
Intelligent Signal Processing Python examples

May 25, 2023

1 Python for Signal Processing
Danilo Greco, PhD - danilo.greco@uniparthenope.it - University of Naples Parthenope

1.0.1 Example 1 - Audio Processing -

This is a Python code that does some audio processing. It first generates an audio signal and adds
some noise to it using the normal distribution. Then, it designs a finite impulse response (FIR) filter
https://en.wikipedia.org/wiki/Finite_impulse_response using the SciPy signal processing library.
After that, it applies the filter to the noisy signal using the lfilter function from the same library.
Finally, it plots both the noisy signal and filtered signal using Matplotlib for visualization. This is a
simple example of signal processing that showcases the power of Python and its scientific libraries.
The given Python code generates an audio signal using the NumPy library. It first creates a time
array t using the linspace function, which generates 500 evenly spaced values between 0 and 1.
It then sets the amplitude of the signal to 0.5. The resulting audio signal is a sine wave with a
frequency of 1 Hz and an amplitude of 0.5. The code then imports the firwin and lfilter functions
from the SciPy library, which are used to create and apply a finite impulse response (FIR) filter to
the audio signal. The code imports the pyplot module from the Matplotlib library, which is used
to plot the original and filtered audio signals

1. import numpy as np: This line imports the NumPy library and gives it the alias np,
which is a commonly used abbreviation for NumPy. 2. from scipy.signal import firwin,
lfilter: This line imports two functions, firwin and lfilter, from the scipy.signal module.
These functions will be used for filtering the audio signal. 3. import matplotlib.pyplot
as plt: This line imports the pyplot submodule from the matplotlib library and gives it
the alias plt, which will be used for plotting the audio signal before and after filtering.
4. t = np.linspace(0, 1, 500, False): This line generates an array of 500 equally spaced
points between 0 and 1 using the np.linspace() function and assigns it to the variable t.
5. x = 0.5 np.sin(2 * np.pi * 50 * t) + np.sin(2 * np.pi * 120 * t): This line generates a
audio signal consisting of two sine waves of frequencies 50 Hz and 120 Hz and assigns it
to the variable x. 6. noise = np.random.normal(0, 1, 500): This line generates an array
of 500 normally distributed random numbers with a mean of 0 and standard deviation of
1 using the np.random.normal() function and assigns it to the variable noise. 7. xn =
x + noise: This line adds the noise signal to the original audio signal x and assigns the
resulting signal to the variable xn. 8. b = firwin(51, 0.3): This line designs a low-pass
filter with a cutoff frequency of 0.3 using the firwin() function and assigns the filter
coefficients to the variable b. 9. yn = lfilter(b, 1, xn): This line filters the noisy audio
signal xn using the filter coefficients b and assigns the filtered signal to the variable yn.
10. plt.plot(t, xn, ‘b’, label=‘Noisy Signal’): This line plots the noisy audio signal xn

1

in blue color with a label of “Noisy Signal” using the plot() function from pyplot. 11.
plt.plot(t, yn, ‘r’, label=‘Filtered Signal’): This line plots the filtered audio signal yn
in red color with a label of “Filtered Signal” using the plot() function from pyplot. 12.
plt.legend(): This line adds a legend to the plot using the legend() function from pyplot.
13. plt.show()*: This line displays the plot on the screen using the show() function
from pyplot.

[2]: import numpy as np
from scipy.signal import firwin, lfilter
import matplotlib.pyplot as plt

Generating the audio signal
t = np.linspace(0, 1, 500, False)
x = 0.5 * np.sin(2 * np.pi * 50 * t) + np.sin(2 * np.pi * 120 * t)

Adding noise to the audio signal
noise = np.random.normal(0, 1, 500)
xn = x + noise

Designing the filter
b = firwin(51, 0.3)

Filtering the audio signal
yn = lfilter(b, 1, xn)

Plotting the audio signal before and after filtering
plt.plot(t, xn, 'b', label='Noisy Signal')
plt.plot(t, yn, 'r', label='Filtered Signal')
plt.legend()
plt.show()

2

1.0.2 Example 2 - FFT and IFFT -

This Python code generates a sine wave and applies the Fast Fourier Transform (FFT) to it. The
code first imports the NumPy and Matplotlib libraries, which are used to generate and plot the
sine wave. It then imports the fft and ifft functions from the SciPy library, which are used to apply
the FFT to the sine wave. The linspace function from NumPy is used to generate a time array t
with 500 evenly spaced values between 0 and 1. The sin function from NumPy is used to generate
a sine wave with a frequency of 5 Hz and an amplitude of 1. The code then applies the FFT to the
sine wave using the fft function from SciPy. Finally, the code plots the original sine wave and the
FFT using the plot function from Matplotlib, This Python code imports the necessary modules,
including NumPy, Matplotlib, and the Fast Fourier Transform (FFT) functionality from SciPy. The
code then generates a sine wave signal by creating an array of 500 evenly spaced points between 0
and 1 using NumPy’s linspace function. The sine wave signal is generated by multiplying the sine
function with a frequency of 50 Hz by the time array and taking the sine of the result. The code
then calculates the Fourier Transform of the sine wave signal using the fft function from SciPy’s
fft module. The result is stored in the xf array, which contains the magnitudes of the frequency
components of the signal. The absolute value of the Fourier Transform is taken to eliminate any
negative values. Finally, the code plots the time domain and frequency domain representations of
the sine wave signal using Matplotlib. The blue line represents the sine wave signal in the time
domain, and the red line represents the magnitudes of the frequency components in the frequency
domain. The legend function is used to label the two lines on the plot, and the show function
displays the plot. Let’s see each line:

3

1. import numpy as np: This imports the NumPy package and renames it as “np” for convenience.
2. import matplotlib.pyplot as plt: This imports the Matplotlib package and renames its pyplot
module as “plt” for convenience. 3. from scipy.fft import fft, ifft: This imports the Fast Fourier
Transform (FFT) and its inverse (IFFT) from the scipy package. 4. t = np.linspace(0, 1, 500,
False): This generates a NumPy array of 500 equally spaced values between 0 and 1 (inclusive)
and assigns it to the variable t. The False argument specifies that the endpoint should not be
included. 5. x = np.sin(2 np.pi * 50 * t): This generates a sine wave signal with frequency
50 Hz and assigns it to the variable x. 6. xf = np.abs(fft(x)): This computes the FFT of the
x signal using the fft function from the scipy package and then takes the absolute values of the
resulting complex numbers. The resulting array is assigned to the variable xf. 7. plt.plot(t, x, ‘b’,
label=‘Time Domain’): This plots the x signal in blue color and assigns it a label “Time Domain”.
8. plt.plot(t, xf, ‘r’, label=‘Frequency Domain’): This plots the xf signal in red color and assigns
it a label “Frequency Domain”. 9. plt.legend(): This adds a legend to the plot. 10. plt.show()*:
This displays the plot. Overall, this code generates a sine wave signal, computes its FFT, and plots
both the time domain signal and its frequency domain representation.

[3]: import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, ifft

Generating the sine wave
t = np.linspace(0, 1, 500, False)
x = np.sin(2 * np.pi * 50 * t)

Computing the Fourier Transform
xf = np.abs(fft(x))

Plotting the sine wave and its Fourier Transform
plt.plot(t, x, 'b', label='Time Domain')
plt.plot(t, xf, 'r', label='Frequency Domain')
plt.legend()
plt.show()

4

The code first defines the parameters of the signal (sampling frequency, signal frequency, and time
vector), generates a sine wave signal, computes the FFT, IFFT, and spectrum (module and phase)
of the signal using the numpy.fft module, and plots the original signal, magnitude spectrum, phase
spectrum, and reconstructed signal using matplotlib. This code produces four plots in two rows
with two columns. The first row shows the time-domain signals of the cosine and sine waves, while
the second row shows their frequency-domain spectra in terms of magnitude and phase. The numpy
library is used to generate the time array and signals, compute the FFT, and perform mathematical
operations. The matplotlib.pyplot library is used to create the plots and set the titles and labels
for each subplot. By adjusting the spacing between the subplots using the plt.subplots_adjust
function, we can create more space between the plots for better visibility.

[4]: import numpy as np
import matplotlib.pyplot as plt

Define signal parameters
amp = 1 # Amplitude
freq = 5 # Frequency in Hz
duration = 1 # Duration in seconds
fs = 100 # Sampling frequency in Hz

Generate time array
time_array = np.linspace(0, duration, int(fs*duration))

5

Generate signals
cos_signal = amp * np.cos(2*np.pi*freq*time_array)
sin_signal = amp * np.sin(2*np.pi*freq*time_array)

Plot signals
plt.figure(figsize=(10, 5))
plt.subplot(2, 2, 1)
plt.plot(time_array, cos_signal)
plt.title('Cosine Signal')

plt.subplot(2, 2, 2)
plt.plot(time_array, sin_signal)
plt.title('Sine Signal')

Compute FFT of signals
cos_fft = np.fft.fft(cos_signal)
sin_fft = np.fft.fft(sin_signal)

Compute frequency array
freq_array = np.linspace(0, fs, len(cos_signal))

Compute magnitude and phase spectra
cos_mag = np.abs(cos_fft)
sin_mag = np.abs(sin_fft)
cos_phase = np.angle(cos_fft)
sin_phase = np.angle(sin_fft)

Plot magnitude and phase spectra
plt.subplot(2, 2, 3)
plt.plot(freq_array, cos_mag)
plt.title('Cosine Spectrum - Magnitude')
plt.xlabel('Frequency (Hz)')

plt.subplot(2, 2, 4)
plt.plot(freq_array, sin_mag)
plt.title('Sine Spectrum - Magnitude')
plt.xlabel('Frequency (Hz)')

plt.subplots_adjust(hspace=0.5)
plt.show()

plt.figure(figsize=(10, 5))
plt.subplot(2, 2, 1)
plt.plot(freq_array, cos_phase)
plt.title('Cosine Spectrum - Phase')
plt.xlabel('Frequency (Hz)')

6

plt.subplot(2, 2, 2)
plt.plot(freq_array, sin_phase)
plt.title('Sine Spectrum - Phase')
plt.xlabel('Frequency (Hz)')

plt.subplots_adjust(hspace=0.5)
plt.show()

1.0.3 Example 3 - Audio signal Butterworth filter -

This Python code generates an audio signal, applies a Butterworth filter
https://en.wikipedia.org/wiki/Butterworth_filter to it, and plots the original and filtered
signals. The code first imports the NumPy, SciPy, and Matplotlib libraries, which are used to
generate, filter, and plot the audio signal. The linspace function from NumPy is used to generate a

7

time array t with 500 evenly spaced values between 0 and 1. The code then generates a sine wave
with two frequencies, 50 Hz and 120 Hz, and adds them together to create the audio signal. The
butter function from SciPy is used to design a Butterworth filter with a cutoff frequency of 30 Hz.
The lfilter function from SciPy is then used to apply the filter to the audio signal. Finally, the
code plots the original and filtered signals using the plot function from Matplotlib This Python
code generates an audio signal, adds noise to it, designs and applies a low-pass filter to remove the
noise, and then plots the original and filtered signals. Here’s an explanation of each line of code:

This code imports three libraries: numpy for numerical computations, scipy.signal for signal pro-
cessing functions, and matplotlib.pyplot for plotting.

import numpy as np from scipy.signal import butter, lfilter import matplotlib.pyplot as
plt

These lines generate an audio signal by creating a time vector t with 500 samples between 0 and
1 second (the last argument False indicates that the endpoint should not be included), and then
defining the signal x as the sum of two sine waves with frequencies of 50 Hz and 120 Hz, respectively.

t = np.linspace(0, 1, 500, False) x = 0.5 * np.sin(2 * np.pi * 50 * t) + np.sin(2 * np.pi
* 120 * t)

Here, noise is generated using the np.random.normal function with mean 0 and standard deviation
1, and then added to the original signal x to create a noisy signal xn.

noise = np.random.normal(0, 1, 500) xn = x + noise

This line designs a fourth-order Butterworth low-pass filter with a cutoff frequency of 0.1 (nor-
malized frequency where 1 is Nyquist frequency) using the butter function, and assigns the filter
coefficients to b and a. This line applies the Butterworth filter to the noisy signal xn using the
lfilter function, and assigns the filtered signal to yn.

b, a = butter(4, 0.1, ‘low’) yn = lfilter(b, a, xn)

These lines plot the original (noisy) signal xn and the filtered signal yn using matplotlib.pyplot,
with the noisy signal shown in blue and the filtered signal shown in red. The legend function adds
a label to each plot, and show displays the plot on the screen.

plt.plot(t, xn, ‘b’, label=‘Noisy Signal’) plt.plot(t, yn, ‘r’, label=‘Filtered Signal’)
plt.legend() plt.show()

[5]: import numpy as np
from scipy.signal import butter, lfilter
import matplotlib.pyplot as plt

Generating the audio signal
t = np.linspace(0, 1, 500, False)
x = 0.5 * np.sin(2 * np.pi * 50 * t) + np.sin(2 * np.pi * 120 * t)

Adding noise to the audio signal
noise = np.random.normal(0, 1, 500)
xn = x + noise

8

Designing the low-pass filter
b, a = butter(4, 0.1, 'low')

Filtering the audio signal
yn = lfilter(b, a, xn)

Plotting the audio signal before and after filtering
plt.plot(t, xn, 'b', label='Noisy Signal')
plt.plot(t, yn, 'r', label='Filtered Signal')
plt.legend()
plt.show()

1.0.4 Example 4 - Convolution -

This Python code defines two signals, convolves them https://en.wikipedia.org/wiki/Convolution,
and plots the original and convolved signals. The code first imports the NumPy and Matplotlib
libraries, which are used to define and plot the signals. The first signal x1 is defined as a list of
four values. The second signal x2 is defined as a list of three values. The convolve function from
SciPy is then used to convolve the two signals. Finally, the code plots the original and convolved
signals using the plot function from Matplotlib

1. import numpy as np: This line imports the NumPy library and renames it as np
for convenience. 2. from scipy.signal import convolve: This line imports the convolve

9

function from the scipy.signal library. The convolve function performs convolution on
two signals. 3. import matplotlib.pyplot as plt: This line imports the pyplot module
from the matplotlib library and renames it as plt for convenience. The pyplot module
provides a simple interface for creating plots and charts. 4. x1 = [1, 2, 3, 4]: This
line defines the first signal as a Python list containing the values [1, 2, 3, 4]. 5. x2 =
[2, 3, 4, 5]: This line defines the second signal as a Python list containing the values
[2, 3, 4, 5]. 6. y = convolve(x1, x2): This line performs convolution on the two signals
x1 and x2 using the convolve function and stores the result in y. 7. plt.plot(x1, ‘b’,
label=‘Signal 1’): This line creates a plot of x1 with the color b (blue) and adds a label
“Signal 1” to the legend. 8. plt.plot(x2, ‘r’, label=‘Signal 2’): This line creates a plot
of x2 with the color r (red) and adds a label “Signal 2” to the legend. 9. plt.plot(y,
‘g’, label=‘Convolved Signal’): This line creates a plot of the convolved signal y with
the color g (green) and adds a label “Convolved Signal” to the legend. 10. plt.legend():
This line adds the legend to the plot. 11. plt.show(): This line displays the plot.

This code generates two signals, performs convolution on them, and then plots the original signals
and the convolved signal on a graph using matplotlib.

[6]: import numpy as np
from scipy.signal import convolve
import matplotlib.pyplot as plt

Defining the first signal
x1 = [1, 2, 3, 4]

Defining the second signal
x2 = [2, 3, 4, 5]

Convolving the signals
y = convolve(x1, x2)

Plotting the signals
plt.plot(x1, 'b', label='Signal 1')
plt.plot(x2, 'r', label='Signal 2')
plt.plot(y, 'g', label='Convolved Signal')
plt.legend()
plt.show()

10

1.0.5 Example 5 - FFT -

This Python code generates a sine wave and applies the Fast Fourier Transform (FFT)
https://en.wikipedia.org/wiki/Fast_Fourier_transform to it. The code first imports the NumPy,
Matplotlib, and SciPy libraries, which are used to generate, plot, and apply the FFT to the sine
wave. The linspace function from NumPy is used to generate a time array t with 500 evenly spaced
values between 0 and 1. The code then generates a sine wave with a frequency of 5 Hz and an
amplitude of 0.5. The fft function from SciPy is then used to apply the FFT to the sine wave.
Finally, the code plots the original sine wave and the FFT using the plot function from Matplotlib.

import numpy as np import matplotlib.pyplot as plt from scipy.fft import fft

In this first line, we import the NumPy library, which provides support for large, multi-dimensional
arrays and matrices, along with a large collection of mathematical functions. We also import the
Pyplot module from the Matplotlib library, which provides a convenient interface for creating plots
and visualizations in Python. Finally, we import the fft function from the SciPy library, which is
used to compute the Fourier transform of a signal.

t = np.linspace(0, 1, 500, False) x = 0.5 * np.sin(2 * np.pi * 50 * t) + np.sin(2 * np.pi
* 120 * t)

Here, we create a time vector t consisting of 500 samples spaced evenly over the interval [0,1)

We then define a signal x as a combination of two sine waves with frequencies of 50 Hz and 120
Hz, respectively.

11

X = fft(x)

In this line, we compute the Fourier transform of the signal x using the fft function from the SciPy
library. The resulting transform X contains the frequency components of the signal.

plt.plot(t, x, ‘b’, label=‘Signal’) plt.plot(np.abs(X), ‘r’, label=‘Fourier Transform’)
plt.legend() plt.show()

Finally, we create a plot of the signal and its frequency components. The first plt.plot command
creates a plot of the original signal x versus time, with a blue line. The second plt.plot command
creates a plot of the absolute values of the Fourier transform X, with a red line. The label argument
is used to provide a label for each line on the plot. The legend function is used to create a legend
for the plot, and the show function is used to display the plot on the screen.

[7]: import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft

Generating the signal
t = np.linspace(0, 1, 500, False)
x = 0.5 * np.sin(2 * np.pi * 50 * t) + np.sin(2 * np.pi * 120 * t)

Performing the Fourier Transform
X = fft(x)

Plotting the signal and its frequency components
plt.plot(t, x, 'b', label='Signal')
plt.plot(np.abs(X), 'r', label='Fourier Transform')
plt.legend()
plt.show()

12

1.0.6 Example 6 - FFT -

This Python code generates a noisy sinusoidal signal and applies the Fast Fourier Transform (FFT)
to it. The code first imports the NumPy, Matplotlib, and SciPy libraries, which are used to generate,
plot, and apply the FFT to the signal. The linspace function from NumPy is used to generate a
time array t with 1000 evenly spaced values between 0 and 1. The code then generates a noisy
sinusoidal signal with two frequencies, 5 Hz and 12 Hz. The fft function from SciPy is then used
to apply the FFT to the signal. Finally, the code plots the original signal and the FFT using the
plot function from Matplotlib

1. import numpy as np: This line imports the NumPy library and gives it an alias np, which is
a widely used convention.

2. import scipy.signal as signal: This line imports the signal module from the SciPy library and
gives it an alias signal.

3. import matplotlib.pyplot as plt: This line imports the pyplot module from the Matplotlib
library and gives it an alias plt.

4. t = np.linspace(0, 1, 1000, False): This line generates a time vector t using the NumPy
linspace function. It starts from 0 and ends at 1, with 1000 equally spaced points. The False
argument specifies that the endpoint should not be included.

5. x = np.sin(2 np.pi * 10 * t) + 0.1 * np.random.randn(1000)*: This line generates a sinusoidal
signal x using NumPy’s sin function. It also adds some noise to the signal using NumPy’s
random.randn function. The signal has a frequency of 10 Hz and the noise has a standard
deviation of 0.1.

13

6. b, a = signal.butter(3, 0.05): This line designs a Butterworth low-pass filter of order 3 with
a cutoff frequency of 0.05 times the Nyquist frequency. The b and a coefficients of the filter
are returned as a tuple.

7. y = signal.filtfilt(b, a, x): This line applies the filter b and a to the signal x using the filtfilt
function. This function performs a forward and reverse filtering to remove phase distortion.

8. plt.plot(t, x, label=‘Original’): This line plots the original signal x against time t using Mat-
plotlib’s plot function. The label argument is used to create a legend for the plot.

9. plt.plot(t, y, label=‘Filtered’): This line plots the filtered signal y against time t using Mat-
plotlib’s plot function. The label argument is used to create a legend for the plot.

10. plt.legend(): This line adds a legend to the plot using Matplotlib’s legend function.
11. plt.show(): This line displays the plot on the screen using Matplotlib’s show function.

[8]: import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

Generate a noisy sinusoidal signal
t = np.linspace(0, 1, 1000, False)
x = np.sin(2 * np.pi * 10 * t) + 0.1 * np.random.randn(1000)

Apply a low-pass filter to the signal
b, a = signal.butter(3, 0.05)
y = signal.filtfilt(b, a, x)

Plot the original and filtered signals
plt.plot(t, x, label='Original')
plt.plot(t, y, label='Filtered')
plt.legend()
plt.show()

14

1.0.7 Example 7 - B-splines -

This example calculates the B-spline https://en.wikipedia.org/wiki/B-spline basis functions of order
3, with 100 equally spaced knots, and plots the result.

This Python code generates a B-spline curve using the bspline function from the SciPy library. The
code first imports the NumPy, Matplotlib, and SciPy libraries, which are used to generate and plot
the B-spline curve. The linspace function from NumPy is used to generate a time array t with 100
evenly spaced values between 0 and 1. The bspline function from SciPy is then used to generate a
B-spline curve of degree 3. Finally, the code plots the B-spline curve using the plot function from
Matplotlib This Python code demonstrates how to generate B-spline basis functions using NumPy
and SciPy libraries, and plot them using Matplotlib. Here is a brief explanation of each line of the
code:

1. import numpy as np and import scipy.signal as sig: import NumPy and SciPy libraries to
use their functions and methods in the code.

2. import matplotlib.pyplot as plt: import Matplotlib library to plot the B-spline basis functions.
3. t = np.linspace(0, 1, num=100): create a NumPy array of 100 equally spaced values between

0 and 1, which represent the time intervals for which the B-spline basis functions will be
evaluated.

4. bspline = sig.bspline(t, 3): compute the B-spline basis functions of degree 3 for the time
intervals defined in t. The resulting array bspline contains 100 values that represent the
amplitudes of the B-spline basis functions at each time interval.

15

5. plt.plot(t, bspline): plot the B-spline basis functions by using Matplotlib’s plot function. The
t array is used as the x-axis, and the bspline array is used as the y-axis

[9]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

t = np.linspace(0, 1, num=100)
bspline = sig.bspline(t, 3)

plt.plot(t, bspline)
plt.title('B-spline basis functions')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.show()

1.0.8 Example 8 - Filtering -

This example filters a signal with a median filter of kernel size 5, and plots the original signal and
the filtered signal.

16

This Python code generates a signal that is a sum of two sine waves and plots its waveform. The
code first imports the NumPy, Matplotlib, and SciPy libraries, which are used to generate and plot
the signal. The linspace function from NumPy is used to generate a time array t with 100 evenly
spaced values between 0 and 1. The code then generates a signal that is a sum of two sine waves
with frequencies of 5 Hz and 10 Hz. Finally, the code plots the signal using the plot function from
Matplotlib. The above code is a Python script for filtering a noisy signal using a median filter.

1. Importing necessary libraries: > import numpy as np import scipy.signal as sig import mat-
plotlib.pyplot as plt

The script starts by importing NumPy, SciPy’s signal module, and Matplotlib. These libraries will
be used for generating signals, filtering, and plotting results.

2. Generating the signal: > t = np.linspace(0, 1, num=100) signal = np.sin(2 * np.pi * 5 * t)
+ np.sin(2 * np.pi * 10 * t)

This code generates a signal consisting of two sine waves with frequencies 5 and 10 Hz. The signal
is generated using NumPy’s linspace function to create a time vector t with 100 samples, evenly
spaced between 0 and 1.

3. Filtering the signal: > filtered_signal = sig.medfilt(signal, kernel_size=5)

The signal is then filtered using a median filter. The medfilt function from SciPy’s signal module
is used for this purpose. The kernel_size parameter specifies the size of the filter window. In this
case, a window size of 5 is used.

4. Plotting the results: > plt.plot(t, signal, label=‘Original signal’) plt.plot(t, filtered_signal,
label=‘Filtered signal’) plt.title(‘Signal filtering with a median filter’) plt.xlabel(‘Time’)
plt.ylabel(‘Amplitude’) plt.legend() plt.show()

Finally, the original signal and the filtered signal are plotted using Matplotlib. The plot function
is used to plot the signals on the same plot, and the legend function is used to add labels to the
plot. The resulting plot shows the original signal and the filtered signal side by side, with the title,
axis labels, and legend added for clarity.

[10]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

t = np.linspace(0, 1, num=100)
signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)
filtered_signal = sig.medfilt(signal, kernel_size=5)

plt.plot(t, signal, label='Original signal')
plt.plot(t, filtered_signal, label='Filtered signal')
plt.title('Signal filtering with a median filter')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.legend()
plt.show()

17

1.0.9 Example 9 - Spectral analysis -

This example performs spectral analysis on a signal using Welch’s

Method, calculates the power spectral density, and plots the result. This Python code generates
a signal that is a sum of two sine waves and applies a median filter to it. The code first imports
the NumPy, Matplotlib, and SciPy libraries, which are used to generate, filter, and plot the signal.
The linspace function from NumPy is used to generate a time array t with 100 evenly spaced values
between 0 and 1. The code then generates a signal that is a sum of two sine waves with frequencies
of 5 Hz and 10 Hz. The medfilt function from SciPy is then used to apply a median filter of size
5 to the signal. Finally, the code plots the original and filtered signals using the plot function
from Matplotlib. This Python code is used to compute and plot the power spectral density (PSD)
of a signal using the Welch method https://en.wikipedia.org/wiki/Welch%27s_method. Here is a
breakdown of each line:

1. These lines import the necessary libraries for the code, including NumPy, SciPy’s signal
processing module, and Matplotlib. >import numpy as np import scipy.signal as sig import
matplotlib.pyplot as plt

2. These lines generate a test signal which is the sum of two sine waves of frequencies 5 Hz and
10 Hz, respectively. >t = np.linspace(0, 1, num=100) signal = np.sin(2 * np.pi * 5 * t) +
np.sin(2 * np.pi * 10 * t)

18

3. This line computes the PSD of the signal using the Welch method, which is a technique for
estimating the PSD of a signal by dividing the signal into overlapping segments, computing a
periodogram for each segment, and then averaging the periodograms. Here, fs is the sampling
rate of the signal and nperseg is the length of each segment. >f, Pxx_den = sig.welch(signal,
fs=100, nperseg=64) plt.semilogy(f, Pxx_den)

4. This line plots the PSD using a logarithmic scale for the y-axis. >plt.title(‘Power spectral
density of the signal using Welch method’) plt.xlabel(‘Frequency (Hz)’) plt.ylabel(‘Power
spectral density (dB/Hz)’) plt.show()

These lines add a title, axis labels, and display the plot. The x-axis shows the frequency in Hz,
and the y-axis shows the PSD in dB/Hz.

[11]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

t = np.linspace(0, 1, num=100)
signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)
f, Pxx_den = sig.welch(signal, fs=100, nperseg=64)

plt.semilogy(f, Pxx_den)
plt.title('Power spectral density of the signal using Welch method')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Power spectral density (dB/Hz)')
plt.show()

19

1.0.10 Example 10 - Detrend -

This example detrends a signal with a linear fit, and plots the original signal and the detrended
signal https://en.wikipedia.org/wiki/Linear_trend_estimation. This Python code generates a sig-
nal that is a linear function of time with added Gaussian noise and plots its waveform. The code
first imports the NumPy, Matplotlib, and SciPy libraries, which are used to generate and plot the
signal. The linspace function from NumPy is used to generate a time array t with 100 evenly spaced
values between 0 and 1. The code then generates a signal that is a linear function of time with
added Gaussian noise. Finally, the code plots the signal using the plot function from Matplotlib.
This Python code imports three libraries: numpy, scipy.signal, and matplotlib.pyplot. It then cre-
ates an array of 100 evenly spaced values between 0 and 1 using the linspace function from numpy
and assigns it to the variable t. Next, it creates a signal variable by adding a linear function of
2*t+1 and some random noise generated by np.random.randn(100) to each value in the t array.
The scipy.signal.detrend() function is then used to remove the linear trend from the signal using
the ‘linear’ method. The detrended signal is assigned to the variable detrended_signal. Finally,
matplotlib.pyplot is used to plot the original signal and the detrended signal against the time axis
(t). The title, x-label, y-label, and legend are also added to the plot. The plot is displayed using
the show() function.

In summary, this code generates a signal with a linear trend and random noise, removes the linear
trend using the scipy.signal.detrend() function, and plots both the original signal and the detrended

20

signal on a graph using matplotlib.pyplot. This code can be useful for analyzing and visualizing
trends in time-series data.

1. import numpy as np - Imports the NumPy package and assigns it the alias np. NumPy is a
package for scientific computing in Python that provides support for arrays and matrices, as
well as mathematical functions to operate on them.

2. import scipy.signal as sig - Imports the signal module from the SciPy package and assigns
it the alias sig. The signal module provides signal processing functions for filtering, Fourier
analysis, and more.

3. import matplotlib.pyplot as plt - Imports the pyplot module from the Matplotlib package and
assigns it the alias plt. Matplotlib is a package for creating visualizations in Python, and the
pyplot module provides a simple interface for creating and customizing plots.

4. t = np.linspace(0, 1, num=100) - Creates a one-dimensional array of 100 equally spaced
points between 0 and 1, inclusive, and assigns it to the variable t.

5. signal = 2 t + 1 + np.random.randn(100)* - Creates a new array of the same shape as t,
with each element equal to 2 * t + 1 plus a random number drawn from a normal distribution
with mean 0 and standard deviation 1, and assigns it to the variable signal.

6. detrended_signal = sig.detrend(signal, type=‘linear’) - Applies a linear detrending function
to the signal using the detrend() function from the signal module, and assigns the result to
the variable detrended_signal.

7. plt.plot(t, signal, label=‘Original signal’) - Plots the original signal on a graph, with t on the
x-axis and signal on the y-axis, and adds a label to the plot legend indicating that this is the
original signal.

8. plt.plot(t, detrended_signal, label=‘Detrended signal’) - Plots the detrended signal on the
same graph as the original signal, with t on the x-axis and detrended_signal on the y-axis,
and adds a label to the plot legend indicating that this is the detrended signal.

9. plt.title(‘Signal detrending’) - Sets the title of the plot to “Signal detrending”.
10. plt.xlabel(‘Time’) - Sets the label of the x-axis to “Time”.
11. plt.ylabel(‘Amplitude’) - Sets the label of the y-axis to “Amplitude”.
12. plt.legend() - Adds a legend to the plot, with labels for the original and detrended signals.
13. plt.show() - Displays the plot.

[12]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

t = np.linspace(0, 1, num=100)
signal = 2 * t + 1 + np.random.randn(100)
detrended_signal = sig.detrend(signal, type='linear')

plt.plot(t, signal, label='Original signal')
plt.plot(t, detrended_signal, label='Detrended signal')
plt.title('Signal detrending')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.legend()
plt.show()

21

1.0.11 Example 11 - Convolution -

This example convolves a signal with a moving average kernel, and plots the original signal and the
convolved signal. This Python code generates a signal that is a sine wave with a frequency of 5 Hz
and applies a 1D convolution to it using a kernel. The code first imports the NumPy, Matplotlib,
and SciPy libraries, which are used to generate, filter, and plot the signal. The linspace function
from NumPy is used to generate a time array t with 100 evenly spaced values between 0 and 1. The
code then generates a signal that is a sine wave with a frequency of 5 Hz. The convolve function
from SciPy is then used to apply a 1D convolution to the signal using a kernel. Finally, the code
plots the original and filtered signals using the plot function from Matplotlib.

import numpy as np import scipy.signal as sig import matplotlib.pyplot as plt

The first three lines import three Python modules that the code will use: numpy, a library for
scientific computing in Python, which provides support for arrays and linear algebra operations.
scipy.signal, a module within the scipy library that provides various signal processing functions.
matplotlib.pyplot, a plotting library that provides tools for creating plots, histograms, and other
visualizations.

t = np.linspace(0, 1, num=100)

This line creates an array t that represents a time axis for our signal. It uses the linspace function

22

from numpy to create 100 equally spaced time points between 0 and 1.

signal = np.sin(2 * np.pi * 5 * t)

This line creates a signal array that contains a sine wave with a frequency of 5 Hz. It uses the sin
function from numpy to generate the sine wave.

kernel = np.ones(10) / 10

This line creates a kernel array that contains a moving average filter. The kernel is created by
creating an array of 10 ones using the ones function from numpy, and then dividing each element
of the array by 10 to normalize it.

convolved_signal = sig.convolve(signal, kernel, mode=‘same’)

This line convolves the signal array with the kernel array using the convolve function from
scipy.signal. This creates a new convolved_signal array that represents the original signal con-
volved with the moving average filter. The mode=‘same’ argument specifies that the output array
should have the same shape as the input array.

plt.plot(t, signal, label=‘Original signal’) plt.plot(t, convolved_signal, la-
bel=‘Convolved signal’) plt.title(‘Signal convolution with a moving average kernel’)
plt.xlabel(‘Time’) plt.ylabel(‘Amplitude’) plt.legend() plt.show()

These lines plot the original signal array and the convolved_signal array using the plot function
from matplotlib.pyplot. The title, xlabel, ylabel, and legend functions are used to add labels and
a legend to the plot. Finally, the show function is called to display the plot.

[13]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

t = np.linspace(0, 1, num=100)
signal = np.sin(2 * np.pi * 5 * t)
kernel = np.ones(5) / 5
convolved_signal = sig.convolve(signal, kernel, mode='same')

plt.plot(t, signal, label='Original signal')
plt.plot(t, convolved_signal, label='Convolved signal')
plt.title('Signal convolution with a moving average kernel')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.legend()
plt.show()

23

1.0.12 Example 12 - Butterworth bandpass filter -

This example filters a signal with a Butterworth bandpass filter, and plots the original signal and
the filtered signal. This Python code generates a signal that is a sum of two sine waves and applies
a bandpass filter to it using a Butterworth filter. The code first imports the NumPy, Matplotlib,
and SciPy libraries, which are used to generate, filter, and plot the signal. The linspace function
from NumPy is used to generate a time array t with 100 evenly spaced values between 0 and 1. The
code then generates a signal that is a sum of two sine waves with frequencies of 5 Hz and 10 Hz.
The butter function from SciPy is then used to design a bandpass filter with a cutoff frequency of
0.2 Hz and 0.8 Hz and a filter order of 3. The filtfilt function from SciPy is then used to apply the
filter to the signal. Finally, the code plots the original and filtered signals using the plot function
from Matplotlib

1. imports the NumPy library and renames it as “np”.

2. imports the signal processing module from the SciPy library and renames it as “sig”.

3. imports the Pyplot module from Matplotlib and renames it as “plt”.

4. Creates a 1-dimensional array “t” using NumPy’s linspace function. The function generates
a sequence of evenly spaced numbers between 0 and 1. The “num” argument specifies the
number of samples in the array, which in this case is 100. This array will be used as the time

24

axis for the signal.

5. Creates a signal by adding two sine waves with frequencies of 5 Hz and 10 Hz, respectively.
The sine waves are generated using NumPy’s sin function, and their frequencies are specified
in radians per second using the formula 2 * pi * f * t. The resulting signal is a periodic
waveform that oscillates at a frequency of 5 Hz and has a higher-frequency component at 10
Hz.

6. Uses the “butter” function from SciPy’s signal processing module to design a Butterworth
bandpass filter. The function takes three arguments: the filter order (3 in this case), the
frequency range of the passband (0.2 to 0.8 times the Nyquist frequency, which is half the
sampling rate), and the type of filter (‘bandpass’ in this case). The function returns the filter
coefficients as two arrays, which are assigned to the variables “b” and “a”. These coefficients
will be used to filter the signal.

7. Applies the filter to the signal using the “filtfilt” function from SciPy’s signal processing
module. The function performs zero-phase filtering, which means that it applies the filter
twice, once forward and once backward, to eliminate phase distortion. The filtered signal is
assigned to the variable “filtered_signal”.

8. Plots the original signal and the filtered signal using Matplotlib’s “plot” function. The time
axis “t” is used as the x-axis, and the signals are used as the y-axis. The “label” argument is
used to specify the legend labels for the two signals.

9. Sets the title of the plot using Matplotlib’s “title” function.

10. Sets the label of the x-axis using Matplotlib’s “xlabel” function.

11. Sets the label of the y-axis using Matplotlib’s “ylabel” function.

12. Adds a legend to the plot using Matplotlib’s “legend” function.

13. Displays the plot using Matplotlib’s “show” function.

[14]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

t = np.linspace(0, 1, num=100)
signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)
b, a = sig.butter(3, [0.2, 0.8], 'bandpass')
filtered_signal = sig.filtfilt(b, a, signal)

plt.plot(t, signal, label='Original signal')
plt.plot(t, filtered_signal, label='Filtered signal')
plt.title('Signal filtering with a Butterworth bandpass filter')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.legend()
plt.show()

25

1.0.13 Example 13 - High Pass Filter design -

This example designs a Butterworth highpass filter, calculates its frequency response, and plots the
result. This Python code designs a highpass Butterworth filter with a cutoff frequency of 0.2 and
plots its frequency response. The code first imports the NumPy, Matplotlib, and SciPy libraries,
which are used to design and plot the filter. The butter function from SciPy is then used to design
a highpass filter with a cutoff frequency of 0.2 Hz and a filter order of 3. The freqz function
from SciPy is then used to compute the frequency response of the filter. Finally, the code plots
the magnitude response of the filter using the plot function from Matplotlib This Python code
demonstrates the use of the NumPy, SciPy, and Matplotlib libraries to plot the frequency response
of a Butterworth highpass filter.

1. imports the NumPy library and renames it as “np”.

2. imports the signal processing module from the SciPy library and renames it as “sig”.

3. imports the Pyplot module from Matplotlib and renames it as “plt”.

4. Uses the “butter” function from SciPy’s signal processing module to design a Butterworth
highpass filter. The function takes three arguments: the filter order (3 in this case), the cutoff
frequency of the filter (0.2 in this case, specified as a fraction of the Nyquist frequency), and
the type of filter (‘highpass’ in this case). The function returns the filter coefficients as two

26

arrays, which are assigned to the variables “b” and “a”.

5. Uses the “freqz” function from SciPy’s signal processing module to compute the frequency
response of the filter. The function takes the filter coefficients “b” and “a” as arguments
and returns the frequency response as two arrays, which are assigned to the variables “w”
and “h”. The “w” array contains the frequencies (in radians per sample) at which the fre-
quency response is computed, and the “h” array contains the complex values of the frequency
response.

6. Clips the values of “h” that are smaller than the machine epsilon (the smallest representable
positive number for the given floating-point data type). This is done to avoid division by zero
in the next step.

7. Computes the magnitude of the frequency response in decibels using the formula
20*log10(|H(w)|), where |H(w)| is the absolute value of the complex frequency response. The
result is assigned to the variable “db”.

8. Plots the frequency response using Matplotlib’s “plot” function. The “w” array is used as the
x-axis, and the “db” array is used as the y-axis.

9. Sets the title of the plot using Matplotlib’s “title” function.

10. Sets the label of the x-axis using Matplotlib’s “xlabel” function.

11. Sets the label of the y-axis using Matplotlib’s “ylabel” function.

12. Displays the plot using Matplotlib’s “show” function.

[15]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

b, a = sig.butter(3, 0.2, 'highpass')
w, h = sig.freqz(b, a)

h[np.abs(h) < np.finfo(float).eps] = np.finfo(float).eps # avoid division by␣
↪zero

db = 20 * np.log10(np.abs(h))

plt.plot(w, db)
plt.title('Frequency response of a Butterworth highpass filter')
plt.xlabel('Frequency (rad/sample)')
plt.ylabel('Amplitude (dB)')
plt.show()

27

1.0.14 Example 14 - Other filters -

This Python code demonstrates the use of the NumPy, SciPy, and Matplotlib libraries to filter a
signal using a median filter https://en.wikipedia.org/wiki/Median_filter.

1. imports the NumPy library and renames it as “np”.

2. imports the signal processing module from the SciPy library and renames it as “sig”.

3. imports the Pyplot module from Matplotlib and renames it as “plt”.

4. Uses the “linspace” function from NumPy to generate a sequence of 100 equally spaced time
points between 0 and 1, inclusive. The sequence is assigned to the variable “t”.

5. Generates a signal by summing two sine waves with frequencies of 5 and 10 Hz, respectively,
and amplitudes of 1. The signal is assigned to the variable “signal”.

6. Applies a median filter to the signal using the “medfilt” function from SciPy’s signal processing
module. The function takes two arguments: the signal to be filtered (“signal” in this case), and
the size of the median filter window (5 in this case, which means that the median is computed
over 5 samples at a time). The filtered signal is assigned to the variable “filtered_signal”.

7. Plots the original signal and the filtered signal using Matplotlib’s “plot” function. The “t”
array is used as the x-axis, and the “signal” and “filtered_signal” arrays are used as the y-axis

28

for the original and filtered signals, respectively. The “label” argument is used to provide a
legend for the plot.

8. Sets the title of the plot using Matplotlib’s “title” function.

9. Sets the label of the x-axis using Matplotlib’s “xlabel” function.

10. Sets the label of the y-axis using Matplotlib’s “ylabel” function.

11. Creates a legend for the plot using Matplotlib’s “legend” function.

12. Displays the plot using Matplotlib’s “show” function.

[16]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

t = np.linspace(0, 1, num=100)
signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)
filtered_signal = sig.medfilt(signal, kernel_size=5)

plt.plot(t, signal, label='Original signal')
plt.plot(t, filtered_signal, label='Filtered signal')
plt.title('Signal filtering with a median filter')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.legend()
plt.show()

29

1.0.15 Example 15 - Analog filter -

This Python code uses the SciPy library to design and plot the frequency response of an analog
bandpass Chebyshev type II filter https://en.wikipedia.org/wiki/Chebyshev_filter.

Here is an explanation of the code line by line:

1. import numpy as np: Import the NumPy library with the alias np.
2. import scipy.signal as sig: Import the SciPy signal processing module with the alias sig.
3. import matplotlib.pyplot as plt: Import the pyplot module of the Matplotlib library with the

alias plt.
4. wp = 0.2: Set the passband edge frequency to 0.2, which is a normalized frequency (ranging

from 0 to 1) that specifies the frequency at which the filter’s gain is 3 dB less than its maximum
value in the passband.

5. ws = 0.8: Set the stopband edge frequency to 0.8, which is a normalized frequency that
specifies the frequency at which the filter’s gain is 3 dB or more less than its maximum value
in the passband.

6. rs = 60: Set the stopband attenuation to 60 dB, which is a measure of how much the filter’s
gain is reduced in the stopband relative to the passband.

7. b, a = sig.iirfilter(3, [wp, ws], rp=None, rs=rs, btype=‘bandpass’, ftype=‘cheby2’): Use the
iirfilter function of the sig module to design a third-order Chebyshev type II bandpass filter

30

with passband edge frequency wp, stopband edge frequency ws, stopband attenuation rs,
band type ‘bandpass’, and filter type ‘cheby2’. The function returns the filter coefficients b
and a, which are used to compute the frequency response of the filter in the next line.

8. w, h = sig.freqz(b, a): Use the freqz function of the sig module to compute the frequency
response of the filter with coefficients b and a. The function returns the normalized frequency
w (ranging from 0 to pi) and the complex frequency response h.

9. plt.plot(w, 20 np.log10(np.abs(h))): Plot the frequency response of the filter as a function
of the normalized frequency w using Matplotlib’s plot function. The y-axis is converted from
the linear scale to the logarithmic scale in decibels (dB) using the formula 20 log10(abs(h)),
where abs(h) is the magnitude of the frequency response.

10. plt.title(‘Frequency response of analog filter’): Set the title of the plot to ‘Frequency response
of analog filter’.

11. plt.xlabel(‘Normalized frequency’): Set the label of the x-axis to ‘Normalized frequency’.
12. plt.ylabel(‘Gain [dB]’): Set the label of the y-axis to ‘Gain [dB]’.
13. plt.grid(): Add a grid to the plot.
14. plt.show(): Display the plot.

[17]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

wp = 0.2
ws = 0.8
rs = 60
b, a = sig.iirfilter(3, [wp, ws], rp=None, rs=rs, btype='bandpass',␣

↪ftype='cheby2')
w, h = sig.freqz(b, a)

plt.plot(w, 20 * np.log10(np.abs(h)))
plt.title('Frequency response of analog filter')
plt.xlabel('Normalized frequency')
plt.ylabel('Gain [dB]')
plt.grid()
plt.show()

31

1.0.16 Example 16 - Periodogram measurements (Welch’s method) -

This example computes the power spectral density of a signal using Welch’s method and plots the
result. 1. import numpy as np: Import the NumPy library and alias it as “np” for convenience.
2. import scipy.signal as sig: Import the SciPy signal processing module and alias it as “sig”
for convenience. 3. import matplotlib.pyplot as plt: Import the Matplotlib library and alias it
as “plt” for convenience, which is used for plotting. 4. t = np.linspace(0, 1, 1000): Generate a
1-second time vector with 1000 evenly spaced points between 0 and 1. signal = np.sin(2 * np.pi
* 10 * t) + 0.5 * np.sin(2 * np.pi * 20 * t): Create a time-domain signal that consists of a sine
wave with a frequency of 10 Hz and a smaller amplitude sine wave with a frequency of 20 Hz.
5. f, p = sig.welch(signal, fs=100, window=‘hann’, nperseg=256, noverlap=128): Compute the
Welch’s method periodogram of the signal, which is a power spectral density estimate obtained
by averaging modified periodograms of the signal segments with overlapping windows. fs is the
sampling frequency, window is the window function applied to each segment, nperseg is the length
of each segment, and noverlap is the number of points of overlap between segments. This returns
the frequency vector f and the corresponding power spectral density vector p. 6. plt.plot(f, p):
Plot the power spectral density estimate against the frequency vector. 7. plt.title(“Welch’s method
periodogram”): Add a title to the plot. 8. plt.xlabel(‘Frequency’): Add a label to the x-axis. 9.
plt.ylabel(‘Power spectral density’): Add a label to the y-axis. 10. plt.grid(): Add grid lines to the
plot. 11. plt.show(): Display the plot.

32

[18]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

t = np.linspace(0, 1, 1000)
signal = np.sin(2 * np.pi * 10 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

f, p = sig.welch(signal, fs=100, window='hann', nperseg=256, noverlap=128)

plt.plot(f, p)
plt.title("Welch's method periodogram")
plt.xlabel('Frequency')
plt.ylabel('Power spectral density')
plt.grid()
plt.show()

1.0.17 Example 17 - Lomb-Scargle periodograms -

This example computes the Lomb-Scargle periodogram https://en.wikipedia.org/wiki/Least-
squares_spectral_analysis#The_Lomb.E2.80.93Scargle_periodogram of a signal and plots the re-

33

sult. This code generates a Lomb-Scargle periodogram for a signal consisting of two sinusoids with
frequencies 10 Hz and 20 Hz. Here’s a breakdown of the code line by line:

1. import numpy as np: Imports the NumPy library, which provides support for numerical
operations on arrays and matrices.

2. import scipy.signal as sig: Imports the SciPy library, which provides a variety of signal
processing functions.

3. import matplotlib.pyplot as plt: Imports the Matplotlib library, which provides functions for
creating visualizations of data.

4. t = np.linspace(0, 1, 1000): Creates an array of 1000 evenly spaced time values between 0
and 1.

5. signal = np.sin(2 np.pi * 10 * t) + 0.5 * np.sin(2 * np.pi * 20 * t): Creates a signal consisting
of two sinusoids with frequencies 10 Hz and 20 Hz, respectively. The sin function is applied
to each frequency and the resulting signals are added together.

6. f = np.linspace(1, 30, 1000): Creates an array of 1000 evenly spaced frequencies between 1
and 30 Hz.

7. p = sig.lombscargle(t, signal, 2 np.pi * f): Calculates the Lomb-Scargle periodogram for the
input signal signal. The function lombscargle computes the Lomb-Scargle periodogram, which
is a frequency analysis method for irregularly sampled data. The inputs to the function are
the time values t, the signal signal, and the frequencies f multiplied by 2pi to convert them to
radians.

8. plt.plot(f, p): Plots the Lomb-Scargle periodogram. The frequency values are on the x-axis
and the power values are on the y-axis.

9. plt.title(“Lomb-Scargle periodogram”): Sets the title of the plot to “Lomb-Scargle peri-
odogram”.

10. plt.xlabel(‘Frequency’): Sets the label of the x-axis to “Frequency”.
11. plt.ylabel(‘Power’): Sets the label of the y-axis to “Power”.
12. plt.grid(): Adds a grid to the plot.
13. plt.show(): Displays the plot.

[19]: import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt

t = np.linspace(0, 1, 1000)
signal = np.sin(2 * np.pi * 10 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

f = np.linspace(1, 30, 1000)
p = sig.lombscargle(t, signal, 2 * np.pi * f)

plt.plot(f, p)
plt.title("Lomb-Scargle periodogram")
plt.xlabel('Frequency')
plt.ylabel('Power')
plt.grid()
plt.show()

34

1.0.18 Example 18 - Discrete Cosine Transform -

This code generates a discrete cosine transform (DCT) https://en.wikipedia.org/wiki/Discrete_cosine_transform
plot for a given signal. The resulting plot shows the amplitude of each DCT coefficient, with the
x-axis representing the index of each coefficient and the y-axis representing its amplitude. Since
the signal has two frequency components, there are two non-zero coefficients in the DCT plot.
The first coefficient corresponds to the DC component of the signal, while the second coefficient
corresponds to the 20 Hz component of the signal. Here’s how it works:

1. The numpy library is imported as np and the scipy.fftpack library is imported as fft.

2. A time vector t is created using numpy’s linspace() function. This vector contains 1000 evenly
spaced values between 0 and 1.

3. A signal is generated by adding two sine waves together: one with a frequency of 10 Hz and
another with a frequency of 20 Hz. The resulting signal is stored in the variable signal.

4. The DCT of the signal is computed using fft.dct(). The type argument is set to 2 to indicate
the use of the inverse DCT algorithm, which generates a type-II DCT.

5. The resulting DCT coefficients are stored in the variable C.

6. The matplotlib library is used to create a plot of the DCT coefficients. The plot() function is

35

called with the C variable as its argument. The plot is labeled with a title, axis labels, and
a grid.

7. Finally, the plot is displayed using the show() function.

[20]: import numpy as np
import scipy.fftpack as fft
import matplotlib.pyplot as plt

t = np.linspace(0, 1, 1000)
signal = np.sin(2 * np.pi * 10 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

C = fft.dct(signal, type=2)

plt.plot(C)
plt.title("Discrete Cosine Transform")
plt.xlabel('Coefficients')
plt.ylabel('Amplitude')
plt.grid()
plt.show()

36

1.0.19 Example 19 - Discrete Sine Transform -

This code generates a signal consisting of two sine waves, computes its DST
https://en.wikipedia.org/wiki/Discrete_sine_transform, and plots the DST coefficients us-
ing pyplot. The plot shows how the signal is decomposed into a set of sine functions with different
frequencies and amplitudes. 1. import numpy as np: Imports the NumPy package and creates an
alias ‘np’ for easy referencing in the code. 2. import scipy.fftpack as fft: Imports the FFTPACK
module from SciPy package and creates an alias ‘fft’ for easy referencing in the code. 3. import
matplotlib.pyplot as plt: Imports the pyplot module from the matplotlib package and creates an
alias ‘plt’ for easy referencing in the code. 4. t = np.linspace(0, 1, 1000): Generates a 1D array of
1000 equally spaced values between 0 and 1 and assigns it to the variable ‘t’. 5. signal = np.sin(2
np.pi * 10 * t) + 0.5 * np.sin(2 * np.pi * 20 * t): Generates a signal by adding two sine waves
with frequencies 10 Hz and 20 Hz, respectively, and assigns it to the variable ‘signal’. 6. S =
fft.dst(signal): Computes the Discrete Sine Transform (DST) of the signal using the FFTPACK
module and assigns it to the variable ‘S’. 7. plt.plot(S): Plots the DST coefficients of the signal
using pyplot. 8. plt.title(“Discrete Sine Transform”): Sets the title of the plot to “Discrete Sine
Transform”. 9. plt.xlabel(‘Coefficients’): Sets the label for the x-axis to “Coefficients”. 10.
plt.ylabel(‘Amplitude’): Sets the label for the y-axis to “Amplitude”. 11. plt.grid(): Adds grid
lines to the plot. 12. plt.show()*: Displays the plot on the screen.

[21]: import numpy as np
import scipy.fftpack as fft
import matplotlib.pyplot as plt

t = np.linspace(0, 1, 1000)
signal = np.sin(2 * np.pi * 10 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

S = fft.dst(signal)

plt.plot(S)
plt.title("Discrete Sine Transform")
plt.xlabel('Coefficients')
plt.ylabel('Amplitude')
plt.grid()
plt.show()

37

1.0.20 Example 20 - The Hilbert Transform -

In this code example, the hilbert() function from the scipy.signal module is used to perform the
Hilbert Transform https://en.wikipedia.org/wiki/Hilbert_transform. The magnitude of the ana-
lytic signal is then calculated using np.abs() and plotted using matplotlib. First, let me give you a
brief overview of what this code does. It generates a signal that is a sum of two sine waves with
frequencies 10Hz and 20Hz, applies the Hilbert transform to obtain the analytic signal, calculates
the absolute value of the analytic signal, and then plots the resulting amplitude values. This allows
you to see the envelope of the original signal, which is the result of the Hilbert transform. Here’s
a line-by-line explanation of the code:

import numpy as np import matplotlib.pyplot as plt from scipy.signal import hilbert

This code imports three Python libraries that will be used in the rest of the code. numpy is a
library for numerical computing, matplotlib is a library for data visualization, and scipy is a library
for scientific computing. hilbert is a function provided by the scipy.signal module that performs
the Hilbert transform.

t = np.linspace(0, 1, 1000)

This code creates an array of 1000 evenly spaced values between 0 and 1. This array will be used
as the time values for the signal.

38

signal = np.sin(2 * np.pi * 10 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

This code generates a signal that is the sum of two sine waves with frequencies 10Hz and 20Hz.
The signal is stored in the variable signal.

analytic_signal = hilbert(signal) H = np.abs(analytic_signal)

This code applies the Hilbert transform to the signal using the hilbert function provided by the
scipy.signal module. The result is stored in the variable analytic_signal. The np.abs function is
then used to calculate the absolute value of the analytic signal, which gives us the amplitude of the
envelope of the original signal. The resulting amplitude values are stored in the variable H.

plt.plot(H) plt.title(“Hilbert Transform”) plt.xlabel(‘Samples’) plt.ylabel(‘Amplitude’)
plt.grid() plt.show()

This code generates a plot of the amplitude values stored in H. The plt.plot function is used to
create the plot, and the plt.title, plt.xlabel, and plt.ylabel functions are used to add a title and axis
labels to the plot. The plt.grid function adds a grid to the plot. Finally, the plt.show function is
used to display the plot on the screen.

[22]: import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import hilbert

t = np.linspace(0, 1, 1000)
signal = np.sin(2 * np.pi * 10 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

analytic_signal = hilbert(signal)
H = np.abs(analytic_signal)

plt.plot(H)
plt.title("Hilbert Transform")
plt.xlabel('Samples')
plt.ylabel('Amplitude')
plt.grid()
plt.show()

39

1.0.21 Example 21 - Spectrogram and MFCC coefficients -

This code demonstrates how to compute and visualize the spectrogram and MFCC (Mel-frequency
cepstral coefficients) https://en.wikipedia.org/wiki/Mel-frequency_cepstrum of an audio file using
the librosa library. Let’s break down the code step by step: Importing necessary libraries python

import numpy as np import librosa import librosa.display import matplotlib.pyplot as
plt

Loading the audio file: > audio_file = ‘m2_script1_iphone_livingroom1.wav’ audio, sr = li-
brosa.load(audio_file, sr=None)

The librosa.load() function is used to load the audio file. It returns the audio data (audio) and the
sample rate (sr) of the audio.

Computing the spectrogram: > spectrogram = np.abs(librosa.stft(audio))

The spectrogram is calculated by applying the Short-Time Fourier Transform (STFT) to the audio
data. librosa.stft() computes the STFT, and np.abs() is used to get the magnitude of the STFT.

Displaying the spectrogram: > plt.figure(figsize=(10, 4)) li-
brosa.display.specshow(librosa.amplitude_to_db(spectrogram, ref=np.max), sr=sr,

40

x_axis=‘time’, y_axis=‘log’) plt.colorbar(format=‘%+2.0f dB’) plt.title(‘Spectrogram’) plt.show()
>

This code visualizes the spectrogram using librosa.display.specshow(). librosa.amplitude_to_db()
converts the spectrogram to dB scale for better visualization. The resulting spectrogram is displayed
using plt.imshow(), and a colorbar and title are added.

Computing the MFCC coefficients: > mfcc = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13) >

The MFCC coefficients are computed using librosa.feature.mfcc(). The y parameter specifies the
audio data, sr is the sample rate, and n_mfcc determines the number of MFCC coefficients to
compute.

Displaying the MFCC coefficients: > plt.figure(figsize=(10, 4)) librosa.display.specshow(mfcc,
x_axis=‘time’) plt.colorbar() plt.title(‘MFCC Coefficients’) plt.show() >

This code displays the MFCC coefficients using librosa.display.specshow(). The resulting MFCC
coefficients are visualized using plt.imshow(), and a colorbar and title are added. 1. Import the
necessary libraries: numpy for numerical operations, librosa for audio processing, and matplotlib
for plotting. 2. Provide the path to the audio file that you want to analyze. 3. Load the audio
file using librosa.load(). 4. The sr=None argument ensures that the audio is loaded in its origi-
nal sampling rate. 5. Compute the spectrogram using librosa.stft(). This function converts the
audio signal from the time domain to the frequency domain. 6. Display the spectrogram using
librosa.display.specshow(). The librosa.amplitude_to_db() function converts the amplitude values
to decibels for better visualization. The sr parameter is set to the original sampling rate, and the
x_axis is set to ‘time’ to display the time on the x-axis. The y_axis is set to ‘log’ to display the fre-
quencies on a logarithmic scale. 7. Show a colorbar indicating the magnitude of the spectrogram in
decibels. 8. Compute the MFCC (Mel-frequency cepstral coefficients) using librosa.feature.mfcc().
MFCCs are commonly used features for audio analysis and represent the spectral envelope of the
audio signal. 9. Display the MFCC coefficients using librosa.display.specshow(). Since MFCCs
are a 2D matrix, the function directly displays the coefficients as an image. 10. Show a colorbar
indicating the magnitude of the MFCC coefficients.

By running this code with a valid audio file path, you will visualize the spectrogram and MFCC
coefficients of the audio.

[23]: import numpy as np
import librosa
import librosa.display
import matplotlib.pyplot as plt

Load audio file
audio_file = 'm2_script1_iphone_livingroom1.wav'
#audio_file = 'file_example_WAV_5MG.wav'
audio, sr = librosa.load(audio_file, sr=None)

Compute spectrogram
spectrogram = np.abs(librosa.stft(audio))

Display spectrogram

41

plt.figure(figsize=(10, 4))
librosa.display.specshow(librosa.amplitude_to_db(spectrogram, ref=np.max),

sr=sr, x_axis='time', y_axis='log')
plt.colorbar(format='%+2.0f dB')
plt.title('Spectrogram')
plt.show()

Compute MFCC coefficients
mfcc = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)

Display MFCC coefficients
plt.figure(figsize=(10, 4))
librosa.display.specshow(mfcc, x_axis='time')
plt.colorbar()
plt.title('MFCC Coefficients')
plt.show()

42

[]:

43

	Python for Signal Processing
	Example 1 - Audio Processing -
	Example 2 - FFT and IFFT -
	Example 3 - Audio signal Butterworth filter -
	Example 4 - Convolution -
	Example 5 - FFT -
	Example 6 - FFT -
	Example 7 - B-splines -
	Example 8 - Filtering -
	Example 9 - Spectral analysis -
	Example 10 - Detrend -
	Example 11 - Convolution -
	Example 12 - Butterworth bandpass filter -
	Example 13 - High Pass Filter design -
	Example 14 - Other filters -
	Example 15 - Analog filter -
	Example 16 - Periodogram measurements (Welch's method) -
	Example 17 - Lomb-Scargle periodograms -
	Example 18 - Discrete Cosine Transform -
	Example 19 - Discrete Sine Transform -
	Example 20 - The Hilbert Transform -
	Example 21 - Spectrogram and MFCC coefficients -

