# Concordanza tra due graduatorie Dipendenza in media Covarianza e correlazione

1

### Misure di concordanza tra due graduatorie

- Si definiscono graduatorie per caratteri <u>ordinabili</u> (variabili e mutabili ordinabili).
- Due graduatorie sono concordanti se basse (alte) modalità di un carattere sono associate a basse (alte) modalità dell'altro carattere.
- In caso contrario sono discordanti.

Si considerano 4 studenti e i voti agli esami di Matematica (X) e Statistica (Y)

| Unità | Х  | Υ  | Rango<br>X | Rango<br>Y |
|-------|----|----|------------|------------|
| Α     | 24 | 24 | 4          | 3          |
| В     | 26 | 22 | 3          | 4          |
| С     | 28 | 26 | 2          | 2          |
| D     | 30 | 28 | 1          | 1          |

3

#### Indice di cograduazione di Spearman

Definita d<sub>i</sub> la differenza tra i ranghi per la i-esima unità,
 l'indice di Spearman è dato da

$$\rho_{S} = 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n(n^{2} - 1)}$$

•  $-1 \le \rho_S \le 1$ 

#### Interpretazione dell'indice di Spearman

- $\rho_S$  = -1 se i ranghi sono in perfetta discordanza (l'unità in prima posizione in una graduatoria è ultima nell'altra graduatoria, e così via)
- $-1 < \rho_S < 0$  se vi è discordanza
- $\rho_S = 0$  se le due graduatorie non mostrano associazione
- $0 < \rho_S < 1$  se vi è concordanza
- $\rho_S = 1$  se i ranghi sono in perfetta concordanza (le unità hanno la stessa posizione nelle due graduatorie)

5

| Unità | X  | Υ  | Rango<br>X | Rango<br>Y | $d_{i}$ | $d_i^2$ |
|-------|----|----|------------|------------|---------|---------|
| Α     | 24 | 24 | 4          | 3          | 1       | 1       |
| В     | 26 | 22 | 3          | 4          | -1      | 1       |
| С     | 28 | 26 | 2          | 2          | 0       | 0       |
| D     | 30 | 28 | 1          | 1          | 0       | 0       |

$$\rho_S = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)} = 1 - \frac{6 \cdot 2}{4(16 - 1)} = 1 - \frac{12}{60} = 0.80$$

Elevata concordanza tra le due graduatorie

# Dipendenza in media di un carattere quantitativo da un carattere qualitativo

- Si considerano *n* unità, un carattere <u>qualitativo</u> (X) e un carattere <u>quantitativo</u> (Y).
- Si vuole verificare se la media di Y sia dipendente da X (se la media di Y cambia al cambiare di X).
- Si analizzano le distribuzioni di Y condizionate a X e si calcolano la medie condizionate,  $\bar{y}_{X=x_i}$

7

 Un carattere quantitativo Y è <u>indipendente in media</u> da X se tutte le medie condizionate sono uguali tra loro e alla media marginale,

$$\bar{y}_{X=x_i} = \ldots = \bar{y}_{X=x_H} = \bar{y}$$

• Un carattere quantitativo Y è <u>dipendente in media</u> da X se per almeno una modalità

$$\bar{y}_{X=x_i} \neq \bar{y}$$

i = 1, 2, ..., H.

#### «Condizione occupazionale» e «Anni di laurea» 1378 giovani

|            | Anni di laurea (Y)    |     |     |     |      |  |
|------------|-----------------------|-----|-----|-----|------|--|
| X          |                       | 4   | 5   | 6   | ТОТ  |  |
| Occup. (X) | Occupati              | 512 | 216 | 102 | 830  |  |
| d. Oc      | In cerca di<br>lavoro | 121 | 213 | 214 | 548  |  |
| Cond.      | ТОТ                   | 633 | 429 | 316 | 1378 |  |

9

# Distribuzione del carattere «Anni di laurea» condizionata a $X = x_1 = Occupati$

| Anni (Y) | n <sub>1j</sub> |
|----------|-----------------|
| 4        | 512             |
| 5        | 216             |
| 6        | 102             |
| ТОТ      | 830             |

$$\bar{y}_{X=x_1} = \frac{4 \cdot 512 + 5 \cdot 216 + 6 \cdot 102}{830} = 4,51$$

# Distribuzione del carattere «Anni di laurea» condizionata a $X = x_2 = In$ cerca di lavoro

| Anni (Y) | n <sub>2j</sub> |
|----------|-----------------|
| 4        | 121             |
| 5        | 213             |
| 6        | 214             |
| ТОТ      | 548             |

$$\bar{y}_{X=x_2} = \frac{4 \cdot 121 + 5 \cdot 213 + 6 \cdot 214}{548} = 5,17$$

11

### Distribuzione marginale del carattere «Anni di laurea»

| Anni (Y) | <b>n.</b> <sub>j</sub> |
|----------|------------------------|
| 4        | 633                    |
| 5        | 429                    |
| 6        | 316                    |
| ТОТ      | 1378                   |

$$\bar{y} = \frac{4 \cdot 633 + 5 \cdot 429 + 6 \cdot 316}{1378} = 4,77$$

• Poiché

$$\bar{y}_{X=x_i} \neq \bar{y}_{X=x_2} \neq \bar{y}$$

esiste dipendenza in media del carattere Y da X.

13

### Il rapporto di correlazione $\eta^2$

 Per quantificare la dipendenza, introduciamo la <u>varianza delle</u> medie <u>condizionate</u>,

$$\sigma_{Media(Y|X)}^{2} = \frac{\sum_{i=1}^{H} (\bar{y}_{X=x_i} - \bar{y})^2 n_i}{n}$$

e il rapporto di correlazione

$$\eta_{Y|X}^2 = \frac{\sigma_{Media(Y|X)}^2}{\sigma_Y^2}$$

•  $0 \le \eta_{Y|X}^2 \le 1$ 

#### Interpretazione del rapporto di correlazione

- $\eta_{Y|X}^2=0$  indipendenza in media (medie condizionate sono uguali tra loro e alla media marginale)
- $0 < \eta_{Y|X}^2 < 1$  dipendenza in media
- $\eta_{Y|X}^2=1$  dipendenza in media perfetta (ad ogni modalità di X è associato un solo valore di Y)

15

#### «Condizione occupazionale» e «Anni di laurea» 1378 giovani

|            | Anni di laurea (Y)    |     |     |     |      |  |
|------------|-----------------------|-----|-----|-----|------|--|
| (x)        | 4 5 6 TO              |     |     |     |      |  |
| Occup. (X) | Occupati              | 512 | 216 | 102 | 830  |  |
|            | In cerca di<br>lavoro | 121 | 213 | 214 | 548  |  |
| Cond.      | тот                   | 633 | 429 | 316 | 1378 |  |

#### Calcolo di $\eta^2$

$$\bar{y}_{X=x_1} = 4,51$$
  $\bar{y} = 4,77$   $\bar{y}_{X=x_2} = 5,17$ 

$$\sigma_{Media(Y|X)}^{2} = \frac{(4,51 - 4,77)^{2}830 + (5,17 - 4,77)^{2}548}{1378} = 0,104$$
$$\sigma_{Y}^{2} = ?$$

17

#### Distribuzione marginale del carattere «Anni di laurea»

| Anni (Y) | n. <sub>j</sub> |
|----------|-----------------|
| 4        | 633             |
| 5        | 429             |
| 6        | 316             |
| ТОТ      | 1378            |

$$\bar{y} = 4,77$$

$$\sigma_Y^2 = \frac{(4 - 4,77)^2 633 + (5 - 4,77)^2 429 + (6 - 4,77)^2 316}{1378} = 0,636$$

• Il <u>rapporto di correlazione</u> è

$$\eta_{Y|X}^2 = \frac{\sigma_{Media(Y|X)}^2}{\sigma_Y^2} = \frac{0,104}{0,636} = 0,163$$

Debole dipendenza in media

19

#### Misura dell'associazione tra due caratteri quantitativi

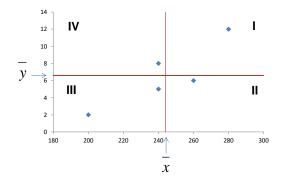
- Si considerano *n* unità e due caratteri <u>quantitativi</u> (X, Y).
- Rappresentazione grafica: <u>grafico</u> (o <u>diagramma</u>) <u>di</u> <u>dispersione</u>.

Tabella 12 – «Numero di parafarmacie» (X) e «Spesa per articoli sanitari (milioni euro)» (Y)

| X   | Y  |
|-----|----|
| 200 | 2  |
| 240 | 5  |
| 260 | 6  |
| 240 | 8  |
| 280 | 12 |

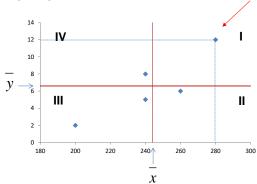
21





• I quadrante: valori di X e Y maggiori della media

$$x > \bar{x}$$
  $y > \bar{y}$ 

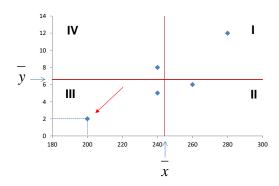


• Quindi gli scostamenti dalla media hanno lo stesso segno (positivo): scostamenti <u>concordi</u>  $x - \bar{x} > 0$   $y - \bar{y} > 0$ 

$$x - \bar{x} > 0$$
  $y - \bar{y} > \bar{0}$ 

23

• III quadrante: valori di X e Y minori della media  $x < \bar{x}$  $y < \bar{y}$ 

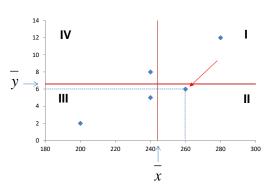


Scostamenti concordi

$$x - \bar{x} < 0 \qquad y - \bar{y} < 0$$

• II quadrante:

$$x > \bar{x}$$
  $y < \bar{y}$ 



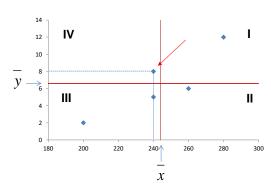
• Scostamenti discordi

$$x - \bar{x} > 0 \quad y - \bar{y} < 0$$

25

• IV quadrante:

$$x < \bar{x}$$
  $y > \bar{y}$ 



• Scostamenti discordi

$$x - \bar{x} < 0 \quad y - \bar{y} > 0$$

#### Concordanza

- Due caratteri <u>quantitativi</u> presentano concordanza se dominano gli scostamenti dalla media concordi.
- Concordanza (relazione diretta):

all'aumentare di una variabile ci si aspetta un aumento dell'altra variabile, in pratica le due variabili tendono a muoversi nella stessa direzione

27

#### **Discordanza**

- Due caratteri <u>quantitativi</u> presentano discordanza se dominano gli scostamenti dalla media discordi.
- Discordanza (relazione inversa):

all'aumentare di una variabile ci si aspetta un decremento dell'altra variabile, in pratica le due variabili tendono a muoversi in direzioni opposte

#### La covarianza

• È una misura del grado di concordanza/discordanza tra due caratteri quantitativi.

$$\sigma_{XY} = \frac{\sum_{i=1}^{n} [(x_i - \bar{x})(y_i - \bar{y})]}{n}$$

29

#### Interpretazione della covarianza

- $\sigma_{XY} < 0$  se esiste discordanza (relazione inversa, associazione negativa)
- $\sigma_{XY} = 0$  se le due variabili non sono associate
- $\sigma_{XY} > 0$  se esiste concordanza (relazione diretta, associazione positiva)

## Tabella 12 – «Numero di parafarmacie» (X) e «Spesa per articoli sanitari (milioni di euro)» (Y)

| X   | Υ  |
|-----|----|
| 200 | 2  |
| 240 | 5  |
| 260 | 6  |
| 240 | 8  |
| 280 | 12 |

$$\bar{x}$$
=244  $\bar{y}$ =6,6

31

## Calcolo di $\sigma_{\!\scriptscriptstyle XY}$

| X   | Y    | $x_i - \bar{x}$ | $y_i - \bar{y}$ | $(x_i - \bar{x})(y_i - \bar{y})$ |
|-----|------|-----------------|-----------------|----------------------------------|
| 200 | 2    | -44             | -4,6            | 202,4                            |
| 240 | 5    | -4              | -1,6            | 6,4                              |
| 260 | 6    | 16              | -0,6            | -9,6                             |
| 240 | 8    | -4              | 1,4             | -5,6                             |
| 280 | 12   | 36              | 5,4             | 194,4                            |
| T   | OT . |                 |                 | 388                              |

$$\sigma_{XY} = \frac{388}{5} = 77,6$$

Esiste concordanza.

33

## Formula alternativa di $\sigma_{\!\scriptscriptstyle XY}$

• La covarianza è anche data da

$$\sigma_{XY} = \frac{\sum_{i=1}^{n} (x_i y_i)}{n} - \bar{x}\bar{y}$$

•  $\sigma_{\text{XY}}$  = media del prodotto – prodotto delle medie

#### Il coefficiente di correlazione lineare

 Il coefficiente di correlazione lineare di Bravais-Pearson è dato da

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

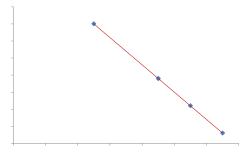
$$-1 \le \rho_{XY} \le 1$$

• Il coefficiente di correlazione lineare di Bravais-Pearson ha sempre lo stesso segno della covarianza.

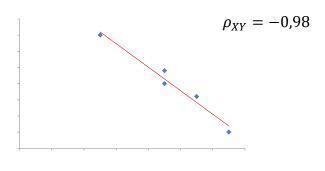
35

#### Interpretazione di $ho_{ m XY}$

•  $ho_{XY}=-1$  se esiste <u>perfetta</u> discordanza (o relazione inversa). I punti del grafico di dispersione sono <u>allineati</u> su una retta con pendenza negativa

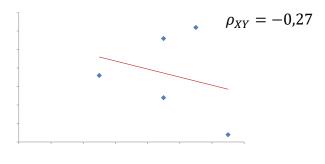


•  $-1 < \rho_{XY} < 0$  se esiste discordanza (o relazione inversa). I punti del grafico di dispersione sono <u>intorno</u> ad una retta con pendenza negativa

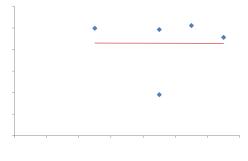


37

•  $-1 < \rho_{XY} < 0$  se esiste discordanza (o relazione inversa). I punti del grafico di dispersione sono <u>intorno</u> ad una retta con pendenza negativa

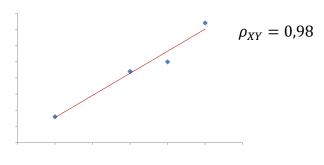


•  $ho_{XY}=0$  se non esiste associazione. I punti del grafico di dispersione sono <u>intorno</u> ad una retta con pendenza <u>nulla</u>

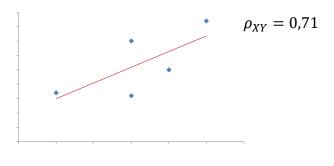


39

•  $0<\rho_{XY}<1$  se esiste concordanza (o relazione diretta). I punti del grafico di dispersione sono <u>intorno</u> ad una retta con pendenza positiva

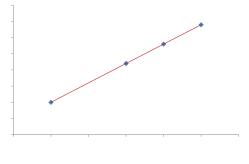


•  $0<\rho_{XY}<1$  se esiste concordanza (o relazione diretta). I punti del grafico di dispersione sono <u>intorno</u> ad una retta con pendenza positiva



41

•  $ho_{XY}=1$  se esiste <u>perfetta</u> concordanza (o relazione diretta). I punti del grafico di dispersione sono <u>allineati</u> su una retta con pendenza positiva



| Cal | col | 0 | di | $\rho_{XY}$ |
|-----|-----|---|----|-------------|
|     | 00. | • |    | PXY         |

| Χ   | Υ  | $x_i - \bar{x}$ | $y_i - \bar{y}$ | $(x_i - \bar{x})^2$ | $(y_i - \bar{y})^2$ |
|-----|----|-----------------|-----------------|---------------------|---------------------|
| 200 | 2  | -44             | -4,6            | 1936                | 21,16               |
| 240 | 5  | -4              | -1,6            | 16                  | 2,56                |
| 260 | 6  | 16              | -0,6            | 256                 | 0,36                |
| 240 | 8  | -4              | 1,4             | 16                  | 1,96                |
| 280 | 12 | 36              | 5,4             | 1296                | 29,16               |
| тот |    |                 |                 | 3520                | 55,2                |

$$\sigma_X = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}} = \sqrt{\frac{3520}{5}} = 26,53$$

$$\sigma_Y = \sqrt{\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n}} = \sqrt{\frac{55,2}{5}} = 3,32$$

$$\rho_{XY} = \frac{77,6}{26,53 \cdot 3,32} = 0,88$$

Esiste una forte relazione diretta.

#### Ordine delle variabili

• L'ordine delle due variabili non è rilevante per la covarianza e la correlazione:

$$\sigma_{XY} = \sigma_{YX}$$

$$\rho_{XY} = \rho_{YX}$$