

CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Prof. Ing. Ivan Arsie, Prof. Ing. Elio Jannelli Ordinari di Sistemi per l'Energia e l'ambiente ivan.arsie@uniparthenope.it elio.jannelli@uniparthenope.it

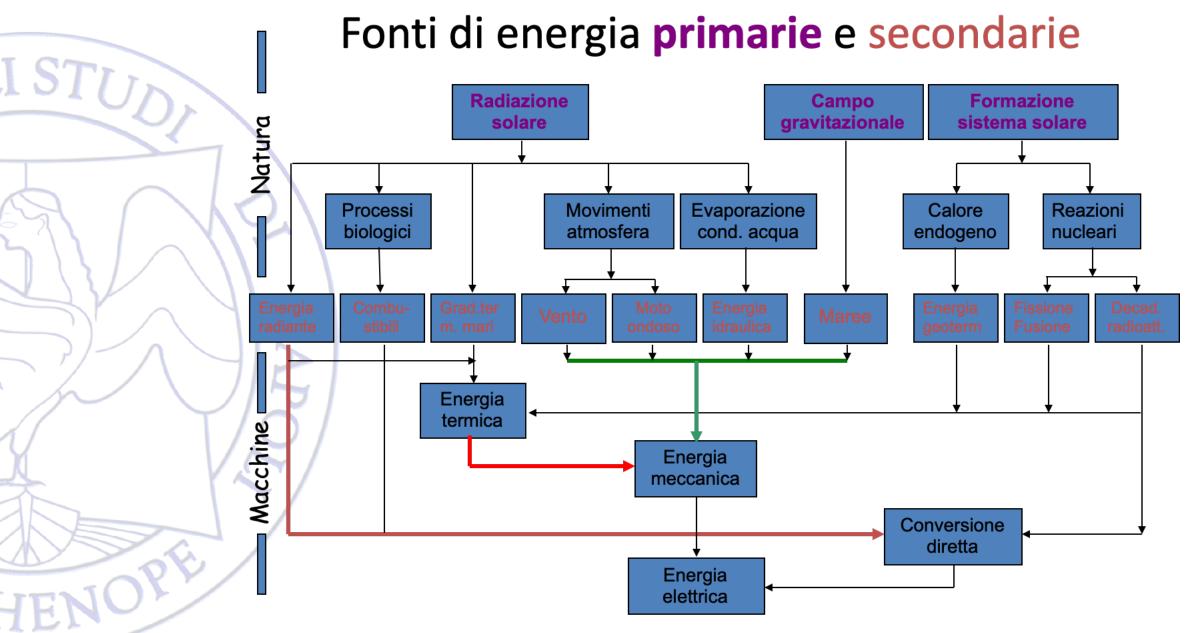
Per vivere meglio.....

Abbiamo bisogno di energia.....

Lavorando meno

Energia elettrica e meccanica

Adattando l'ambiente di vita alle nostre esigenze


Energia elettrica e termica

Soddisfacendo i nostri bisogni di svago e di studio

Energia elettrica e meccanica

Utilizzando mezzi di trasporto

Sistemi propulsivi

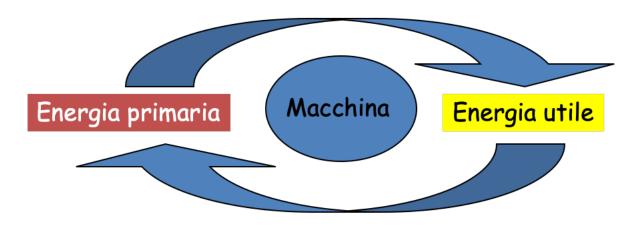
Tecnologie per la Generazione dell'Energia e la Mobilità

Conversione di energia

	DA	A ENERGIA								
	ENERGIA	Gravita- zionale	Cinetica	Termica	Chimica	Elettrica	Elettro- magnetica	Nucleare		
	Gravita- zionale		attrazione di masse	Sconosciuta	Sconosciuta	Sconosciuta	Sconosciuta	Sconosciuta		
	Cinetica	lancio di masse		attrito	Dissociaz, radiolitica	Apparati MHD	Acceleraz. particelle	Sconosciuta		
	Termica	Sconosciuta	efflussi gassosi		Reazioni endoterme	Effetti termoelet.	Radiazioni Termiche	Sconosciuta		
	Chimica	Sconosciuta	tessuti animali	Combu- stione		Batterie e fuel cell	Chemilumi - nescenza	Sconosciuta		
	Elettrica	Sconosciuta	motori elettrici	Effetti chimici	Elettrolisi		Radiazioni Elettrom.	Sconosciuta		
	Elettro- magnetica	Sconosciuta	Fenomeni fotoelettrici	Radiazioni termiche	Fenomeni fotochim.	Fenomeni fotoelettr		Reazioni Gamma		
	Nucleare	Sconosciuta	Radiazioni alfa	Fissione e fusione	Catalisi da radiazione	Batteria nucleare	Reazioni Gamma			

	Per ottenere energia	A partire da	con	Problemi ed implicazioni ambientali
	Meccanica Chimica		TG, TV, MCI	Emissioni inquinanti, clima-alteranti, impatto su suolo, aria, acqua
	Meccanica	Nucleare TV Sicurezza, inquinamento radioatti		Sicurezza, inquinamento radioattivo
	Meccanica	Energia idraulica	Turbine idrauliche	Impatto su suolo - Costruzione di dighe, condotte forzate e bacini artificiali
	Meccanica	Energia geotermica	Impianti a vapore	Produzione conveniente solo in siti ove è presente attività vulcanica. Costi di impianto e gestione elevati.
1	Meccanica	Vento	Turbine eoliche	Produzione discontinua e possibile solo in pochi siti, Inquinamento atmosferico nullo, ma acustico elevato
	Elettrica	Radiazione Solare	Pannelli fotovoltaici	Produzione discontinua, impianti di rilevante estensione. Inquinamento atmosferico nullo
	Termica	Radiazione Solare	Pannelli ad accumulo	Produzione discontinua, impianti di rilevante estensione. Inquinamento atmosferico nullo

Processi di conversione "alternativi"


Per ottenere energia	A partire da	con	Problemi ed implicazioni ambientali
Elettrica	Combustibili	Celle a combustibile	Tecnologie emergenti con costi di impianto elevati, impatto ambientale quasi zero.
Meccanica	Moto ondoso	Macchine maremotrici	Produzione discontinua, impianti di rilevante estensione. Inquinamento atmosferico nullo
Meccanica	nica Maree Mac mare		Produzione discontinua, impianti di rilevante estensione. Inquinamento atmosferico nullo
Meccanica	Meccanica Gradiente termico mari		Costi di impianto elevati per raggiungere differenze termiche significative. Bassi rendimenti di conversione
¥ /			

Classificazione delle Macchine

Definizioni di macchina

Macchina Meccanismo

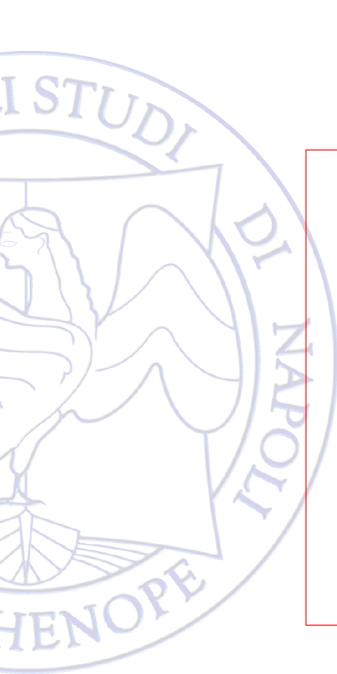
Macchina a fluido

Motore primo Impianto motore

Impianto motore termico

Converte energia da una forma all'altra

Trasforma energia meccanica


(leveraggi, ruotismi, trasmissioni meccaniche)

Converte energia operando una serie di trasformazioni su un fluido

Converte energia "primaria" in "utile"

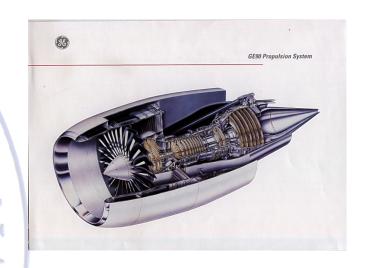
Converte energia primaria in utile mediante un complesso di apparecchiature

Converte energia primaria in utile attraverso un ciclo termodinamico

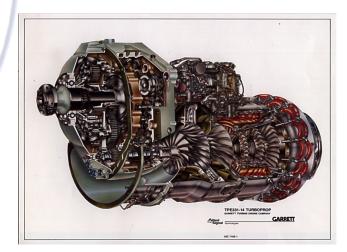
Modalità Scambio di energia

Motrici

Turbine
Idrauliche (Pelton, Francis e kaplan)
Eoliche, a gas e a vapore


Espansori volumetrici Roots, a palette, a vite Cavallino a vapore

Motori a combustione interna


Operatrici

- Pompe
 - centrifughe, veloci e ad elica
 - Alternative, ad ingranaggi, a palette
- Compressori
 - Radiali, assiali
 - Alternativi, a vite, roots, etc.
 - A onde d'urto

Macchine motrici ed operatrici

ISTU

Idrauliche

- Turbine
 - Idrauliche (Pelton, Francis e kaplan)
- Pompe
 - centrifughe, veloci e ad elica
 - Alternative, ad ingranaggi, a palette

Termiche

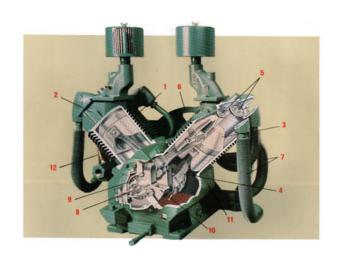
- Turbine
 - Eoliche, a gas e a vapore
- Compressori
 - Radiali, assiali
 - Alternativi, a vite, roots, etc.
 - A onde d'urto
- Espansori volumetrici
 - Roots, a palette, a vite
 - Cavallino a vapore
- Motori a combustione interna

Macchine idrauliche e termiche

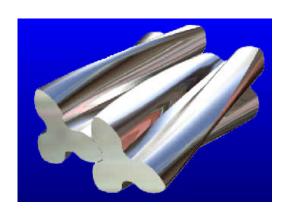
Moto degli organi utilizzati per lo scambio di energia

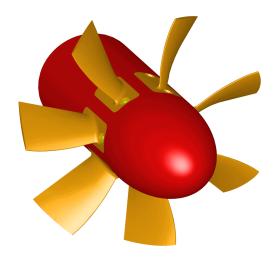
Alternative

ISTUD


- Pompe Alternative,
- Compressori Alternativi
- Espansori volumetrici
 - Cavallino a vapore
- Motori a combustione interna

Rotative

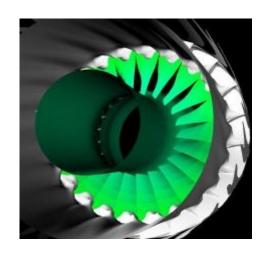

- Turbine
 - Idrauliche (Pelton, Francis e kaplan)
 - Eoliche, a gas e a vapore
- Espansori volumetrici
 - Roots, a palette, a vite
- Pompe
 - centrifughe, veloci e ad elica
 - ad ingranaggi, a palette
- Compressori
 - Radiali, assiali
 - A onde d'urto



Macchine alternative e rotative

Modalità di scambio di lavoro

Volumetriche


- Espansori volumetrici
 - Roots, a palette, a vite
 - Cavallino a vapore
- Motori a combustione interna
- Pompe
 - Alternative, ad ingranaggi, a palette
- Compressori
 - Alternativi, a vite, roots, etc.

Dinamiche

- Turbine
 - Idrauliche (Pelton, Francis e kaplan)
 - Eoliche, a gas e a vapore
- Pompe
 - centrifughe, veloci e ad elica
- Compressori
 - Radiali, assiali

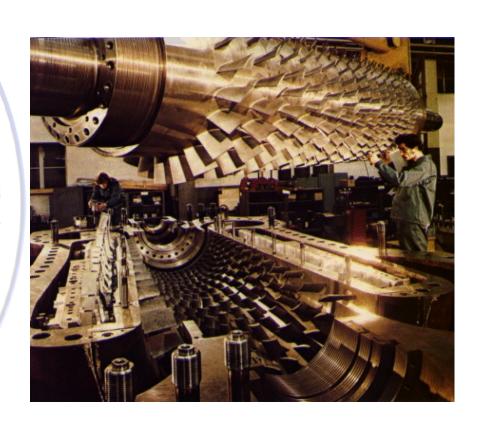
Macchine volumetriche e dinamiche

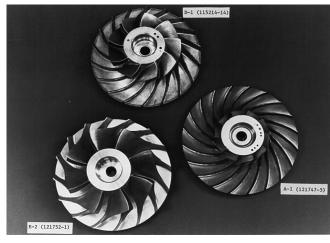
Tecnologie per la Generazione dell'Energia e la Mobilità

Direzione del Flusso nella macchina dinamica

Assiali

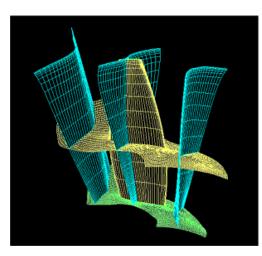
- Turbine Kaplan
- Eoliche
- Turbine a gas e a vapore
- Pompe
- Compressori

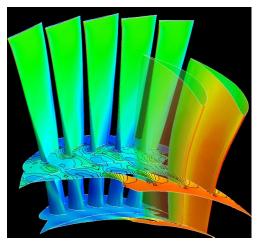

Radiali

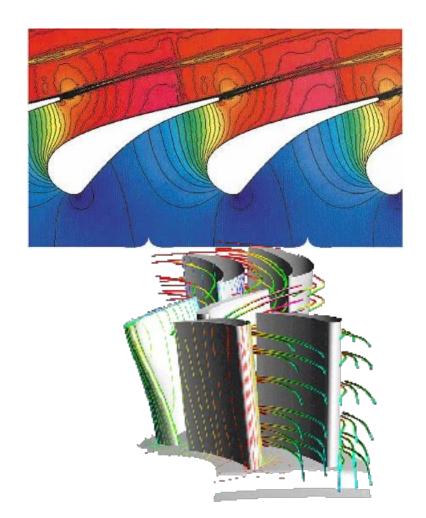

- Turbine a gas e a vapore
- Pompe centrifughe
- Pompe veloci
- Compressori

Tangenziali

Turbina Pelton


Macchine assiali, radiali, tangenziali





Flusso nelle macchine assiali

Scambio di energia

Caratteristiche del fluido

Moto degli organi

Andamento del flusso

Percorso del fluido

Motrici **↓**Idrauliche

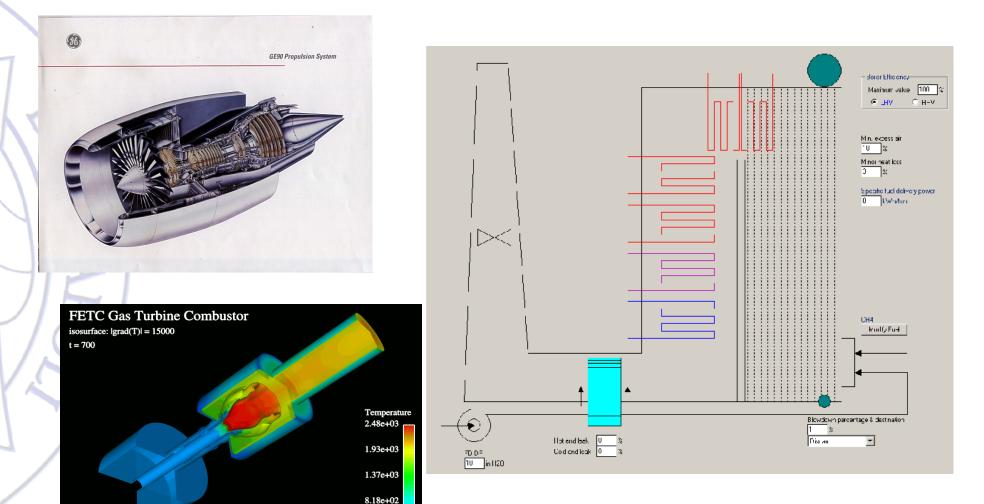
Alternative

Volumetriche

Operatrici

K7

Termiche

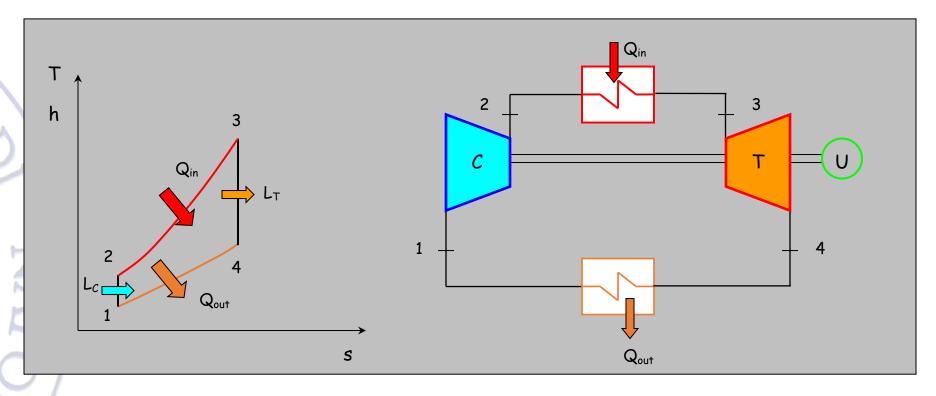

Rotative

Dinamiche

Assiali Radiali

Tangenziali

Motori a combustione interna ed esterna



2.63e+02

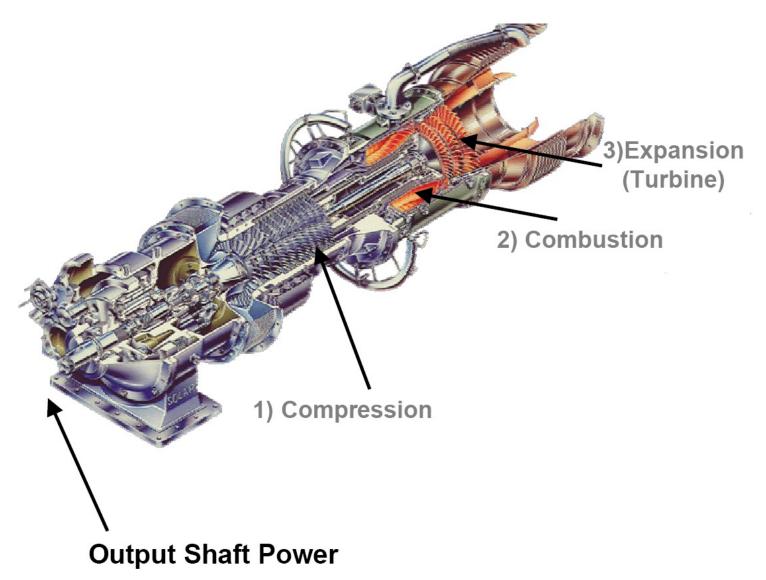
Impianti Motori Termici

IL CICLO TG IDEALE (ciclo JOULE)

Compressione isoentropica 1-2

Adduzione di calore isobara 2-3

Espansione isoentropica 3-4

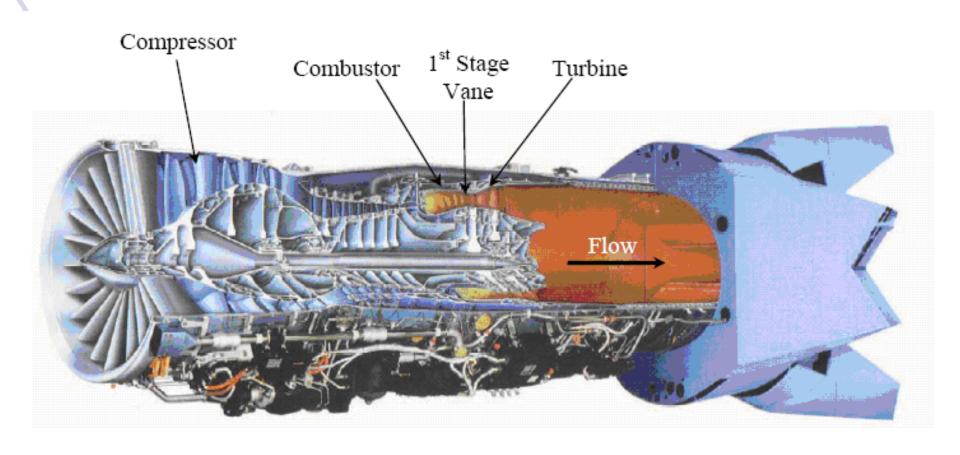

Sottrazione di calore isobara 4-1

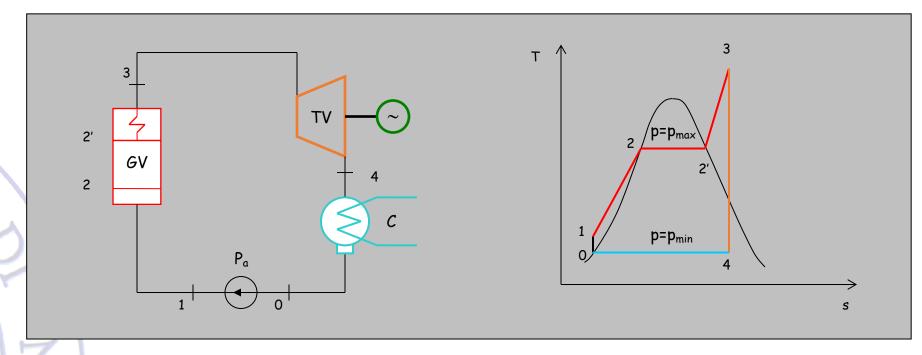
Le ipotesi sul fluido:

- •Ideale (c_p è costante con la temperatura), eq. di stato dei gas perfetti
- •Non subisce trasformazioni di stato e composizione nel ciclo

Tecnologie per la Generazione dell'Energia e la Mobilità

LE TURBINE A GAS Heavy Duty





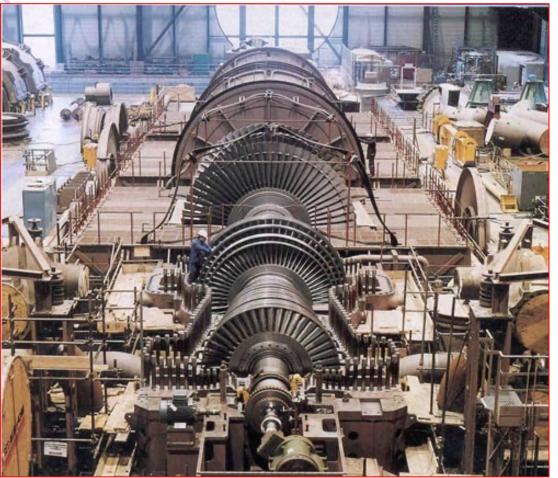
ISTUD

L'IMPIANTO MOTORE TURBINA A VAPORE

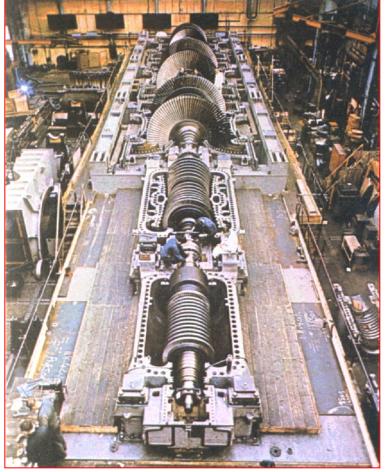
- 0-1 Compressione del liquido
- da liquido saturo-liquido a sottoraffreddato p=p_{max}

- 1-2 Riscaldamento liquido
- da liquido sottoraffreddato a liquido saturo

- 2-2' Vaporizzazione
- da liquido saturo a vapore saturo secco
- 2-3 Surriscaldamento a T=T_{max}
- da vapore saturo secco a vapore surriscaldato
- 3-4 Espansione fino a p=p_{min}
- da vapore surriscaldato a vapore saturo con titolo x


• 4-0 Condensazione

da vapore saturo con titolo x a liquido saturo


Tecnologie per la Generazione dell'Energia e la Mobilità

LE TURBINE A VAPORE

Tranne casi particolari, le turbine a vapore sono macchine con molti stadi, in modo tale da limitare le velocità periferiche e le dimensioni degli organi in rapporto alla potenza prodotta.

ISTUDI

