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BASIS

Forward modeling:

Any EM problem can be addressed by solving the complete set of Maxwell’s equations
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Forward modeling:
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Forward modeling:

MRI Scanner Cutaway

N

A static magnetic field (1.5 T or 3 T) is used in Magnetic Resonance Imaging

B
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Forward modeling:

Cell type Power Supply Electric Field Stimulation Preferred Direction
Strength (V/cm) Duration (h)

Major Result

Chondrocytes DC, Keithley 6 3 Bidirectional (dependent EF directed migration was influenced by passage [27]
Instruments (USA) on passage of cells)
Keratinocytes DC & AC PASCO 0.4 at1.6 or160Hz 1 Cathode Verification of electromechanical model for migration [93]
Scientific (USA) (AC) /1 (DC)
Mammary epithelial DC, Pine (USA) 0.13-1.0 6 Anode Clustered cells were more sensitive to alignment, but migrated slower
cells than isolated cells [83]
Osteoblasts DC, Biometra 0.15-0.45 7 Anode Upregulation of ion channel gene, associating Ca2* with migration speed
(Germany) [96]
Peripheral blood DC, Agilent 0.15-2 0.5-2.0 Cathode Directed migration in vitro and in vivo and activated intracellular kinase
lymphocytes Technologies (USA) pathways [37]
Neuroblastoma cells DC, AMPI (Israel) 0.045-4.5 4 Anode Enhancement of cell mobility [61]
Bone marrow stem DC, Glassman FC 0.2-5 15 Cathode Donor did not influence migration direction and morphological changes
cells (USA) but affected response time to EF, migration speed and cell viability [22]

Endogenous electric fields are involved in the organisation and development of tissues, as well as in their
regeneration following injury. They are stimulated using static electric fields.
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Forward modeling:

The coupling capability between EM waved and biological tissues does not depend on the tissue physical
dimension (L) but on their electrical dimensions (k)
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Forward modeling:

A tissue or an EM radiating source is termed to be
“electrically small” if its largest physical dimension is
“significantly” smaller than the shortest wavelength:
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Forward modeling:

When the EM problem is electrically small, lumped-circuit models together with Kirchhoff’s laws can be used for
solving rather than Maxwell’s equations.
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Forward modeling:

It must be pointed out that k depends on the dielectric properties of the medium:

(% 1 v
k=g(L) — 1=- — v=—=——
g(L, 1) f NN
MR 3x10% m/s

MY

vMuscle(f = 100 MHZ) — m -

84,182,029 m/s =0.28 v,

13/10/23 Prof. A. Buono




BASIS

Forward modeling: dielectric properties of tissues

Tissue Type Relative Permittivity ¢, (x10%) Conductivity & (S/m)

Bone 0.28 0.0144
Liver 9.8-14 0.15-0.16
Spleen 33 0.62
Blood 2.7-4.0 0.55-0.68 1078
Kidney 10.9-12.5 0.24-0.25 & \ =
Retina 4.75 0.52 g 10° — Z
Bone (cancellous) 0.47 0.09 E - "é
Bone (cortical) 0.23 0.02 & 10° T S
Bone (marrow) 0.11 0.003 it
Cartilage 2.57 0.18
Skeletal muscle 14.4-27.3 0.38-0.65 | i i | %
Fat 0.09 0.02 10° 10 10° 10° 100
Cerebrospinal fluid 0.1 2 Frequency (Hz)
Brain (grey matter) 3.8 0.17
Brain (white matter) 1.9-3.4 0.12-0.15

' Measured ex vivo at 100 kHz, adapted from [92-94].
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Forward modeling: showcase

COUPLING
2m

50m

Bandwidth = 1 GHz
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Forward modeling: showcase

COUPLING The problem is «electronically large»
2m and, hence, the complete set of
50 m Maxwell’s equations is needed.

Bandwidth = 1 GHz
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Forward modeling: showcase

Skin sensor

.

e Signal frequency = 20 GHz
e v=2.1X%X10%m/s

| [l
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BASIS

Forward modeling: showcase

The problem is «electronically small» and, hence,
- lumped-circuit models can be used.

Skin sensor

e Signal frequency = 20 GHz
e v=2.1X%X10%m/s
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Decibels:

256 e

224 e
Logarnthmic _—
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v' Human ears feel noise according to a logarithmic scale
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% /
64 |

v’ To exploit math properties of log function 2|

v To compress the large dynamic range of signals involved in bioEM

v’ To express SNR or measurement/reference signals
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Decibels:

dB = 10log,, (?‘) (power)
1

dB = 20 1og10(” ) (voltage)

U1

dB = 20 10;,:10('2
[

) (current)
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dBpV = 201log,, (‘1’0 b)

dBmV = 20 1og,0< I’zit\b/)

dBpA = 20 log,,| -

dBmA = 20 log, (-

waltls
dBpW = 10log ( )
0\ T

dBm = dBmW = lOlogm(l r;1W

Vv A/m
dBpV/m = 20Iog,(,(l </m ) dBpA/m = 20|0g|(,( / )
m
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Decibels:

¢ 1V —> dBuv?

e 350mV —> dBuv?
e 630mA ——> dBmA?

e 250mW ———> dBuW?
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Decibels:

e 350mvy —>

° 630MA —>

e 250mW =——mm—>
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120.00 dBuV
110.88 dBuV
55.99 dBmA

53.98 dBuW
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Decibels:
Ratio Vor Iin dB P in dB
. 20 - 106 120 60
% =" | 10° 100 50
= 15 2 10¢ 80 40
10 10° 60 30
~ / a 10 - " 102 40 20
o ° T & 10 20 10
> 0 : — , o B 9 19.08 9.54
Y9 dAaA234 56788105 4 8 18.06 9.03
-3 X 7 16.9 8.45
D . ,
> 10 f g 6 15.56 778
0 T T T — 5 13.98 6.99
b ( © -d4 2 34 5678310 -
= 15 -y 2 4 12.04 6.02
o 20] 4 Ji 3 9.54 477
> - . o 2 6.02 3.01
Voltage Ratio VV\V, 3 *© ! 0 0
o -8 10~! -20 -10
0o -10 | 1072 —40 -20
. 1073 —60 —-30
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Decibels:

e 108dBRV —m > V?

* 44dBpV/m ——>  pV/m?

* 56 dBm — W ?
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Decibels:

. 108 dBpV
44 dBpV/m

e 56dBm
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0.2512 V
158.49 pV/m

398.107 W
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Near and far field:

2
max(34,2 DT)
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Near and far field:

Antenna factor Antenna pattern
Hertzian dipole:

M = ]%L =j2mr-10"7fL  F(8) = sin(0)
* [iscurrent at the center of the antenna . ool
e 0< F(H) <1 Halt-wave dipole:
« M depends on the antenna type n COS (171 CoS 6)
—~ 0 2
M=j— =60 F(6) = .
21 sin 6
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Near and far field:

The incident EM field onto a tissue can be thought as generated by a far-field antenna. As a
result, it can be evaluated using the Friis link equation:

Referénce Horn Antenna
Minced Pork

]

Antenna

& A v >, - . 4 .'». \::‘ -
Yhii ' -
- AN '." a W . @
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Near and far field:

Considering the Hertzian dipole as the elementary electric field source, it was shown that in
the far field:

1) Esand H, are mutually orthogonal.
2) |Esl/|Hgl is the free-space intrinsic impedance, n,.

This is no longer true for near fields.

A further reasonable criterion to determine the near-/far-field region boundary is to find the
distance from the source where the ratio |Eg|/|Hg| is about n,
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Near and far fleld y .
Charges /) Ey G2

(+) N PR o —
(Bor)?  (Bor)®

| Currents Magnetic
e

. ,Bo_l_ 1 ]
7 _E _ (,307”)2 (,307")3
w — i‘i = To ﬁO 1
¢ +
(Bor)?

Z,, is termed as wave impedance (“intrinsic impedance” in the far field case).
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Near and far field:

Charges R ,& + 1 _ Ji
) -f" , _ kg _ T T B2 (Bor)?
ZW — ﬁ = Mo IB 1
¢ =0 4

(/ T T (Bor)?

Zw = No Far-field (B,r >> 1)

12

A 1
Zy = Mo (—j m) Near-field (B,r << 1)
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Near and far field:
Near-field Far-fieid
£1A - : > ( 1
Ay High-ig?;zdancei Electric source Near-field < E9~r_3
! Hertzian dipole | . 1
.o~
| ¢ 2
Ho L
|
i
| A 1 /10
| / = = 60—
L ! > | Wle 2feqr r
2 6 7

Hence, in the near field, the electric dipole is termed as high |mpedance source since its
wave impedance is larger than the intrinsic one.
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Near and far field:

Currents Magnetic 8 1
field - JEL + s
_n (Bor)
0 -,30 n 1 J
(,307”)2 (,307”)3

|ZW| = 1o Far-field (B,r >> 1)

A

Zy = —jnoPor Near-field (B,r << 1)
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Near and far field:
E4 A :
Aol | Low-imped | Magnetic source ( 1
OW-IHI'I edance I P
Hele | Near-field J Ho~ 73
~ 1 Current loop N 1
~ e Ep~—
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12

D -

| - /10
1 r
2n F
Hence, in the near field, the current loop is termed as low |mpedance source since its wave
impedance is lower than the intrinsic one.
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Penetration depth:

1

| The penetration depth ¢ is defined as the
—az _ = _ ,—z/nfuc | depth where the power density is just 1/e

0.9

0.8 e —ed =e¢e

. (about 37%) of the surface value.
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Media with higher loss factor €' (imaginary
part of the complex electric permittivity) show
| faster microwave energy absorption.
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A
y . 100
Penetration depth.
bones, yellow bhone marrow
100 ~7]
\ S~ ~ g
fat
\ = =Mn-Zn 8 E 10
0 \ \ _/éL § brain, skin
\1 \ —teel 410 -g red bone marrow
5 N\ N N\ —FesSi )
(mm) ! N \\ S [T FeNi E kidney, muscle

\\ \ = 1
N \ <
o \\\ \\\\" N

N Bl 0,1 .
o0t e 0,1 1 10
\\ frequency in GHz
\ Note that 6 depends on both tissue (conductivity) and EM
0.001 .
0001 00l o4 . 10 100 1000 wave (frequency) properties.
f (kHz)
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Sliced Turkey Salami
Meat Green Beans Roll-up

Fruit Cake

Penetration depth:

.
G Bread, tortilla, turkey
: . X band L band P band e
Austrian pine <> Frut Saly Ham N
P A=3cm A=27 cm A=70 cm fult, Salty Ham, Nuts
Penetration Penetration Penetration
Depth Greater Depth Smaller Depth Depends on
Than Food Thickness  Than Food Thickness Food Type
UNIFORM HEATING SURFACE HEATING NON-UNIFORM HEATING

| [l
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EM spectrum:

Non-lonising Radiation lonising Radiation

o AH % B A

Power Lines AM/FM Radio Mobile Network Satellite | TV Remote Visible Ultraviolet Gamma Rays
TV Broadcasting Infrastructure & Handsets Communications Control Light

|
0 50 Hz = 3 kHz 300EGHz 43OETHz 750 TI-!z 30 PHz 3 EHz 300 EHz

A Low Frequency A Radio Waves A Infrared A Visible Light A Ultraviolet A X-Rays A Gamma Rays

Electromagnetic
(LN EERVEV NS I NENR TSI Millimetre Wave Frequencies:
3 GHz to 30 GHz 30 GHz to 300 GHz

Fields
Microwave Frequencies: 300 MHz to 300 GHz

EE
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EM spectrum:

NON-IONISING IONISING
— >
, Infrare
Radio —
Ultraviolet
Extremely
low frequency Microwave X-ray
Visibl Gamma
Light Rays
Non-thermal Thermal | Optical | Broken Bonds |
Induces Induces Excite Damages
Low High Electrons DNA
Currents Currents
Photo
Chemica
Heating Effect:
Static Power AM FM Wi-Fi Tanning  Medical
Field Line Radio Radio Booth X-ray
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EM spectrum: ey

SAFE AND BENEFICIAL ALMOST SAFE, DANGER SAFE AND BENEFICIAL EXTREMELY

IN APPROPRIATE DOSAGE* LOW DANGER IN APPROPRIATE DOSAGE" HARMFUL
—~ .

R G 7T O % o & N] 20

D W O R G % ® 0 o

ELF VLF LF RADIOFREQUENCES MICROWAVES INFRA-RED VISIBLE ULTRAVIOLET GAMMA RAYS

FREQUENCY 50 Hz 1MHz 500 MHz 1GHz 100GHz A 30GHz [ 600THz 3 PHz  300PHz A 30 EHz

I A (I
WAVELENGHT 6000 km 300 m 60 cm 30cm 3cm 10 mm 500 mm 100 nm 1nm 10 pm
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