

Università degli Studi di Napoli "Parthenope" Dipartimento di Ingegneria Corso di Laurea Magistrale in Ingegneria della Sicurezza dei Dati e delle Comunicazioni

Antennas and Propagation for Wireless Communication Systems

Propagation Models and Measurements to characterize Wireless channels

Ing. Simone Gargiulo

Wireless Radiomobile Channel is a LTV system: Linear and Time Variant

$$y(t) = x(t) \otimes h(t,\tau)$$

The received signal is affected by

FADING

- Path Loss
- Shadowing
- Multipath Fading

Multipath Fading

$$y(t) = x(t) \otimes h(t, \tau)$$

 $e^{rac{- au}{ au_{RMS}}}$ $T_{sym} \ge 10 au_{RMS}$: Non Dispersive channel in the time domain $T_{sym} < 10 au_{RMS}$: Dispersive channel in the time domain

 $PDP(\tau) = E[|h(t,\tau)|^{2}] = \frac{1}{\tau_{RMS}} e^{\frac{-\tau}{\tau_{RMS}}}$

$y(t) = x(t) \bigotimes h(t, \tau)$

	Time Domain	Frequency Domain
$T_{sym} \ge 10 \tau_{RMS} \text{ e W} > B_c$	Non Dispersive Channel	Selective Channel
$T_{sym} \ge 10 \tau_{RMS} \text{ e W} < B_c$	Non Dispersive Channel	Non Selective Channel
$T_{sym} < 10 \tau_{RMS} \text{ e W} > B_c$	Dispersive Channel	Selective Channel
$T_{sym} < 10 \tau_{RMS} \text{ e W} < B_c$	Dispersive Channel	Non Selective Channel

$$y(t) = x(t) \otimes h(t,\tau)$$

$$D_D T_c$$

$$y(t) = x(t) \otimes h(t, \tau)$$

Autocorrelation Function (ACF)

$$A(\tau) = \frac{E[y(t)y^*(t+\tau)]}{E[|y(t)|^2]} = J_0(2\pi f_m \tau)$$

Wireless Channels Classification

	τ _{RMS} : High	τ _{RMS} : Low
T _c : High	Easy Equalization	Best Case
T _c : Low	Worst Case	FEC

Reverberating Chamber

1/24

2/24

Vector Network Analyzer: Agilent Technologies E8363B

	Antennas Types:			
Log-periodic:				
Schwarzbeck				
USLP 9143				
180 MHz - 8				
GHz				
Horn:				
ETS-Lindgren				
3115				
1 GHz – 18 GHz				
Horm				
Schwarzbeck				
BBHA 9170				
15 GHz- 40 GHz				

3/24

The graphical programming language: LabVIEW

📴 Funzioni_trigonometriche.vi Block Diagram 🜇 Funzioni_trigonometriche.vi Front Panel \times \times File Edit View Project Operate Tools Window Help File Edit View Project Operate Tools Window Help 2 ? HTH 💠 🕸 🛑 🔲 🎯 💁 🛏 🔂 🗤 15pt Application Font 🔻 15pt Application Font 👻 🏭 🖬 🐨 ਸ਼ਿਕ 🙃 🖏 🚧 ☆ → Search 今憂 -0 Ciclo For Numero di punti Output Input 132 Seno Numero di punti Grafico Coseno 🦰 100 Waveform Graph Waveform Graph 2π 2:10 SI 0.5 Amplitude i. 0--0.5--1-7 80 100 20 40 60 0 Samples **Block Diagram Front Panel** >

3/24

Measurements	Reverberating Chamber	Indoor Scenario
Power Delay Profile	\checkmark	\checkmark
Autocorrelation Function	\checkmark	\checkmark

5/24

Power Delay Profile – Unloaded scenario

Power Delay Profile - stirring

The stirrers velocity does not play a key role

6/24

Power Delay Profile

(dB)	Time
	(ns)
-5.7	0
-7.6	217
-10.1	512
-10.2	514
-10.2	517
-11.5	674
-13.4	882
-16.3	1230
-16.9	1287

3GPP Technical Report 25.943 V10.0.0

7/24

Power Delay Profile

25.943 V10.0.0

Antennas Placement	X	Absorbers Number	✓	Absorbers Placement	✓	

Power Delay Profile

Rura	Area
(dB)	Time
	(ns)
-5.2	0
-6.4	42
-8.4	101
-9.3	129
-10	149
-13.1	245
-15.3	312
-18.5	410
-20.4	469
-22.4	528

3GPP Technical Report 25.943 V10.0.0

Antennas Placement	X	Absorbers Number	\checkmark	Absorbers Placement	

9/24

Power Delay Profile

10/24

Power Delay Profile

Power Delay Profile

Measurements	$ au_{RMS}$
2 Absorbers	315 [ns]
Central Shielding Barrier (12 Absorbers)	172 [ns]
Central Shielding Barrier (24 Absorbers)	124 [ns]
Anechoic Angles + Central Shielding Barrier	57 [ns]
Laboratory	50 [ns]

12/24

Block Diagram

13/24

Front Panel Output: Soglia e tau_RMS Input: Fattore di decimazione Soglia_dinamica_IEEE Dec_Fac -24 /) **10** tau_RMS_SOGLIA 7.28155E-8 PDP 🚬 -12.5 -15 명 -17.5-업 -20--22.5--25--27.5--30--32.5--35--37.5-700 800 900 1000 1100 1200 1300 1400 1500 100 200 300 400 500 600 Ó Time [ns]

Autocorrelation Function

Degrees of freedom	PDP
Antennas placement	X
Absorbers number	X
Absorbers placement	X
Stirrers velocity	\checkmark

Autocorrelation Function

Measurements	T _c
TS=5 RPM,	112 [ms]
VS=2 RPM	
TS=10 RPM,	57 [ms]
VS=5 RPM	
TS=15 RPM,	41 [ms]
VS=10 RPM	
Laboratory	55 [ms]

16/24

Block Diagram

17/24

Front Panel

Conclusions

- Radiomobile Channel Characterization
- The reverberating chamber is an effective controlled environment for an accurate emulation of different propagation scenarios
- Modeling and quantitative analysis of the millimeter waves propagation