: Health Curriculum

Electromagnetic interactions and diagnostics

BASIS

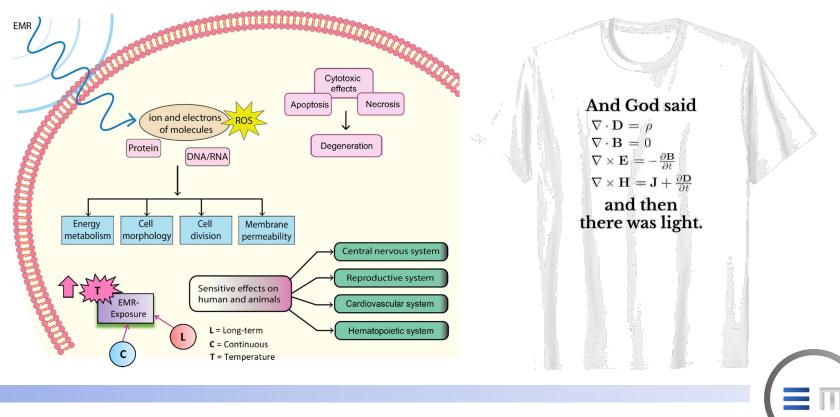
Prof. A. Buono

Table of contents:

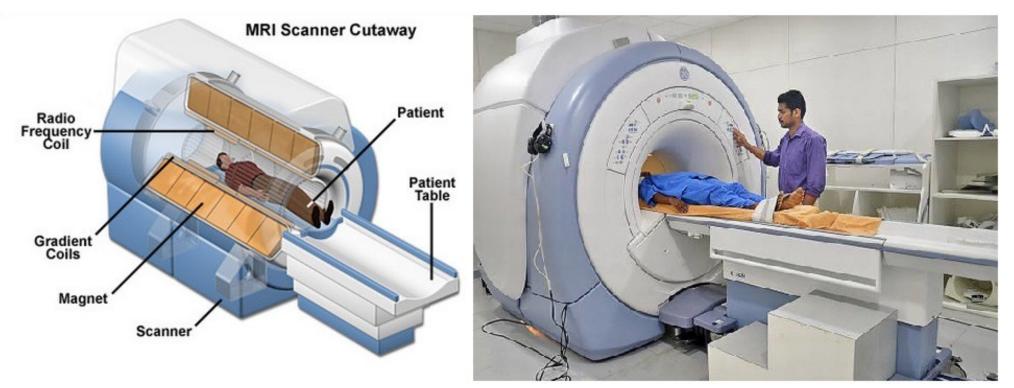
- Forward modeling
- Decibels
- Near and far field
- Penetration depth
- EM spectrum



Any EM problem can be addressed by solving the complete set of Maxwell's equations



Full-wave	Q. S Electric	Q. S Magnetic	Stationary
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$ $\nabla \cdot \mathbf{D} = \rho$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0$	$\nabla \times \mathbf{E} = 0$ $\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$ $\nabla \cdot \mathbf{D} = \rho$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0$	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{H} = \mathbf{J}$ $\nabla \cdot \mathbf{D} = \rho$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \cdot \mathbf{J} = 0$	$\nabla \times \mathbf{E} = 0$ $\nabla \times \mathbf{H} = \mathbf{J}$ $\nabla \cdot \mathbf{D} = \rho$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \cdot \mathbf{J} = 0$
	Propagation		
		—————————————————————————————————————	
13/10/23	Prof.	A. Buono	4

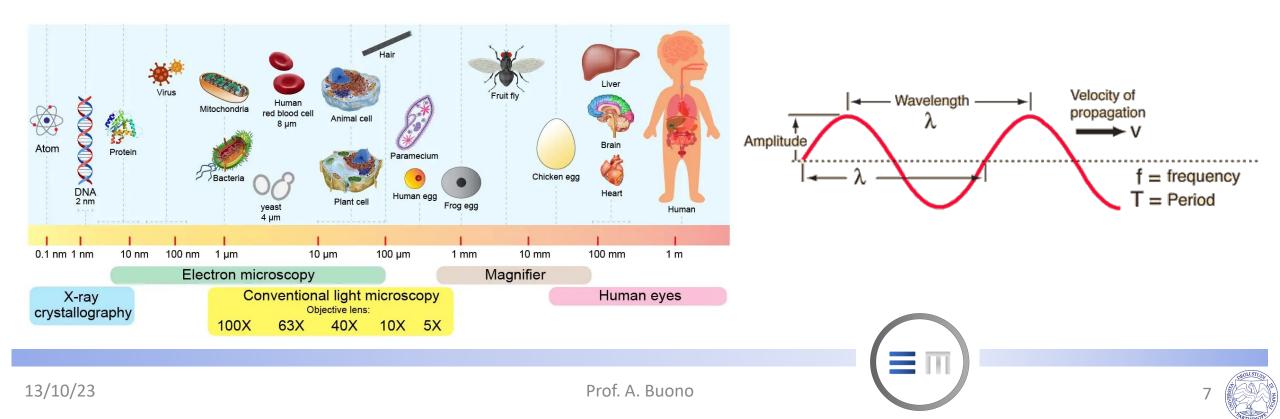


A static magnetic field (1.5 T or 3 T) is used in Magnetic Resonance Imaging

Cell type	Power Supply	Electric Field Strength (V/cm)	Stimulation Duration (h)	Preferred Direction	Major Result
Chondrocytes	DC, Keithley Instruments (USA)	6	3	Bidirectional (dependent on passage of cells)	EF directed migration was influenced by passage [27]
Keratinocytes	DC & AC PASCO Scientific (USA)	0.4 at 1.6 or 160 Hz (AC) / 1 (DC)	1	Cathode	Verification of electromechanical model for migration [93]
Mammary epithelial cells	DC, Pine (USA)	0.13–1.0	6	Anode	Clustered cells were more sensitive to alignment, but migrated slower than isolated cells [83]
Osteoblasts	DC, Biometra (Germany)	0.15-0.45	7	Anode	Upregulation of ion channel gene, associating Ca ²⁺ with migration speed [96]
Peripheral blood lymphocytes	DC, Agilent Technologies (USA)	0.15–2	0.5–2.0	Cathode	Directed migration in vitro and in vivo and activated intracellular kinase pathways [<u>37</u>]
Neuroblastoma cells	DC, AMPI (Israel)	0.045-4.5	4	Anode	Enhancement of cell mobility [61]
Bone marrow stem cells	DC, Glassman FC (USA)	0.2–5	15	Cathode	Donor did not influence migration direction and morphological changes but affected response time to EF, migration speed and cell viability [22]

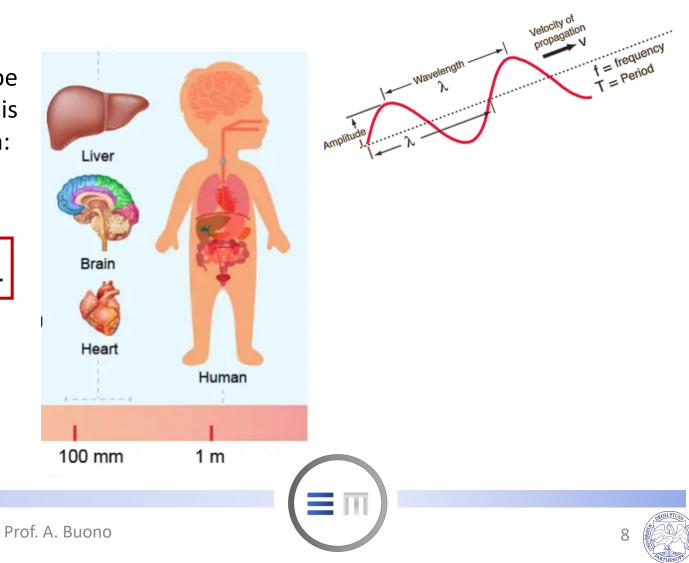
Endogenous electric fields are involved in the organisation and development of tissues, as well as in their regeneration following injury. They are stimulated using static electric fields.

The coupling capability between EM waved and biological tissues does not **depend on the tissue physical dimension** (*L*) but **on their electrical dimensions** (*k*)

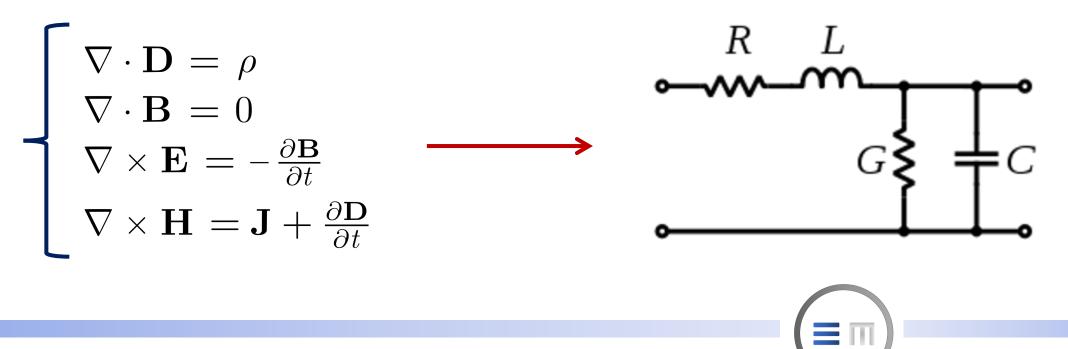


A tissue or an EM radiating source is termed to be "*electrically small*" if its largest physical dimension is "significantly" smaller than the shortest wavelength:

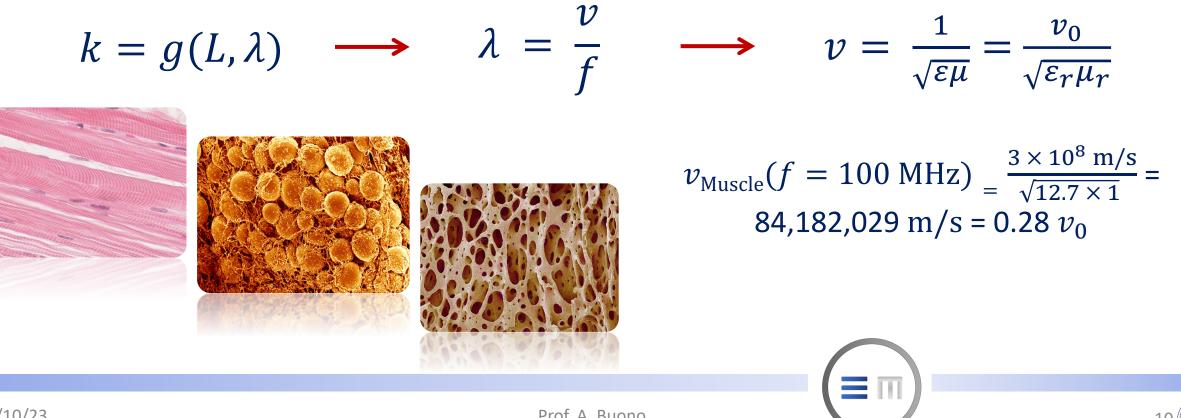
$$k = \frac{L}{\lambda} \longrightarrow L \ll \lambda \text{ or } k \ll 1$$



When the EM problem is electrically small, lumped-circuit models together with Kirchhoff's laws can be used for solving rather than Maxwell's equations.

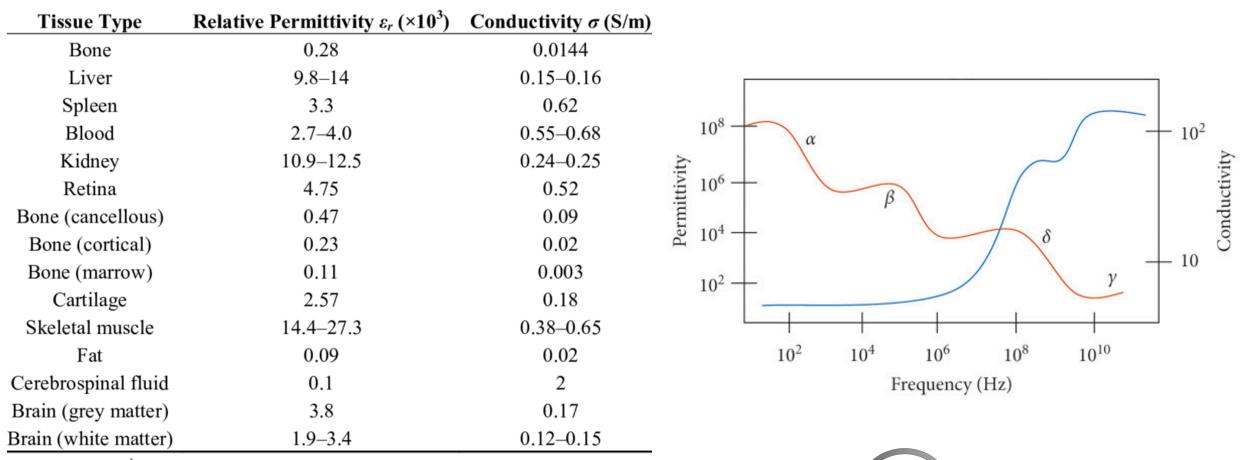


It must be pointed out that k depends on the dielectric properties of the medium:

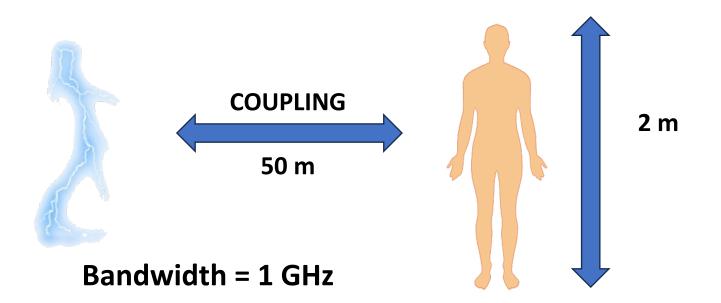


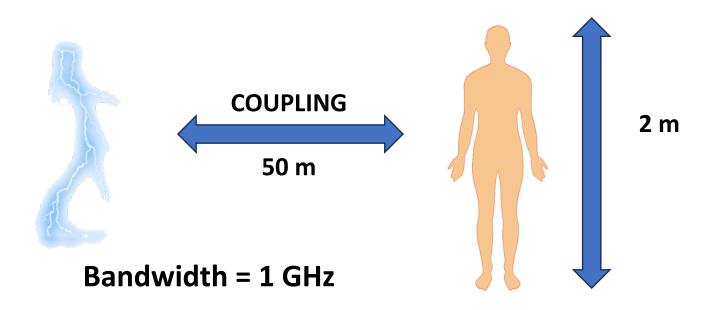
BASIS

Forward modeling: dielectric properties of tissues

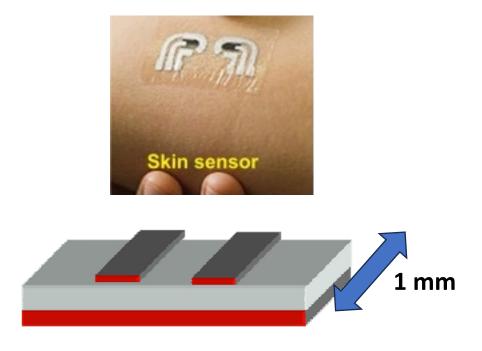


¹ Measured *ex vivo* at 100 kHz, adapted from [92–94].



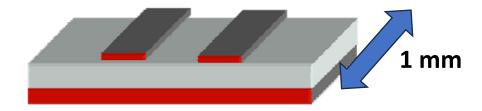


<u>The problem is «electronically large»</u> <u>and, hence, the complete set of</u> <u>Maxwell's equations is needed.</u>



- Signal frequency = 20 GHz
- $v = 2.1 \times 10^8 \text{ m/s}$

The problem is «electronically small» and, hence, lumped-circuit models can be used.



- Signal frequency = 20 GHz
- $v = 2.1 \times 10^8 \text{ m/s}$

256

224

192

160

128

96

64

32

Logarithmic

Decibels:

✓ Human ears feel noise according to a logarithmic scale

 $\checkmark\,$ To exploit math properties of log function

✓ To compress the large dynamic range of signals involved in bioEM

✓ To express SNR or measurement/reference signals

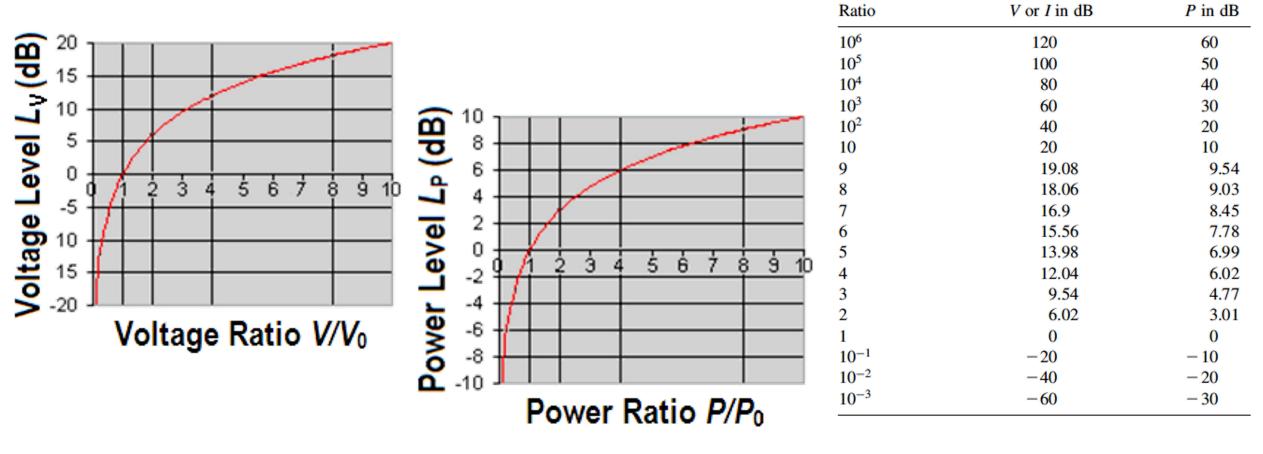
Linear

$$dB \equiv 10 \log_{10} \left(\frac{P_2}{P_1}\right) \text{(power)}$$
$$dB \equiv 20 \log_{10} \left(\frac{v_2}{v_1}\right) \text{(voltage)}$$
$$dB \equiv 20 \log_{10} \left(\frac{i_2}{i_1}\right) \text{(current)}$$

$$dB\mu V \equiv 20 \log_{10} \left(\frac{volts}{1 \ \mu V}\right)$$
$$dBm V \equiv 20 \log_{10} \left(\frac{volts}{1 \ mV}\right)$$
$$dB\mu A \equiv 20 \log_{10} \left(\frac{amperes}{1 \ \mu A}\right)$$
$$dBm A \equiv 20 \log_{10} \left(\frac{amperes}{1 \ mA}\right)$$
$$dB\mu W \equiv 10 \log_{10} \left(\frac{watts}{1 \ \mu W}\right)$$
$$dBm \equiv dBm W \equiv 10 \log_{10} \left(\frac{watts}{1 \ mW}\right)$$
$$dB\mu V/m \equiv 20 \log_{10} \left(\frac{V/m}{1 \ \mu V/m}\right) \ dB\mu A/m \equiv 20 \log_{10} \left(\frac{A/m}{1 \ \mu A/m}\right)$$
of. A. Buono

- 350 mV → dBµV ?
- 250 mW \longrightarrow dB μ W?

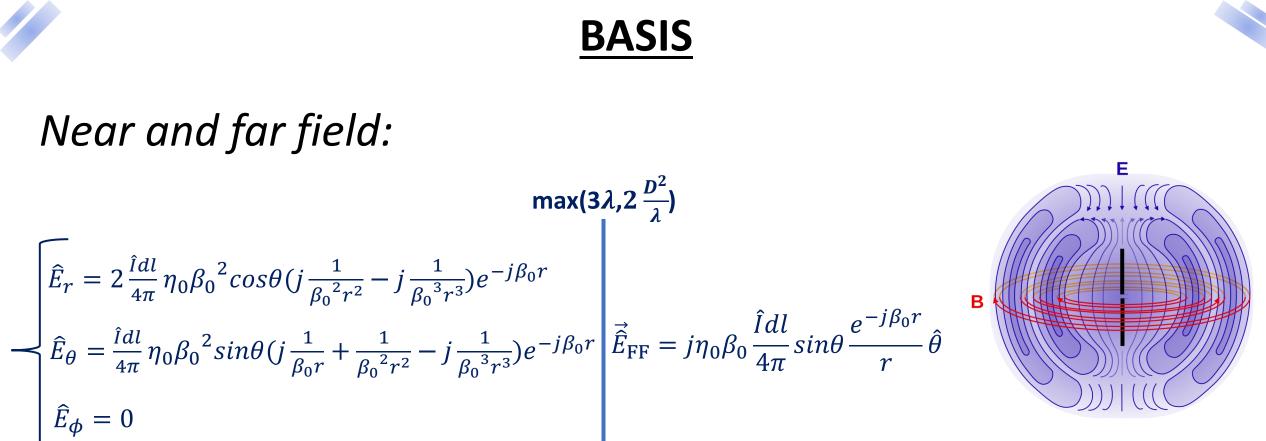
- 350 mV → 110.88 dBµV
- 630 mA → 55.99 dBmA
- 250 mW → 53.98 dBµW



- 108 dBµV → V ?
- 44 dB μ V/m \longrightarrow μ V/m ?

W ?

- 44 dBμV/m ------> 158.49 μV/m
- 56 dBm _____
- 398.107 W



NEAR FIELD FAR FIELD

Distance

from source

Prof. A. Buono

Antenna factor Antenna pattern $\hat{E}_{\theta} = \widehat{M} \hat{I} \frac{e^{-j\beta_0 r}}{r} F(\theta)$

Hertzian dipole:

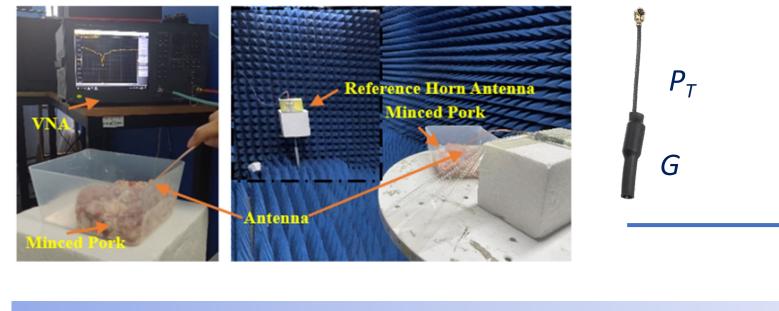
$$\widehat{M} = j \frac{\eta_0 \beta_0}{4\pi} L = j 2\pi \cdot 10^{-7} f L \qquad F(\theta) = \sin(\theta)$$

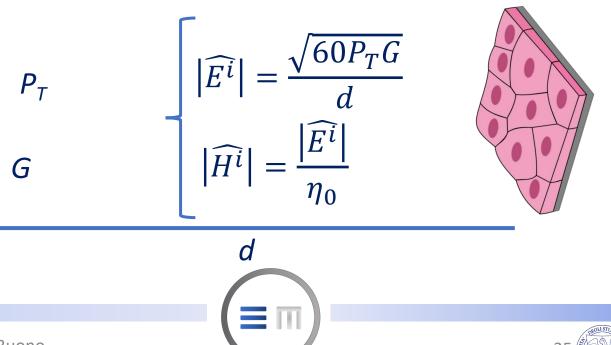
- \hat{l} is current at the center of the antenna
- $0 < F(\theta) < 1$
- \widehat{M} depends on the antenna type

Half-wave dipole:

$$\widehat{M} = j \frac{\eta_0}{2\pi} = j60$$
 $F(\theta) = \frac{\cos\left(\frac{1}{2}\pi\cos\theta\right)}{\sin\theta}$

The incident EM field onto a tissue can be thought as generated by a far-field antenna. As a result, it can be evaluated using the Friis link equation:





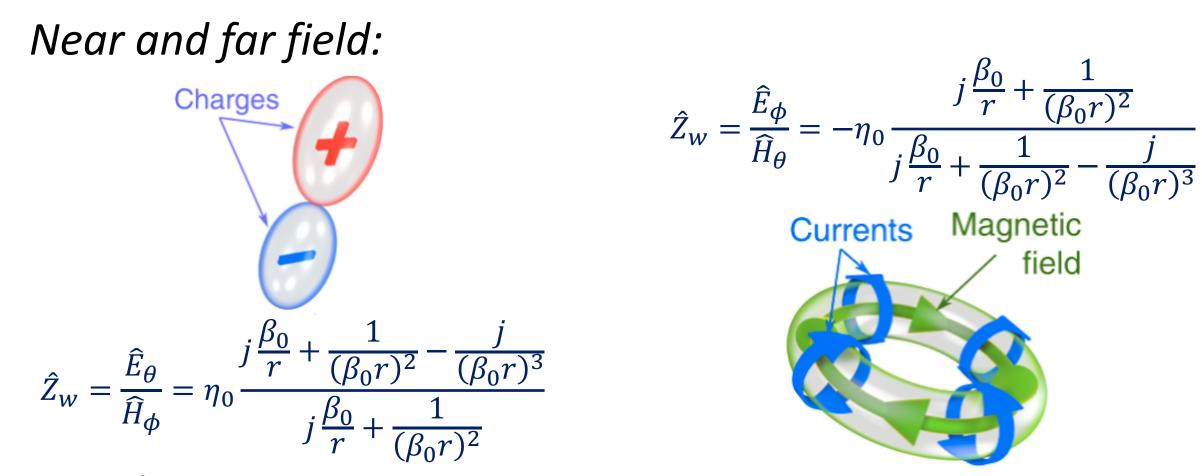
Considering the Hertzian dipole as the elementary electric field source, it was shown that in the far field:

- 1) E_{ϑ} and H_{φ} are mutually orthogonal.
- 2) $|E_{\vartheta}|/|H_{\phi}|$ is the free-space intrinsic impedance, η_0 .

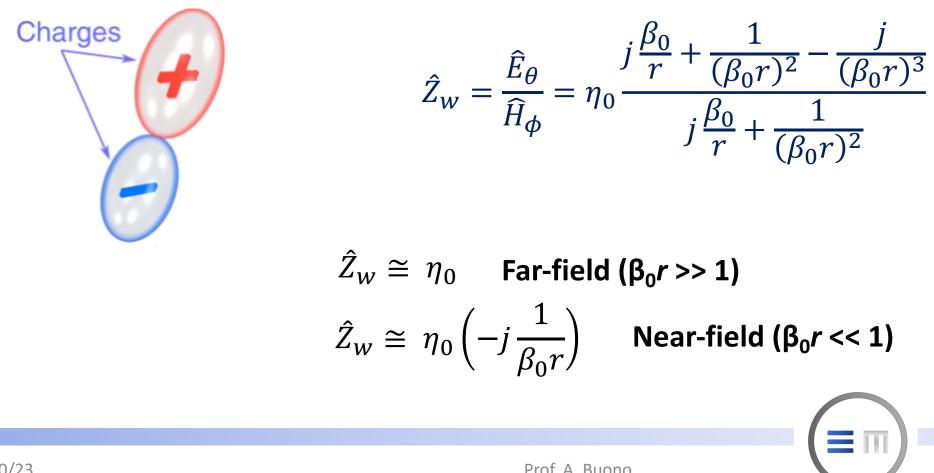
This is no longer true for near fields.

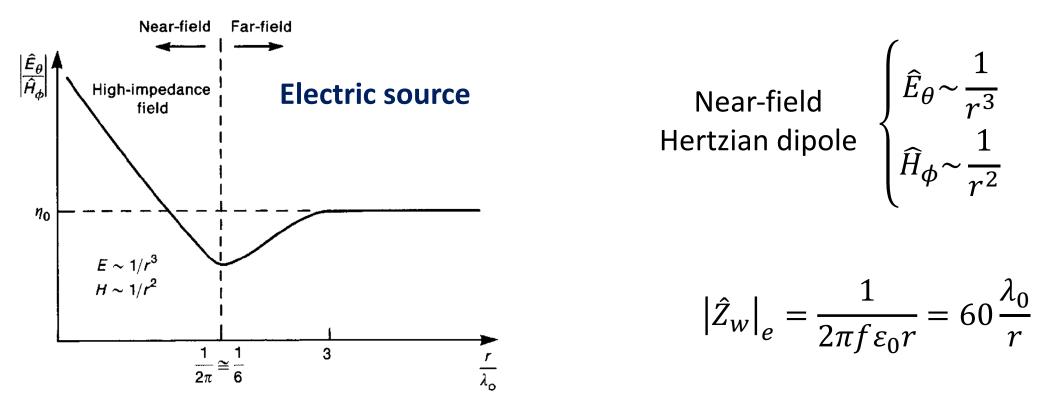
A further reasonable criterion to determine the near-/far-field region boundary is to find the distance from the source where the ratio $|E_{\vartheta}|/|H_{\varphi}|$ is about $\eta_{0.}$

BASIS



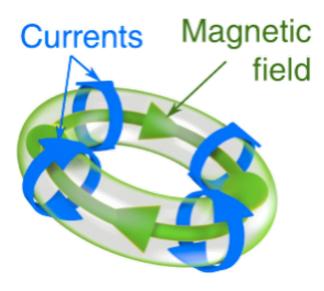
 \hat{Z}_w is termed as wave impedance ("intrinsic impedance" in the far field case).





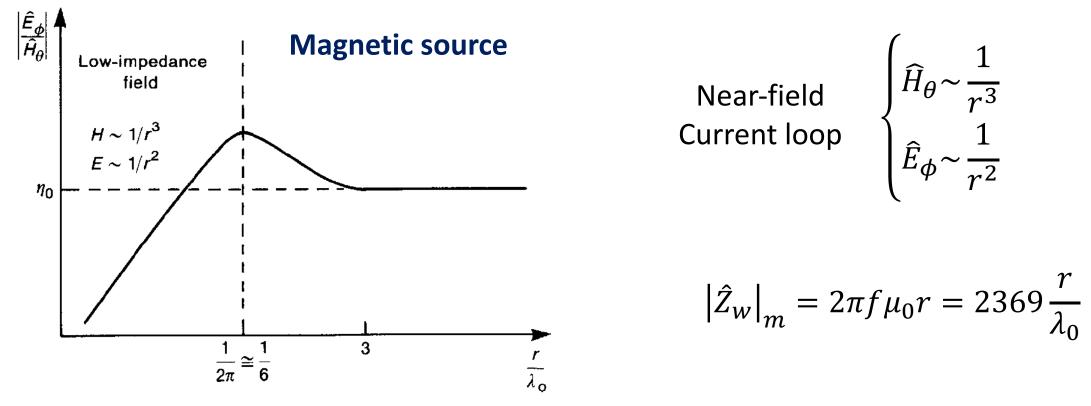
Hence, in the near field, the electric dipole is termed as **high impedance source** since its wave impedance is larger than the intrinsic one.





$$\hat{Z}_{w} = \frac{\hat{E}_{\phi}}{\hat{H}_{\theta}} = -\eta_{0} \frac{j \frac{\beta_{0}}{r} + \frac{1}{(\beta_{0}r)^{2}}}{j \frac{\beta_{0}}{r} + \frac{1}{(\beta_{0}r)^{2}} - \frac{j}{(\beta_{0}r)^{3}}}$$

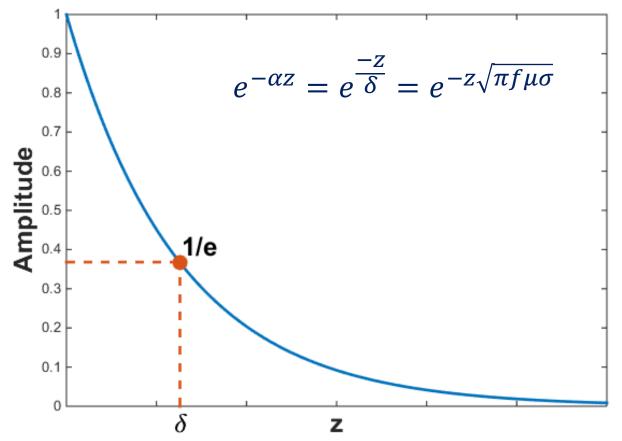
 $|\hat{Z}_w| \cong \eta_0$ Far-field ($\beta_0 r >> 1$) $\hat{Z}_w \cong -j\eta_0 \beta_0 r$ Near-field ($\beta_0 r << 1$)



Hence, in the near field, the current loop is termed as **low impedance source** since its wave impedance is lower than the intrinsic one.

BASIS

Penetration depth:



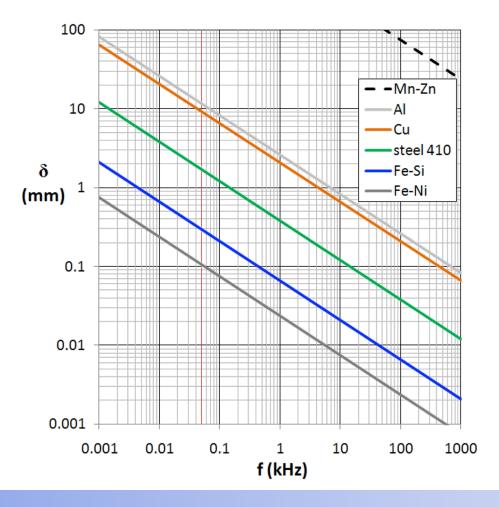
The penetration depth δ is defined as the depth where the power density is just 1/e (about 37%) of the surface value.

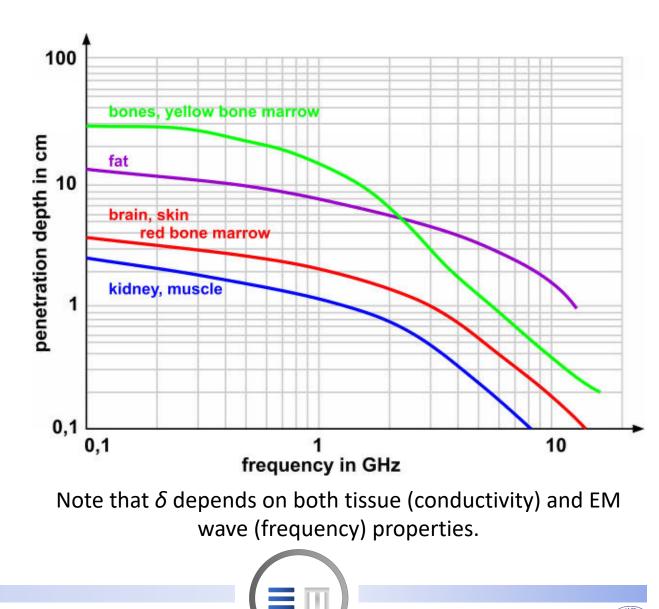
$$\delta = \frac{1}{\sqrt{\pi f \mu \sigma}} \quad \mathrm{m}$$

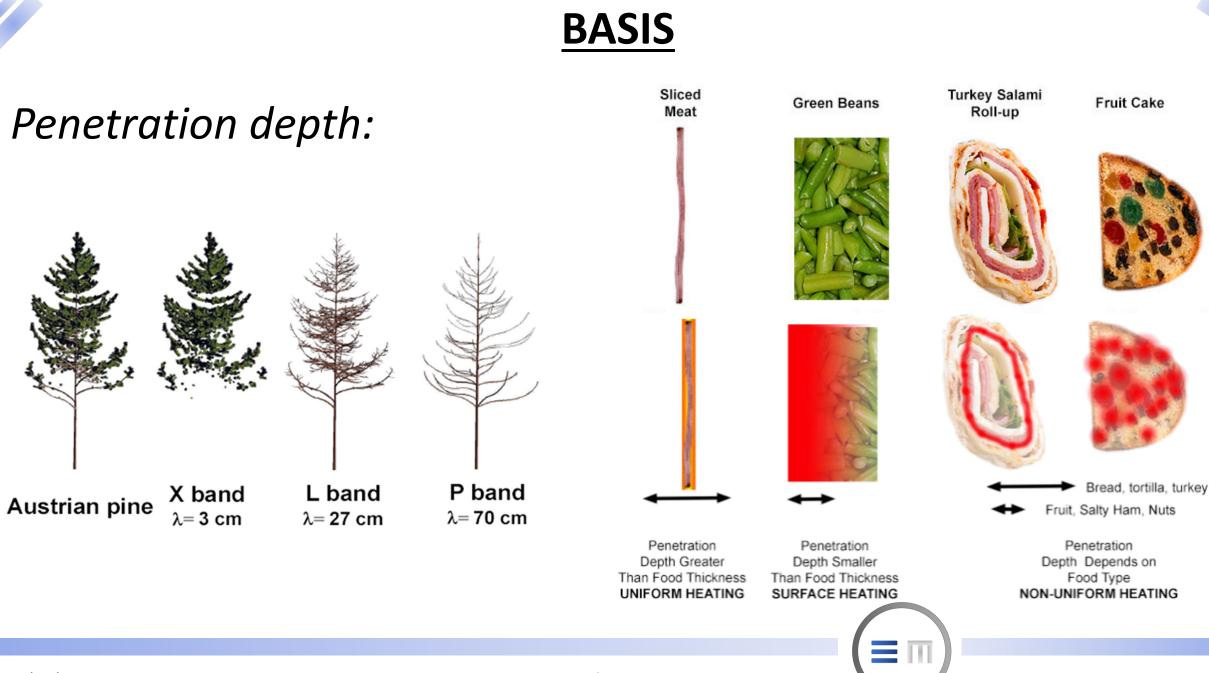
Media with higher loss factor ε_r " (imaginary part of the complex electric permittivity) show faster microwave energy absorption.

BASIS

Penetration depth:



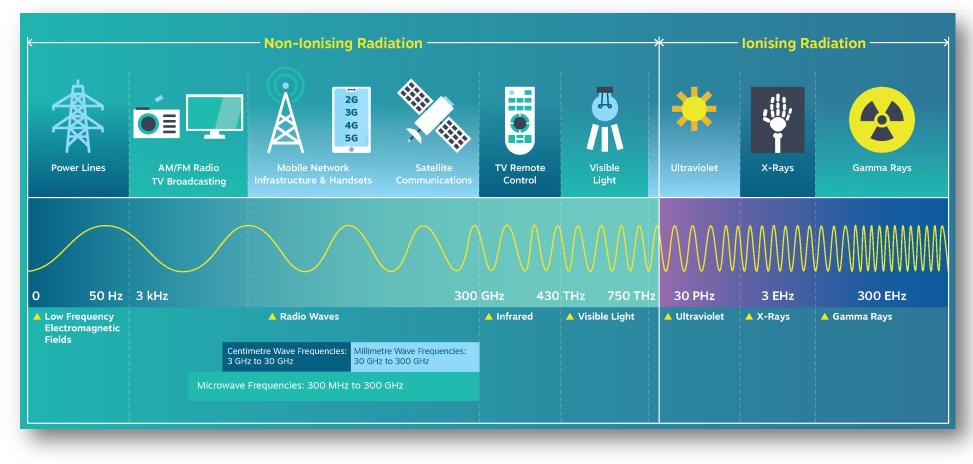




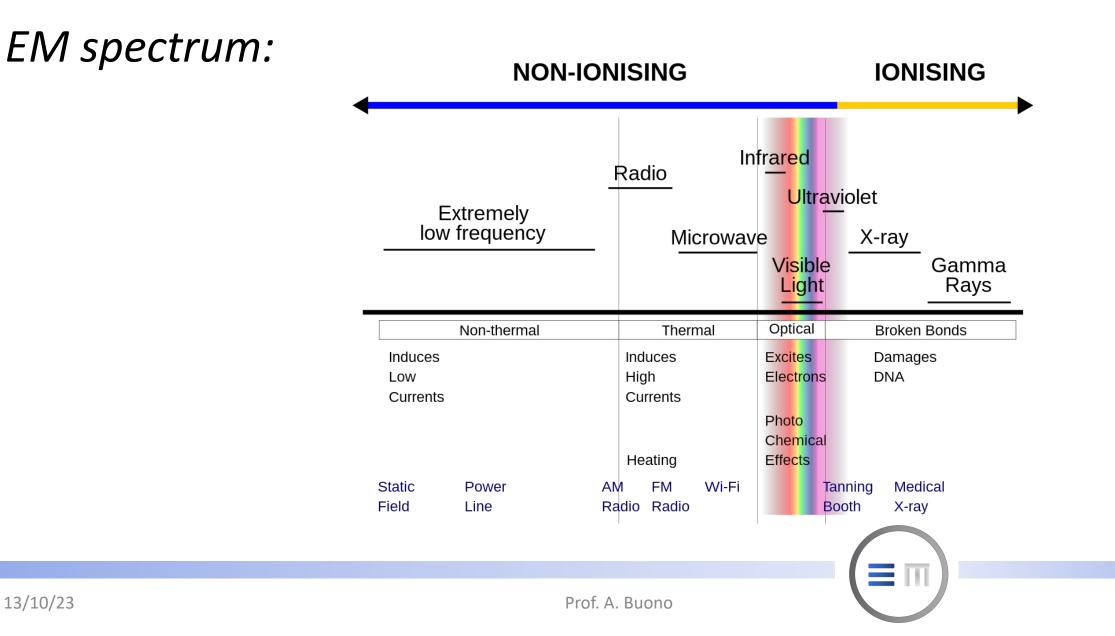
Prof. A. Buono

34

EM spectrum:



BASIS



BASIS

EM spectrum:

