Lecture#6
May 24, 2023

1 Python for Signal Processing

1.1 SciPy - Library of scientific algorithms for Python
Danilo Greco, PhD - danilo.greco@uniparthenope.it - University of Naples Parthenope

The line “%matplotlib inline” is a command used in Jupyter notebooks to ensure that any plots
generated by Matplotlib are displayed directly in the notebook, rather than in a separate window
or file. This line is not valid Python code but rather a command specific to the Jupyter notebook
environment.

The following two lines import the Matplotlib library, which is a data visualization library in
Python, and the Image module from the IPython.display library, which is used to display image
files within the notebook. These imports are required in order to create and display plots using
Matplotlib in the notebook

[1]: | # what 4s this line all about?
Jmatplotlib inline
import matplotlib.pyplot as plt
from IPython.display import Image

1.2 Introduction

The SciPy framework builds on top of the low-level NumPy framework for multidimensional arrays,
and provides a large number of higher-level scientific algorithms. Some of the topics that SciPy
covers are:

» Special functions (scipy.special)

o Integration (scipy.integrate)

o Optimization (scipy.optimize)

o Interpolation (scipy.interpolate)

o Fourier Transforms (scipy.fftpack)

o Signal Processing (scipy.signal)

o Linear Algebra (scipy.linalg)

o Sparse Eigenvalue Problems (scipy.sparse)
o Statistics (scipy.stats)

o Multi-dimensional image processing (scipy.ndimage)
o File 1O (scipy.io)

Each of these submodules provides a number of functions and classes that can be used to solve
problems in their respective topics.

http://docs.scipy.org/doc/scipy/reference/special.html
http://docs.scipy.org/doc/scipy/reference/integrate.html
http://docs.scipy.org/doc/scipy/reference/optimize.html
http://docs.scipy.org/doc/scipy/reference/interpolate.html
http://docs.scipy.org/doc/scipy/reference/fftpack.html
http://docs.scipy.org/doc/scipy/reference/signal.html
http://docs.scipy.org/doc/scipy/reference/linalg.html
http://docs.scipy.org/doc/scipy/reference/sparse.html
http://docs.scipy.org/doc/scipy/reference/stats.html
http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://docs.scipy.org/doc/scipy/reference/io.html

[2]:

[3]:

[4] :

In this lecture we will look at how to use some of these subpackages.

To access the SciPy package in a Python program, we start by importing everything from the scipy
module.

The line “from scipy import *” imports all the public modules and functions of the Scipy library into
the current Python namespace. Scipy is a Python library that provides functionality for scientific
computing and technical computing, including modules for optimization, integration, interpolation,
signal and image processing, linear algebra, and more.

Using the “*” symbol to import all modules and functions from a library is generally discouraged
as it can cause namespace pollution and conflicts with other imported modules. It’s better to only
import the specific modules and functions needed for a given task, like “from scipy.optimize import
minimize” for optimization or “from scipy.signal import fftconvolve” for signal processing

from scipy import *

If we only need to use part of the SciPy framework we can selectively include only those modules
we are interested in. For example, to include the linear algebra package under the name la, we
can do:

import scipy.linalg as la

1.3 Special functions

A large number of mathematical special functions are important for many computional
physics problems. SciPy provides implementations of a very extensive set of spe-
cial functions. For details, see the list of functions in the reference documention at
http://docs.scipy.org/doc/scipy /reference /special.html#module-scipy.special.

To demonstrate the typical usage of special functions we will look in more detail at the Bessel
functions:

The code imports the “jn”, “yn”, “jn_ zeros”, and “yn_ zeros” functions from the “scipy.special”
module, which is a part of the Scipy library. These functions are used to evaluate Bessel functions
and their zeroes.

Bessel functions are a family of special functions that arise in a wide range of mathematical and
physical problems, particularly in wave phenomena such as vibrations, diffraction, and propagation.
The “jn” and “yn” functions are Bessel functions of the first and second kind, respectively, with
real-valued order. These functions are defined by a series expansion involving trigonometric and
exponential functions and have many applications in physics and engineering.

The “jn_ zeros” and “yn_ zeros” functions return the zeros of the “jn” and “yn” functions, respec-
tively. These zeros are important in a variety of problems, such as finding the resonance frequencies
of vibrating systems, calculating diffraction patterns, and solving partial differential equations.

#

The scipy.special module includes a large number of Bessel-functions

Here we will use the functions jn and yn, which are the Bessel functions
of the first and second kind and real-valued order. We also include the
function jn_zeros and yn_zeros that gives the zeroes of the functions jn

[5]:

and yn.
#
from scipy.special import jn, yn, jn_zeros, yn_zeros

This code imports the “jn” and “yn” functions from the “scipy.special” module to evaluate Bessel
functions of the first and second kind.

The variable “n” is set to 0, which is the order of the Bessel function. The variable “x” is initially
set to 0.0 for the Bessel function of the first kind, and then to 1.0 for the Bessel function of the
second kind.

The first print statement uses the “jn” function to evaluate the Bessel function of the first kind,
Jn(x), with n=0 and x=0.0, and prints the result in a formatted string using the “%” operator.
The result is the value of JO(0), which is equal to 1.

The second print statement uses the “yn” function to evaluate the Bessel function of the second
kind, Yn(x), with n=0 and x=1.0, and prints the result in a similar formatted string. The result is
the value of YO(1), which is approximately -0.7812.

Overall, this code demonstrates the use of the “jn” and “yn” functions to evaluate Bessel functions
in Python using Scipy.

from scipy.special import jn, yn

n =20 # order
x = 0.0

Bessel function of first kind
print ("J_%d(%£) = %f" % (n, x, jn(n, x)))

x=1.0
Bessel function of second kind
print ("Y_%d(%f) = %" % (n, x, yn(n, x)))

1.000000
0.088257

J_0(0.000000)
Y_0(1.000000)

This code uses the NumPy and Matplotlib libraries, as well as the “jn” function from the Scipy
library, to generate a plot of Bessel functions of the first kind.

The “np.linspace” function creates an array of 100 equally spaced values between 0 and 10, which
will be used as the x-values for the plot.

The “plt.subplots” function creates a new figure and a set of subplots, returning a tuple containing
the figure and the axis object(s). The “ax.plot” function is then called in a loop over the range 0
to 3, with each iteration plotting a different Bessel function of the first kind, Jn(x), for the current
value of n. The label for each plot is set using a formatted string with the value of n.

After the loop completes, the “ax.legend” function adds a legend to the plot indicating which line
corresponds to which Bessel function. Finally, the “plt.show” function displays the plot.

Overall, this code demonstrates how to use the “jn” function from the Scipy library to plot Bessel
functions of the first kind in Python using Matplotlib.

[6]:

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import jn

X = np.linspace(0, 10, 100)

fig, ax = plt.subplots()
for n in range(4):
ax.plot(x, jn(n, x), label=r"$J_{%d}(x)$" % n)
ax.legend()
plt.show()

1.0~

0.8

0.6

0.4 1

0.2 1

0.0

—'[]'.2 -

_'U'.4 -

This code uses the “jn_zeros” function from the Scipy library to compute the first 4 zeros of the
Bessel function of the first kind, JO(x).

The variable “n” is set to 0, which is the order of the Bessel function. The variable “m” is set to
4, which is the number of zeros to compute.

The “jn_ zeros” function returns an array containing the requested number of zeros of the Bessel
function, ordered from smallest to largest. In this case, the result is an array of length 4 containing
the first 4 zeros of JO(x), which are approximately 2.4048, 5.5201, 8.6537, and 11.7915.

Overall, this code demonstrates how to use the “jn_ zeros” function from the Scipy library to
compute the zeros of a Bessel function in Python.

[7]:

[7]:

[8]:

[9]:

[10]:

zeros of Bessel functions
n =0 # order
4 # number of roots to compute

m
jn_zeros(n, m)

array([2.40482556, 5.52007811, 8.65372791, 11.79153444])

1.4 Integration
1.4.1 Numerical integration: quadrature

Numerical evaluation of a function of the type

/ab f(z)dx

is called numerical quadrature, or simply quadature. SciPy provides a series of functions for different
kind of quadrature, for example the quad, dblquad and tplquad for single, double and triple
integrals, respectively.

from scipy.integrate import quad, dblquad, tplquad

The quad function takes a large number of optional arguments, which can be used to fine-tune the
behaviour of the function (try help(quad) for details).

The basic usage is as follows:

define a simple function for the integrand
def f(x):
return x

This code uses the “quad” function from the Scipy library to compute the definite integral of the
function f(x) = x~2 over the interval [0, 1].

The lower and upper limits of the interval are set to 0 and 1, respectively, using the variables
“x_lower” and “x_ upper”.

The function “f(x)” is defined using a “def” statement, which returns the value of x~2 for any input
X.

The “quad” function takes the integrand function, the lower and upper limits of integration, and
optionally some additional arguments, and returns a tuple containing the value of the definite
integral and an estimate of the absolute error.

The results are printed to the console using a print statement that displays the value of the integral
and the absolute error.

Overall, this code demonstrates how to use the “quad” function from the Scipy library to numerically
evaluate a definite integr

from scipy.integrate import quad

x_lower = O # the lower limit of x

[11]:

x_upper = 1 # the upper limit of x

def f(x):
return x**2 # Define the integrand function

val, abserr = quad(f, x_lower, x_upper)

print("integral value =", val, ", absolute error =", abserr) # Use parentheses,

~for print statement in Python 3

integral value = 0.33333333333333337 , absolute error = 3.700743415417189%e-15
If we need to pass extra arguments to integrand function we can use the args keyword argument:

This Python code utilizes the quad function from the scipy.integrate library to perform numerical
integration on a given function. The function in this code is integrand(x, n), which calculates the
Bessel function of the first kind and order n for a given value of x. The code specifies the lower and
upper limits of integration as x_ lower and x_ upper, respectively. Then, the quad function is called
with the integrand function, lower and upper limits, and additional argument of n=3. The quad
function returns two values: the estimated value of the integral and the absolute error between the
result and the true value of the integral. Finally, the resulting values are printed to the console
using the print function.

from scipy.integrate import quad
from scipy.special import jn

def integrand(x, n):

nimnn

Bessel function of first kind and order n.

return jn(n, x)

Xx_lower = O # the lower limit of =

10 # the upper limit of =

X_upper
val, abserr = quad(integrand, x_lower, x_upper, args=(3,))

print(val, abserr) # Use parentheses for print statement in Python 3

0.7366751370811073 9.389126882496403e-13

For simple functions we can use a lambda function (name-less function) instead of explicitly defining
a function for the integrand:

This Python code uses the quad function from the scipy.integrate library to compute the definite
integral of the function exp(-x ** 2) over the interval [-inf, inf]. The quad function requires an
integrand function, limits of integration, and optional additional arguments. In this case, the
integrand function is defined using a lambda expression.

The quad function returns two values: the estimated value of the integral val and the absolute error
abserr. These values are printed to the console using the print function.

[12]:

[13]:

Finally, the code computes the analytical solution of the integral, which is sqrt(pi), and prints it
to the console. This is done for comparison with the numerical solution obtained using the quad
function.

Overall, this code demonstrates how to use the quad function to numerically integrate a function
in Python.

from scipy.integrate import quad
from numpy import exp, inf, pi, sqrt

val, abserr = quad(lambda x: exp(-x ** 2), -inf, inf)
print ("numerical =", val, abserr)

analytical = sqrt(pi)
print("analytical =", analytical)

numerical = 1.7724538509055159 1.4202636780944923e-08
analytical 1.7724538509055159

As show in the example above, we can also use ‘Inf’ or ‘-Inf’ as integral limits.

Higher-dimensional integration works in the same way:

from scipy.integrate import dblquad
from numpy import exp

def integrand(x, y):
return exp(—x**2-y**2)

x_lower = 0
x_upper = 10
y_lower = 0
y_upper 10

val, abserr = dblquad(integrand, x_lower, x_upper, lambda x: y_lower, lambda x:
~y_upper)

print(val, abserr) # Use parentheses for print statement in Python 3

0.7853981633974476 1.3753098510218528e-08

Note how we had to pass lambda functions for the limits for the y integration, since these in general
can be functions of x.

1.5 Ordinary differential equations (ODEs)

SciPy provides two different ways to solve ODEs: An API based on the function odeint, and
object-oriented API based on the class ode. Usually odeint is easier to get started with, but the
ode class offers some finer level of control.

[14]:

[15]:

[15]:

Here we will use the odeint functions. For more information about the class ode, try help(ode).
It does pretty much the same thing as odeint, but in an object-oriented fashion.

To use odeint, first import it from the scipy.integrate module

from scipy.integrate import odeint, ode

A system of ODEs are usually formulated on standard form before it is attacked numerically. The
standard form is:

y' = f(y,t)
where

Y= [y1(t),y2(t), -, 4, ()]

and f is some function that gives the derivatives of the function y,(¢). To solve an ODE we need
to know the function f and an initial condition, y(0).

Note that higher-order ODEs can always be written in this form by introducing new variables for
the intermediate derivatives.

Once we have defined the Python function f and array y_0 (that is f and y(0) in the mathematical
formulation), we can use the odeint function as:

y_t = odeint(f, y_0, t)

where t is and array with time-coordinates for which to solve the ODE problem. y_t is an array
with one row for each point in time in t, where each column corresponds to a solution y_i(t) at
that point in time.

We will see how we can implement f and y_0 in Python code in the examples below.

Example: double pendulum Let’s consider a physical example: The double compound pen-
dulum, described in some detail here: http://en.wikipedia.org/wiki/Double_ pendulum

Image(url='http://upload.wikimedia.org/wikipedia/commons/c/c9/
~Double-compound-pendulum-dimensioned.svg')

<IPython.core.display.Image object>

The equations of motion of the pendulum are given on the wiki page:

§ — 6 2pg, —3cos(0,—05)pq,
1 me€2 16—9cos2(0,—0,)

g, — 6 8pg, —3 cos(01 —02)pg,
2 m€2 16—9cos?(0,—05) -

Po, = —3md? [0,0,sin(0, — 0,) + 3% sin 0,
P, = —5mt? | 0,0, (6, — 0,) + 4 sin 6,]

To make the Python code simpler to follow, let’s introduce new variable names and the vector
notation: x = [61,65,pp ,Pg,]

6 2x3—3cos(x;—xy)Ty
mé? 16—9cos?(x,—x4)

.%.'1:

6 8x,—3cos(x;—x,)Tg

x'Q = me2 16—9cos?(z—z5)
iy = —gml? [@ydysin(z) — x,) + 39 sinw, |
iy = —sml? [—i @y sin(zy — zy) + I sinay)

This Python code defines a function dx that describes the dynamics of a physical pendulum. The
pendulum is assumed to be a simple pendulum consisting of a mass m attached to a rigid rod of
length L. The constants g, L, and m are defined at the beginning of the code.

The dx function takes two arguments: an array x that contains the values of the four variables that
describe the state of the pendulum, and a scalar t that represents time (although the time variable
is not used in this code). The four variables in x are:

x1: the angular displacement of the pendulum from its equilibrium position (in radians)
x2: the angular displacement of a secondary pendulum (in radians)

x3: the angular velocity of the pendulum (in radians per second)

x4: the angular velocity of the secondary pendulum (in radians per second)

The function dx first extracts the values of the four variables from the input array x. It then
computes the derivatives of these variables, which describe how the state of the pendulum changes
over time.

The computation of the derivatives is based on the equations of motion for a physical pendulum.
These equations take into account the gravitational force acting on the mass, the torque exerted
by the rod, and the conservation of angular momentum. The exact form of the equations used in
this code is not explained here, but it can be found in many textbooks on classical mechanics.

The function dx returns a list containing the computed derivatives of the four variables, in the same
order as the input array x. This list represents the rate of change of the state of the pendulum over
time, and is used by numerical integration methods to simulate the motion of the pendulum.

[16]: # Define constants
g = 9.81
L =0.5
m=20.1

Define the function dx that describes the pendulum ODE
def dx(x, t):

nimnn

The right-hand side of the pendulum UDE
Extract the variables from the input array T
x1, x2, x3, x4 = x[0], x[1], x[2], x[3]

Compute the derivatives of the wvariables

dxl = 6.0/ (m*L**2) * (2 * x3 - 3 * cos(x1-x2) * x4)/(16 - 9 * cos(x1-x2)**2)
dx2 = 6.0/ (m*xL**2) * (8 * x4 - 3 * cos(x1-x2) * x3)/(16 - 9 * cos(x1-x2)**2)
dx3 = -0.5 * m * L*x2 * (dx1 * dx2 * sin(x1-x2) + 3 * (g/L) * sin(x1))

dx4 = -0.5 * m * L**2 * (-dxl * dx2 * sin(x1-x2) + (g/L) * sin(x2))

[17]:

[18]:

[19]:

Return the derivatives as a list
return [dx1l, dx2, dx3, dx4]

This Python code simulates the motion of a double pendulum using numerical integration. The
motion of the double pendulum is governed by a system of ordinary differential equations (ODEs),
which are solved using the odeint function from the SciPy library.

The code first imports the math library to access the value of pi, and chooses an initial state for
the double pendulum. The initial state is represented by an array x0 that contains the values of
four variables: the angular displacements and velocities of the two pendulum masses. The angles
are measured in radians.

The code then defines a time coordinate t using the linspace function from the NumPy library. The
linspace function creates an array of 250 evenly spaced points between 0 and 10 seconds, which will
be used to simulate the motion of the pendulum.

The code defines a function dx (not shown) that describes the dynamics of the double pendulum,
similar to the previous code. This function takes as input an array x containing the state of the
system, and returns the derivatives of the four variables.

The odeint function is then used to solve the ODE problem for the chosen initial state and time
coordinate. The odeint function takes as input the function dx, the initial state x0, and the time
coordinate t, and returns an array x containing the values of the four variables at each time point.

Finally, the code plots the angular displacements of the two pendulum masses as a function of
time, and the positions of the two masses in space. The positions are computed from the angular
displacements using trigonometric functions (sin and cos). The positions are plotted in two dimen-
sions using the plot function from Matplotlib. The positions of the two masses are represented
by two different colors (red and blue), and the limits of the y-axis and x-axis are set to make the
visualization more informative. The resulting plot shows the complex and chaotic motion of the
double pendulum over time.

Import the math library to use the value of p<
import math

Choose an initial state
x0 = [math.pi/4, math.pi/2, 0, 0]

Import the linspace function from the numpy library
from numpy import linspace

Time coordinate to solve the UDE for: from O to 10 seconds
t = linspace(0, 10, 250)

from scipy.integrate import odeint
from numpy import cos, sin

solve the OUDE problem
x = odeint(dx, x0, t)

10

[20]: # plot the angles as a function of time

fig, axes = plt.subplots(l,2, figsize=(12,4))
axes[0] .plot(t, x[:, 0], 'r', label="thetal")
axes[0] .plot(t, x[:, 1], 'b', label="theta2")

x1 = + L * sin(x[:, 0])
yl = - L * cos(x[:, 0])
x2 = x1 + L * sin(x[:, 1])
y2 = y1 - L * cos(x[:, 1])

axes[1] .plot(x1l, y1, 'r', label="penduluml")
axes[1] .plot(x2, y2, 'b', label="pendulum2")
axes[1].set_ylim([-1, 0])

axes[1] .set_x1im([1, -1]1);

0.0
2.0 1
1.5 4
-0.2
1.0 4
0.5 1 —0.4 4
0.0
-0.6
—-0.5
—1.0 _0.8
—1.5
T T T T T T -1.0 T T T T T T
0 2 4 6 8 10 1.00 075 050 025 000 -0.25 -0.50 -0.75 -1.00

Simple annimation of the pendulum motion.

This Python code is simulating a double pendulum system and plotting the angles and positions
of the pendulums over time. Here’s an explanation of the code:

1. Import the math library: The math library is imported to use the value of pi (math.pi).

2. Choose an initial state: The variable x0 represents the initial state of the system. It is a list
containing four values: [math.pi/4, math.pi/2, 0, 0]. These values represent the initial
angles and angular velocities of the two pendulums.

3. Import necessary functions and libraries: The linspace function from the numpy library is
imported. It is used to generate a time coordinate t that ranges from 0 to 10 seconds with
250 evenly spaced points.

4. Import additional functions: The odeint function from the scipy.integrate module is
imported. It is used to solve the ordinary differential equation (ODE) problem.

11

[21]:

[22]:

5. Solve the ODE problem: The odeint function is called to solve the ODE problem. It takes
three arguments: the derivative function dx, the initial state x0, and the time coordinate t.
The result is stored in the x variable, which represents the angles and angular velocities of
the pendulums over time.

6. Plot the angles and positions: The code creates a figure with two subplots using
plt.subplots(l, 2, figsize=(12, 4)). The first subplot (axes[0]) plots the angles of
the pendulums (x[:, 0] represents the first angle and x[:, 1] represents the second angle)
against time (t). The second subplot (axes[1]) plots the positions of the pendulums using
the angles and lengths.

7. Calculate the positions of the pendulums: The variables x1 and y1 represent the x and y
coordinates of the first pendulum, respectively. The variables x2 and y2 represent the x and
y coordinates of the second pendulum, respectively. These positions are calculated using the
angles and lengths of the pendulums.

8. Plot the positions: The positions of the pendulums are plotted on the sec-
ond subplot (axes[1]) using axes[1].plot(xl, y1, 'r', label="penduluml") and
axes[1].plot(x2, y2, 'b', label="pendulum2"). The plot limits for the y-axis
(axes[1].set_ylim([-1, 0])) and x-axis (axes[1].set_x1im([1, -1])) are also set.

The code simulates the motion of a double pendulum system and visualizes the angles and positions
of the pendulums over time.

from IPython.display import display, clear_output
import time

import matplotlib.pyplot as plt
from numpy import cos, sin

fig, ax = plt.subplots(figsize=(4, 4))
for t_idx, tt in enumerate(t[:200]):
x1 = + L * sin(x[t_idx, 0])

yl = - L * cos(x[t_idx, 0])

X2
y2

x1 + L * sin(x[t_idx, 1]1)
yl - L * cos(x[t_idx, 1])

ax.clear()

ax.plot([0, x1], [0, y1l, 'r.-')
ax.plot([x1, x2], [y1l, y2], 'b.-")
ax.set_ylim([-1.5, 0.5])
ax.set_xlim([1, -11)

plt.show()
plt.pause(0.1)

12

0.50

0.25

0.00

—0.25 -

—0.50

—0.75

—1.00

—1.25 -

—-1.50 | | |
1.0 0.5 0.0 —-0.5 -1.0

This Python code is using the matplotlib library to create an animation of a double pendulum
system. Here’s an explanation of the code:

1.

Import necessary functions and libraries: The display and clear_output functions are
imported from the IPython.display module. These functions are used to clear the output
and display the animation in a Jupyter notebook environment. The time module is imported
to use the sleep function for adding delays between frames. The matplotlib.pyplot module
is imported as plt for creating the plot.

. Create the figure and axes: The code creates a figure and axes using

plt.subplots(figsize=(4, 4)). The figure size is set to 4x4.

. Animation loop: The code enters a loop that iterates over the first 200 time steps (t [:200]).

This determines the number of frames in the animation.

. Calculate the positions of the pendulums: Inside the loop, the positions of the pendulums

are calculated using the current angles (x[t_idx, 0] and x[t_idx, 1]) and the length of
the pendulum (L). The variables x1 and y1 represent the x and y coordinates of the first
pendulum, respectively. The variables x2 and y2 represent the x and y coordinates of the
second pendulum, respectively.

. Clear the axes and plot the pendulums: The ax.clear() function is called to clear the axes

for each frame. Then, the positions of the pendulums are plotted using ax.plot() to draw
lines connecting the points. The first plot () call connects the origin (0, 0) to the position
of the first pendulum (x1, y1) with a red line. The second plot () call connects the position
of the first pendulum (x1, y1) to the position of the second pendulum (x2, y2) with a blue
line.

13

[23]:

[24]:

[25]:

[26] :

6. Set plot limits and display the animation: The limits for the y-axis (ax.set_ylim([-1.5,
0.5]1)) and x-axis (ax.set_x1im([1, -1])) are set to ensure the pendulums stay within
the plot area. Then, the current plot is displayed using plt.show(). The plt.pause(0.1)
function adds a short delay of 0.1 seconds between frames to create a smooth animation.

The code creates a dynamic animation that visualizes the motion of a double pendulum system by
continuously updating and displaying the plot as the angles change over time.

Example: Damped harmonic oscillator ODE problems are important in computational
physics, so we will look at one more example: the damped harmonic oscillation. This problem
is well described on the wiki page: http://en.wikipedia.org/wiki/Damping

The equation of motion for the damped oscillator is:

d?x dx
@ + 2@105 +w(2)$ =0

where z is the position of the oscillator, wy is the frequency, and ¢ is the damping ratio. To write

this second-order ODE on standard form we introduce p = ‘éf:
dp

T —2(wop — wiz

dr

a 7

In the implementation of this example we will add extra arguments to the RHS function for the
ODE, rather than using global variables as we did in the previous example. As a consequence of the
extra arguments to the RHS, we need to pass an keyword argument args to the odeint function:

def dy(y, t, zeta, w0):

The right-hand side of the damped oscillator UDE

nimnn

x, p = ylol, yl1]

dx = p
dp = -2 * zeta * wO * p - wO**2 * x

return [dx, dp]

initial state:
yo = [1.0, 0.0]

time coodinate to solve the ODE for
t = linspace(0, 10, 1000)
w0 = 2%pix*1.0

solve the UDE problem for three different walues of the damping ratto

odeint(dy, yO, t, args=(0.0, w0)) # undamped
odeint(dy, yO, t, args=(0.2, w0)) # under damped

yi
y2

14

[27] :

[28]:

y3 = odeint(dy, yO, t, args=(1.0, w0)) # critial damping

y4

fig, ax = plt.subplots()
ax.plot(t, y1[:,0], 'k', label="undamped", linewidth=0.25)
'r', label="under damped")

'pb', label=r"critical damping")

'g', label="over damped")

ax.plot(t, y2[:,0],
ax.plot(t, y3[:,0],
ax.plot(t, y4l[:,0],

ax.legend();

odeint(dy, yO0, t, args=(5.0, w0)) # over damped

1.00 +

0.75 +

0.50 +

0.25 +

0.00 +

—0.25

—0.50

—0.75

undamped
under damped
critical damping
over damped

=100 ——
T
0

2

1.6 Fourier transform

Fourier transforms are one of the universal tools in computational physics, which appear over and
over again in different contexts. SciPy provides functions for accessing the classic FFTPACK library
from NetLib, which is an efficient and well tested FFT library written in FORTRAN. The SciPy
API has a few additional convenience functions, but overall the API is closely related to the original

FORTRAN library.

To use the fftpack module in a python program, include it using:

from numpy.fft import fftfreq

from scipy.fftpack
import numpy as np

import *

15

http://www.netlib.org/fftpack/

To demonstrate how to do a fast Fourier transform with SciPy, let’s look at the FFT of the solution
to the damped oscillator from the previous section:

[29]: N = len(t)
dt = t[1]-t[0]

calculate the fast fourier transform

y2 1s the soluttion to the under—damped oscillator from the previous section
F = fft(y2[:,0])

calculate the frequencies for the components in F
w = fftfreq(N, dt)

[30]: fig, ax = plt.subplots(figsize=(9,3))
ax.plot(w, abs(F));

40 -

30

20+

10 4 U

—40 —20 0 20 40

Since the signal is real, the spectrum is symmetric. We therefore only need to plot the part that
corresponds to the postive frequencies. To extract that part of the w and F we can use some of the
indexing tricks for NumPy arrays that we saw in Lecture 2:

[31]: import numpy as np

indices = np.where(w > 0) # select only indices for elements that corresponds
~to positive frequencies

w_pos = wlindices]

F_pos = F[indices]

[32]: fig, ax = plt.subplots(figsize=(9,3))

ax.plot(w_pos, abs(F_pos))
ax.set_x1im(0, 5);

16

[33]:

40 -

30 A

20 A

10 1

As expected, we now see a peak in the spectrum that is centered around 1, which is the frequency
we used in the damped oscillator example.
1.7 Linear algebra

The linear algebra module contains a lot of matrix related functions, including linear equation
solving, eigenvalue solvers, matrix functions (for example matrix-exponentiation), a number of
different decompositions (SVD, LU, cholesky), etc.

Detailed documetation is available at: http://docs.scipy.org/doc/scipy/reference/linalg.html

Here we will look at how to use some of these functions:

1.7.1 Linear equation systems
Linear equation systems on the matrix form
Ax =10

where A is a matrix and x,b are vectors can be solved like:

import numpy as np

Define the coeffictent matriz A and the constant vector b
A = np.array([[1, 2], [3, 411)

b = np.array([5, 6])

Solve the linear equation system using numpy.linalg.solve()
x = np.linalg.solve(A, D)

Print the solution vector
print("Solution vector x:")
print(x)

Solution vector x:
[-4. 4.5]

17

[34]: # check if the solution is correct
np.dot(A, x) - b

[34]: array([0., 0.])

We can also do the same with
AX =B
where A, B, X are matrices:

[35]: | from numpy.random import rand

A = rand(3, 3)
B = rand(3, 3)
[36]: X = np.linalg.solve(A, B)

#X = solve(4, B)
[37]: X

[37]: array([[0.32118833, 0.8620497 , -0.22020307],
[1.72179091, 4.01699039, -0.30902004],
[0.49628324, -2.52594578, 1.17026577]11)

[38]: import numpy as np
check
norm(np.dot (4, X) - B)
np.linalg.norm((np.dot(A, X) - B))

[38]: 1.5808842555343036e-16

1.7.2 Eigenvalues and eigenvectors

The eigenvalue problem for a matrix A:

Av, = \,v,

where v,, is the nth eigenvector and A, is the nth eigenvalue.

To calculate eigenvalues of a matrix, use the eigvals and for calculating both eigenvalues and
eigenvectors, use the function eig:

[39]: import numpy as np
evals = np.linalg.eigvals(A)

[40] : | evals
[40]: array([-0.4523527 , 0.83254018, 0.17552916])

[41]: evals, evecs = np.linalg.eig(A)

18

[42] :
[42] :
[43]:

[43] :

[44] .

[44] :

[45] :

[45] :

[46] :

[46] :

[47]:

[47]:

evals
array([-0.4523527 , 0.83254018, 0.17552916])
evecs

array([[0.49708336, -0.43595505, -0.24773936],
[-0.8666753 , -0.62852181, -0.52502302],
[0.0422145 , -0.64413005, 0.8142334]1])

The eigenvectors corresponding to the nth eigenvalue (stored in evals([n]) is the nth column in
evecs, i.e., evecs[:,n]. To verify this, let’s try mutiplying eigenvectors with the matrix and
compare to the product of the eigenvector and the eigenvalue:

m = il
np.linalg.norm(np.dot (A, evecs[:,n]) - evals[n] * evecs[:,n])

4.002966042486721e-16

There are also more specialized eigensolvers, like the eigh for Hermitian matrices.

1.7.3 Matrix operations

the matrixz inverse
np.linalg.inv(A)

array([[0.28806954, 1.39686419, -0.7450367],
[4.4994462 , 0.2661113 , -2.13290519],
[-2.61530351, -1.19100445, 4.13335708]])

determinant
np.linalg.det (A)

-0.06610459771703978

import numpy as np
norms of warious orders
np.linalg.norm(A, ord=2), np.linalg.norm(A, ord=np.Inf)

(1.0052264819416696, 1.0917342054984123)

1.7.4 Sparse matrices

Sparse matrices are often useful in numerical simulations dealing with large systems, if the problem
can be described in matrix form where the matrices or vectors mostly contains zeros. Scipy has a
good support for sparse matrices, with basic linear algebra operations (such as equation solving,
eigenvalue calculations, etc.).

19

[48] :

[49] :

[49] :

[50]:

[50]:

[51]:

[51]:

[52] :

[62]:

There are many possible strategies for storing sparse matrices in an efficient way. Some of the
most common are the so-called coordinate form (COQO), list of list (LIL) form, and compressed-
sparse column CSC (and row, CSR). Each format has some advantanges and disadvantages. Most
computational algorithms (equation solving, matrix-matrix multiplication, etc.) can be efficiently
implemented using CSR or CSC formats, but they are not so intuitive and not so easy to initialize.
So often a sparse matrix is initially created in COO or LIL format (where we can efficiently add
elements to the sparse matrix data), and then converted to CSC or CSR before used in real
calculations.

For more information about these sparse formats, see e.g. http://en.wikipedia.org/wiki/Sparse_ matrix

When we create a sparse matrix we have to choose which format it should be stored in. For example,

from scipy.sparse import *

from numpy import array
dense matrix
M = array([[1,0,0,0], [0,3,0,0], [0,1,1,0], [1,0,0,1]11); M

array([[1, 0, 0, 0],
[o, 3, 0, 0],
o, 1, 1, 01,
[1, 0, 0, 111D

convert from dense to sparse
A = csr_matrix(M); A

<4x4 sparse matrix of type '<class 'numpy.intc'>'
with 6 stored elements in Compressed Sparse Row format>

convert from sparse to dense
A.todense()

matrix([[1, O, O, O],
[o, 3, o, 0],
[o, 1, 1, 0],
[1, 0, 0, 111, dtype=int32)

More efficient way to create sparse matrices: create an empty matrix and populate with using
matrix indexing (avoids creating a potentially large dense matrix)

A = 1il_matrix((4,4)) # empty 4z4 sparse matriz

Af0,0] =1

Al1,1] = 3

Af2,2] = A[2,1] =1
A[3,3] = A[3,0] =1
A

<4x4 sparse matrix of type '<class 'numpy.float64'>'
with 6 stored elements in List of Lists format>

20

[63]:

[53]:

[54] :

[54] :

[55]:

[55] :

[56]:

[56] :

[57]:

[57]:

[58]:

[58]:

[59]:

[59] :

[60]:

A.todense()

matrix([[1., 0., O.,
[0., 3., 0.,
[o., 1., 1.,
[1., 0., 0.,

= O O O
AR

b

b

D

Converting between different sparse matrix formats:

A

<4x4 sparse matrix of
with 6 stored

A = csr_matrix(A); A

<4x4 sparse matrix of
with 6 stored

A = csc_matrix(A); A

<4x4 sparse matrix of

type '<class 'numpy.float64'>'
elements in List of Lists format>

type '<class 'numpy.float64'>'
elements in Compressed Sparse Row format>

type '<class 'numpy.float64'>'

with 6 stored elements in Compressed Sparse Column format>

We can compute with sparse matrices like with dense matrices:

A.todense()

matrix([[1., 0., O.,
[0., 3., 0.,
[0., 1., 1.,
[1., 0., 0.,

(A * A).todense()

matrix([[1., 0., O.,
[0., 9., 0.,
[0., 4., 1.,
[2., 0., O.,

A.todense()

matrix([[1., 0., O.,
[0., 3., 0.,
[0., 1., 1.,
[1., 0., O.,

A.dot(A) .todense()

= O O O
AR

= O O O
PR

—_ o
A

= O O O
AR

—_ .
A

-

—_ o
A

21

[60] :

[61]:

[61]:

[62]:

[62]:

[63]:

[63]:

[64]:

[65] :

[66]:

matrix([[1., 0., 0., 0.1,
[0., 9., 0., 0.1,
[0., 4., 1., 0.7,
[2., 0., 0., 1.1])

v = array([1,2,3,4])[:,Nonel; v

array([[1],
21,
(31,
[411)

sparse matrixz — dense wvector multiplication
A x v

array([[1.],
6.1,
(5.1,
[6.11)

same result with dense matrixz - dense vector multiplcation
A.todense() * v

matrix([[1.],
[6.1,
(5.1,
[6.11)

1.8 Optimization

Optimization (finding minima or maxima of a function) is a large field in mathematics, and opti-
mization of complicated functions or in many variables can be rather involved. Here we will only
look at a few very simple cases. For a more detailed introduction to optimization with SciPy see:
http://scipy-lectures.org/

To use the optimization module in scipy first include the optimize module:

from scipy import optimize

1.8.1 Finding a minima
Let’s first look at how to find the minima of a simple function of a single variable:
def f(x):

return 4*xx**x3 + (x-2)**2 + x*x*x4

fig, ax = plt.subplots()
x = linspace(-5, 3, 100)
ax.plot(x, f(x));

22

175 ~

150 ~

125 +

100 ~

75

50 4

25

We can use the fmin_bfgs function to find the minima of a function:

[67]: x_min = optimize.fmin_bfgs(f, -2)
X_min

Optimization terminated successfully.
Current function value: -3.506641
Iterations: 5
Function evaluations: 16
Gradient evaluations: 8

[67]: array([-2.67298155])
[68]: optimize.fmin bfgs(f, 0.5)

Optimization terminated successfully.
Current function value: 2.804988
Iterations: 3
Function evaluations: 10
Gradient evaluations: 5

[68] : array([0.46961745])

We can also use the brent or fminbound functions. They have a bit different syntax and use

23

[69]:

[69]:

[70]:

[70]:

[71]:

[72]:

[72]:

different algorithms.

optimize.brent (f)
0.46961743402759754
optimize.fminbound(f, -4, 2)

-2.6729822917513886

1.8.2 Finding a solution to a function

To find the root for a function of the form f(x) = 0 we can use the fsolve function. It requires an
initial guess:

import numpy as np
omega_c = 3.0
def f(omega):
a transcendental equation: resonance frequencies of a low-{ SQUID,
~terminated microwave resonator
return np.tan(2+pi*omega) - omega_c/omega

fig, ax = plt.subplots(figsize=(10, 4))

x = np.linspace(0, 3, 1000)

y = £(x)

mask = np.where(abs(y) > 50)

% [mask] = y[mask] = np.nan # get 7rid of vertical line when the function flip,
~S1gn

ax.plot(x, y)

ax.plot ([0, 3], [0, 0], 'k')

ax.set_ylim(-5, 5)

C:\Users\GRCDNL71D14D969B\AppData\Local\Temp\ipykernel 20212\2076174413.py:5:
RuntimeWarning: divide by zero encountered in true_divide
return np.tan(2*pi*omega) - omega_c/omega

(-56.0, 5.0)

24

[73]:

0
_2 -
—4 4

0.5 1.0 15 2.0 2.5 3.0

0.0

import numpy as np
import matplotlib.pyplot as plt

omega_c = 3.0

def f(omega):
A transcendental equation: resonance frequencies of a low-{ SQUID,
wterminated microwave resonator
return np.tan(2 * np.pi * omega) - omega_c / omega

fig, ax = plt.subplots(figsize=(10, 4))

X = np.linspace(0.01, 3, 1000) # Modify the range to exclude 0 (to avoid,
wdivision by zero)

y = £(x)

mask = np.where(np.abs(y) > 50)

X [mask] = y[mask] = np.nan # Remove vertical line when the function flips

ax.plot(x, y)
ax.plot([0, 3], [0, 0], 'k")
ax.set_ylim(-5, 5)

plt.show()

25

s1gn

0
_2 -
—4 4

0.5 1.0 15 2.0 2.5 3.0

0.0

[74]: optimize.fsolve(f, 0.1)
[74]: array([0.23743014])
[75]: optimize.fsolve(f, 0.6)
[75]: array([0.71286972])
[76]: optimize.fsolve(f, 1.1)

[76]: array([1.18990285])

1.9 Interpolation

Interpolation is simple and convenient in scipy: The interpid function, when given arrays de-
scribing X and Y data, returns and object that behaves like a function that can be called for an
arbitrary value of x (in the range covered by X), and it returns the corresponding interpolated y
value:

[77]: from scipy.interpolate import x*

[78]: from scipy.interpolate import interpld
import numpy as np
def f(x):
return sin(x)

[79]:

B

= np.arange(0, 10)
X = np.linspace(0, 9, 100)

y_meas = f(n) + 0.1 * np.random.randn(len(n)) # simulate measurement with notise
f(x)

y_real

26

[80]:

[81]:

[82]:

linear_interpolation = interpld(n, y_meas)
y_interpl = linear_interpolation(x)

cubic_interpolation = interpld(n, y_meas, kind='cubic')
y_interp2 = cubic_interpolation(x)

fig, ax = plt.subplots(figsize=(10,4))

ax.plot(n, y_meas, 'bs', label='noisy data')
ax.plot(x, y_real, 'k', lw=2, label='true function')
ax.plot(x, y_interpl, 'r', label='linear interp')
ax.plot(x, y_interp2, 'g', label='cubic interp')
ax.legend(loc=3);

1.00 A

0.75 A

0.50 4

0.25 1

0.00 4

—0.25 A

—0.501 M noisy data

= true function
— linear interp
_1.004 — cubic interp

—0.75 A

0 2 4 6 8

1.10 Statistics

The scipy.stats module contains a large number of statistical distributions, sta-
tistical functions and tests. For a complete documentation of its features, see
http://docs.scipy.org/doc/scipy/reference/stats.html.

There is also a very powerful python package for statistical modelling called statsmodels. See
http://statsmodels.sourceforge.net for more details.

from scipy import stats
import numpy as np

create a (discrete) random wvariable with Poissonian distribution

X = stats.poisson(3.5) # photon distribution for a coherent state with n=3.5,
~photons

27

[83]: n = np.arange(0,15)
fig, axes = plt.subplots(3,1, sharex=True)

plot the probability mass function (PMF)
axes[0] .step(n, X.pmf(n))

plot the cumulative distribution function (CDF)
axes[1] .step(n, X.cdf(n))

plot histogram of 1000 random realizations of the stochastic variable X
axes[2] .hist(X.rvs(size=1000));

0.2 - [1

0.1 4 ["‘ ___1___1___q

0.0

1.0+

0.5 A

00 = T T T T T

200

100 ~

[84]: | # create a (continous) random variable with normal distribution
Y = stats.norm()

[85]: x = linspace(-5,5,100)
fig, axes = plt.subplots(3,1, sharex=True)
plot the probability distribution function (PDF)

axes[0] .plot(x, Y.pdf(x))

28

plot the cumulative distribution function (CDF)
axes[1] .plot(x, Y.cdf(x));

plot histogram of 1000 random realizations of the stochastic wvariable Y
axes[2] .hist(Y.rvs(size=1000), bins=50);

0.4

0.2

0.0

1.0+

0.5 A

0.0

40 -

20

Statistics:

[86]: |X.mean(), X.std(), X.var() # Poisson distribution
[86]: (3.5, 1.8708286933869707, 3.5)

[87]1: Y.mean(), Y.std(), Y.var() # normal distribution
[87]: (0.0, 1.0, 1.0)

1.10.1 Statistical tests

Test if two sets of (independent) random data come from the same distribution:

[88]: t_statistic, p_value = stats.ttest_ind(X.rvs(size=1000), X.rvs(size=1000))

[89]:

[89]:

[90]:

[90] :

[91]:

[91]:

[92]:

[92]:

print ("t-statistic =", t_statistic)
print ("p-value =", p_value)

t-statistic = 0.6107449422247573
p-value = 0.5414379157478935

Since the p value is very large we cannot reject the hypothesis that the two sets of random data
have different means.

To test if the mean of a single sample of data has mean 0.1 (the true mean is 0.0):

stats.ttest_lsamp(Y.rvs(size=1000), 0.1)

Ttest_lsampResult(statistic=-2.2020936504351876, pvalue=0.027886579982653724)
Low p-value means that we can reject the hypothesis that the mean of Y is 0.1.

Y.mean ()
0.0
stats.ttest_lsamp(Y.rvs(size=1000), Y.mean())

Ttest_lsampResult(statistic=-1.9082022858564973, pvalue=0.056651499384144655)

1.11 Further reading

o http://www.scipy.org - The official web page for the SciPy project.
o https://docs.scipy.org/doc/scipy/reference/ - A tutorial on how to get started using SciPy.
 https://github.com/scipy/scipy/ - The SciPy source code.

1.12 Versions

'pip install version_information
Jreload_ext version_information

Jversion_information numpy, matplotlib, scipy

Requirement already satisfied: version_information in
c:\users\grcdnl71d14d969b\anaconda3\1lib\site-packages (1.0.4)

’ Software ‘ Version ‘

Python 3.9.16 64bit [MSC v.1916 64 bit (AMD64)]
IPython 8.12.0

0S Windows 10 10.0.22621 SPO

numpy 1.21.6

matplotlib | 3.5.2

scipy 1.9.1

Wed May 24 16:13:53 2023 ora legale Europa occidentale

30

[1:

31

	Python for Signal Processing
	SciPy - Library of scientific algorithms for Python
	Introduction
	Special functions
	Integration
	Numerical integration: quadrature

	Ordinary differential equations (ODEs)
	Fourier transform
	Linear algebra
	Linear equation systems
	Eigenvalues and eigenvectors
	Matrix operations
	Sparse matrices

	Optimization
	Finding a minima
	Finding a solution to a function

	Interpolation
	Statistics
	Statistical tests

	Further reading
	Versions

