

UNIVERSITA'DEGLI STUDI DI NAPOLI "PARTHENOPE" DIPARTIMENTO DI INGEGNERIA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA GESTIONALE

Impianti di cogenerazione

(a.a. 2022/2023)

Prof. Ing. Elio Jannelli

Ordinario di Sistemi per l'Energia e l'ambiente

Dipartimento di Ingegneria

elio.jannelli@uniparthenope.it

Risparmio energetico

- Minor consumo a parità di prodotti (beni e servizi)
 - Non mera compressione dei consumi
 - Ma uso razionale delle risorse energetiche
- Contenimento dei costi di produzione
- Minore dipendenza energetica
- Minore uso delle fonti fossili
- Riduzione delle emissioni inquinanti

Tecnologie per il risparmio energetico

- Produzione combinata di energia elettrica e termica:
 - Cogenerazione industriale;Teleriscaldamento civile;
- Impianti di conversione ad alto rendimento:
 - Celle a combustibile;
 - Impianti a ciclo combinato gas-vapore;
- Recupero dei reflui industriali e civili
- Altre tecnologie disponibili e/o interventi possibili:
 - Nuovi motori e mezzi propulsivi;

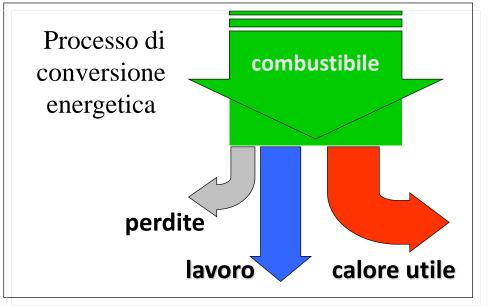
 - Pompe di calore; Tecnologie delle fonti rinnovabili;
 - Edilizia bioclimatica;
 - Ottimizzazione dei processi produttivi
 - Razionalizzazione dei consumi civili (elettrodomestici, illuminazione, produzione di acqua calda, etc.)

Produzione combinata di energia elettrica e termica

Cogenerazione

Produzione di elettricità e di calore come effetti utili del medesimo processo di conversione di energia primaria

Confronto cogenarazione e produzione separata



Produzione combinata di energia (elettrica) ed energia termica

SISTEMA TRADIZIONALE

Processo di combustibile energetica combustibile perdite lavoro

SISTEMA COGENERATIVO

Gestione dei Sistemi Energetici - Prof.E.Jannelli

Convenienza della cogenerazione Confronto con generazione separata

La convenienza della cogenerazione non è scontata;

La riduzione dei consumi di energia primaria dipende:

- dalla tecnologia di conversione utilizzata .
- dalle condizioni di utilizzazione dell'impianto.

PRODUZIONE IN COGENERAZIONE PRODUZIONE SEPARATA EN. TERMICA **EN. ELETTRICA** 53 PERDITE PERDITE 100 EN. ELETTRICA 45 95 **EN. TERMICA PERDITE** ENERGIA PRIMARIA UTILIZZATA 100 53+95=148

Tecnologie disponibili per la cogenerazione

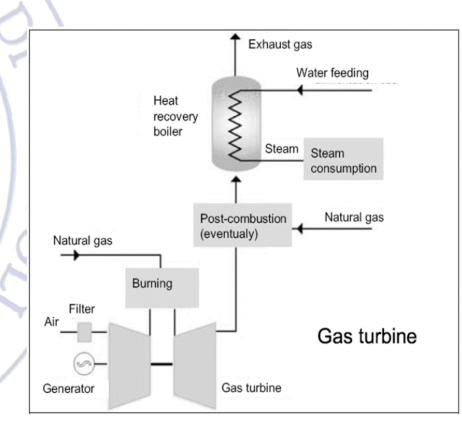
- Turbina a gas con post-combustore
- Turbina a gas ad iniezione di vapore
- Impianto combinato turbina a gas Turbina a vapore
- Turbina a vapore a contropressione
- Turbina a vapore a condensazione con spillamenti di vapore per cogenerazione
- Motore a combustione interna con recupero parziale o totale del calore
- Celle a combustibile ad alta temperatura

Scelta della tecnologia

Sono disponibili tecnologie differenti per produrre energia elettrica e calore insieme.

Criteri:

- Gli utenti devono utilizzare il calore vicino all'impianto per evitare dispersioni nella trasmissione.
- La tecnologia dell'impianto deve essere scelta in funzione al fabbisogno di calore specifico dell'utenza.
- Le unità di cogenerazione devono essere dimensionate sulla taglia dell'utenza.
- · Fonte di energia disponibile.

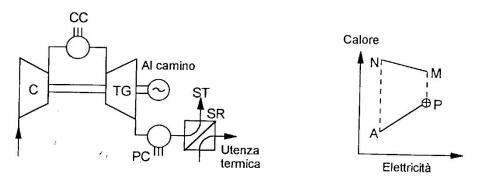

Scelta della tecnologia

Cogeneration	Fuels (not exhaustive)	You need	You need	You need
technologies		hot water?	steam?	hot air?
Gas turbine	Natural gas, biogas, heating oil	++	++	++
	Natural gas, biogas, heating oil,			
Gas Engine	vegetable oil, wood	++	+	+
Heating oil	Natural gas, biogas, heating oil,			
Engine	vegetable oil, wood	++	+	+
	Natural gas, biogas, heating oil,			
Steam turbine	vegetable oil, wood, etc.	++	++	+
Stirling engine	Natural gas, biogas, heating oil, wood	++		
	Hydrogen or, via reforming, all others			
Fuel cell	fuels	++		

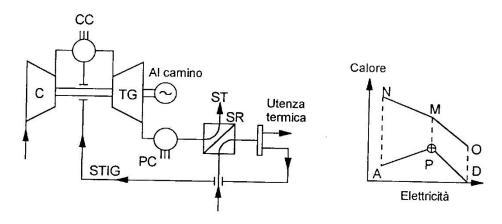
[&]quot;++" significa che la tecnologia è molto adatta

[&]quot;+" significa meno adatta nessuna indicazione significa che non è adatta per produrre il tipo di energia termica indicata

Turbina a gas

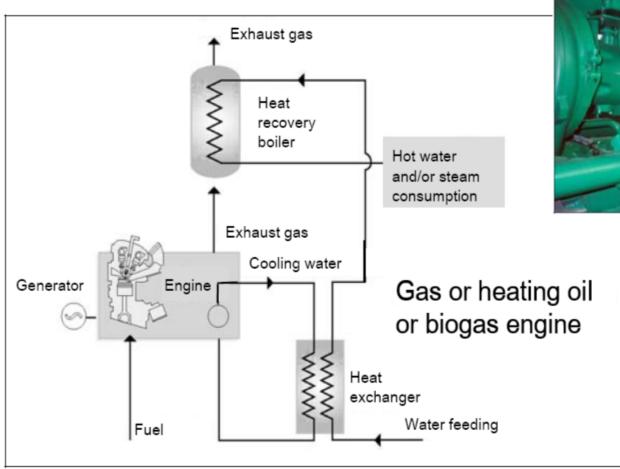


- Tecnologia molto importante per cogenerazione su larga scala.
- Ampia scala di unità disponibili: a partire dalle microturbine con ~30 kWe.
- Emissioni ridotte di ossidi di azoto e zolfo rispetto al gasolio.

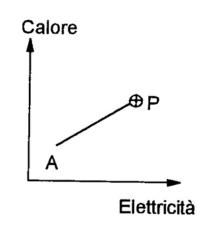

	Smallest unit	Typical small-scale unit
Electrical power:	28 kW _e	250 kW _e
Electrical efficiency:	26%	30%
Thermal power:	52 kW _{th}	330 kW _{th}
Thermal efficiency:	47%	40%
NOx emission:	< 9 ppmV	< 9 ppmV
CO emission:	< 10 ppmV	< 9 ppmV
Size (L x W x H):	1.3 x 0.7 x 1.9 m	4 x 2.2 x 2.3 m
Weight:	0.5 tons	235 tons
Investment:	2 500 € /kW _e	1 500 € /kW _e

Tecnologie di cogenerazione con turbine a gas

Turbina a gas con post-combustore

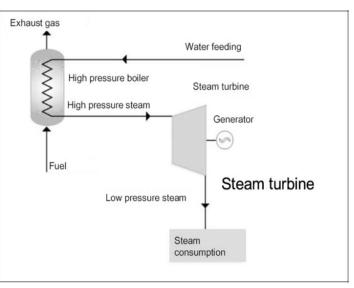


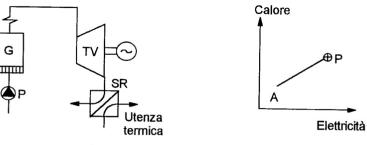
Turbina a gas a iniezione di vapore


Gestione dei Sistemi Energetici - Prof.E.Jannelli

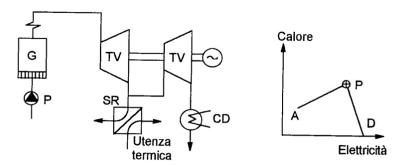
Motore a gas

I STUD)



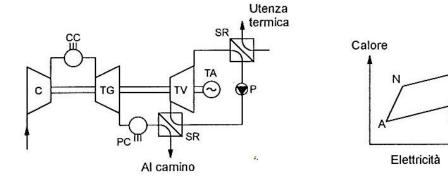

Turbina a vapore

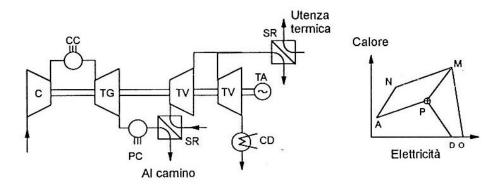
- Tecnologia utilizzata per cogenerazione su larga scala da molti anni.
- Range di unità disponibili: a partire da ~200 kWe.
- Efficienza complessiva generlamente alta, raggiungendo perfino l'84%.
- Funziona con: combustibili solidi, liquidi o gassosi (anche rinnovabili).



Turbina a vapore

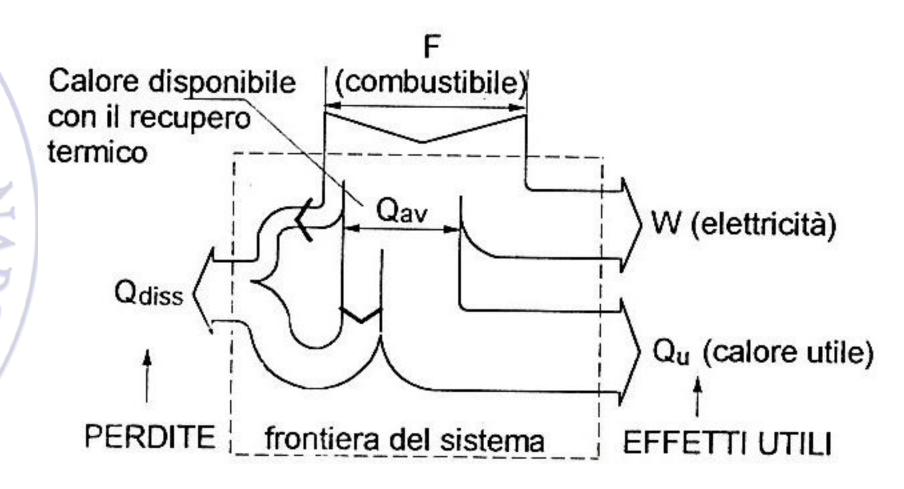
Turbina a vapore a contropressione



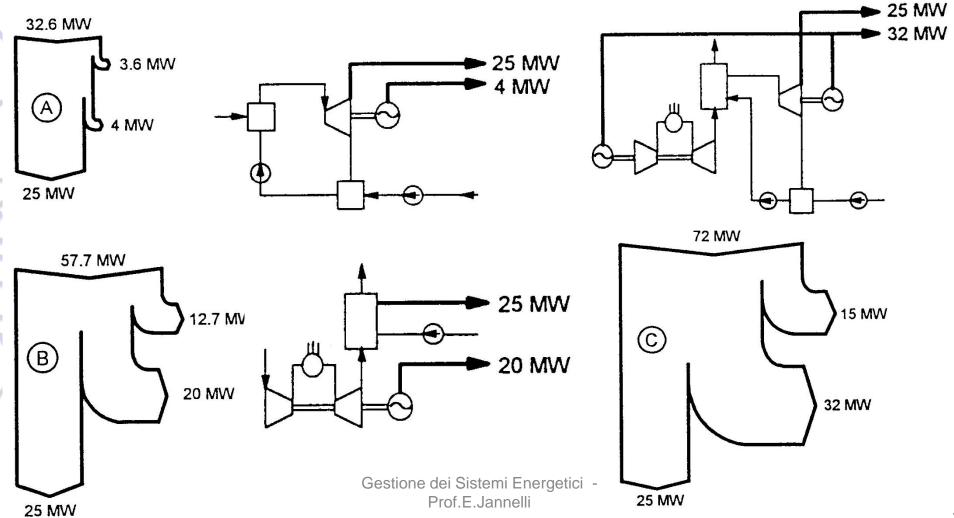

Turbina a vapore a condensazione e spillamento

	Typical small-scale unit	
Electrical power:	500 kW _e	
Electrical efficiency:	10%	
Thermal power:	3,000 kW _{th}	
Thermal efficiency:	70%	
NOx emission:		
CO emission:		
Size (L x W x H):	depending on the boiler	
Weight:		
Investment:		

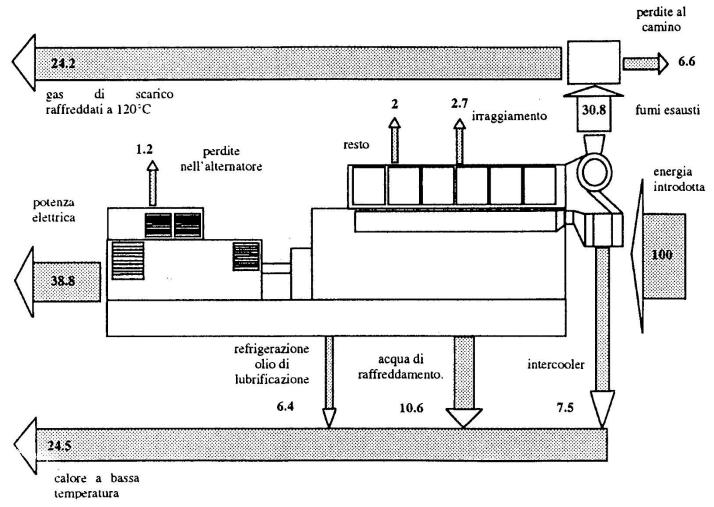
Cicli combinati



Analisi termodinamica degli impianti di potenza e di cogenerazione


- Bilanci di energia di impianti e componenti
- Definizione dei rendimenti e degli indici di prestazione caratteristici
- Analisi del processo termodinamico, dello schema di impianto e dei componenti
- Prestazioni off-design
- Piano di regolazione (Energia termica/elettrica)

Bilancio di energia di un generico impianto di cogenerazione



Bilanci di energia

per una stessa utenza termica al variare della tecnologia di cogenerazione

Bilancio di energia di un motore alternativo in cogenerazione

Rendimenti ed indici di prestazione

• Rendimento elettrico

$$\eta_{el}=rac{W}{F}$$

• Rendimento termico

$$\eta_{th} = \frac{Q_u}{F}$$

• Indice elettrico (o rapporto di cogenerazione)

$$I_e = \frac{W}{Q_u} = \frac{\eta_{el}}{\eta_{th}}$$

Nota

$$\eta_{el} + \eta_{th} < 1$$

Rendimenti ed indici di prestazione

Rendimento di I principio Rendimento di II principio

$$\eta_I = rac{W + Q_u}{F} = \eta_{elI} + \eta_{th}$$

$$\eta_{II} = rac{W + Q_u(1 - T_0/T_x)}{F}$$

$$\eta_{II} = \frac{W + Q_u (1 - T_0/T_x)}{F}$$

PES (Primary Energy Saving)

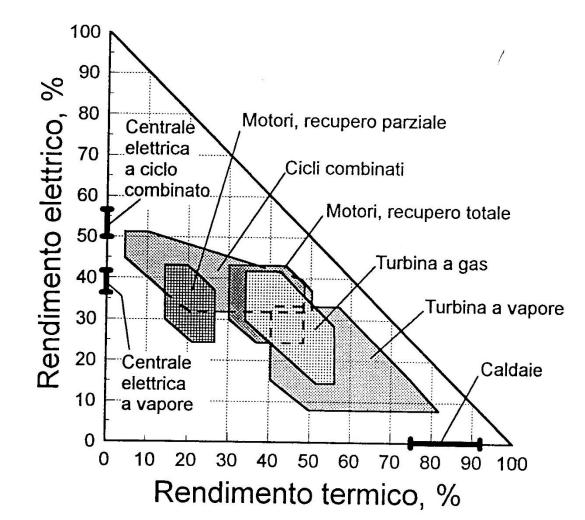
$$IRE = \frac{F_c - F}{F_c} = 1 - \frac{F}{F_c} = 1 - \frac{F}{W / \eta_{elC} + Q_u / \eta_{thC}} = 1 - \frac{1}{\eta_{el} / \eta_{eCl} + \eta_{th} / \eta_{thC}}$$

Rendimento di produzione elettrica

$$\eta_{pe} = \frac{W}{F - F_{QC}} = \frac{W}{F - Q_u / \eta_{thC}} = \frac{1}{\frac{1}{\eta_{el}} - \frac{1}{I_e \eta_{thC}}} = \frac{1}{1 - \frac{\eta_{th}}{\eta_{th}}}$$

Assegnazione valori di riferimento agli indici comparativi

Prestazioni del sistema convenzionale

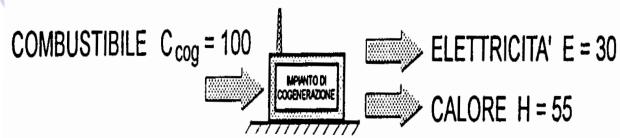

 Valori medi delle prestazioni delle caldaie e delle centrali elettriche convenzionali in esercizio

$$\eta_{elC} = 0.375$$
 $\eta_{thC} = 0.90$

 Valori massimi ottenibili dalle migliori tecnologie disponibili

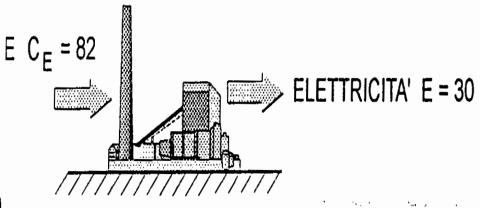
$$\eta_{elC} = 0.51$$
 $\eta_{thC} = 0.90$

Rendimenti delle principali Tecnologie di cogenerazione


ISTUD

Potenzialità della cogenerazione

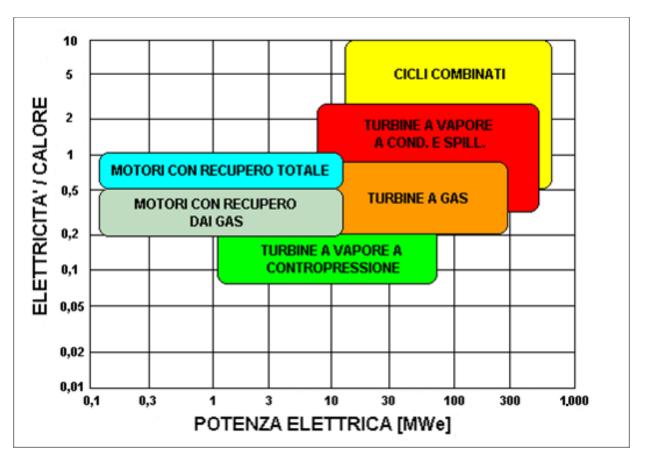
SISTEMA COGENERATIVO


ISTUD

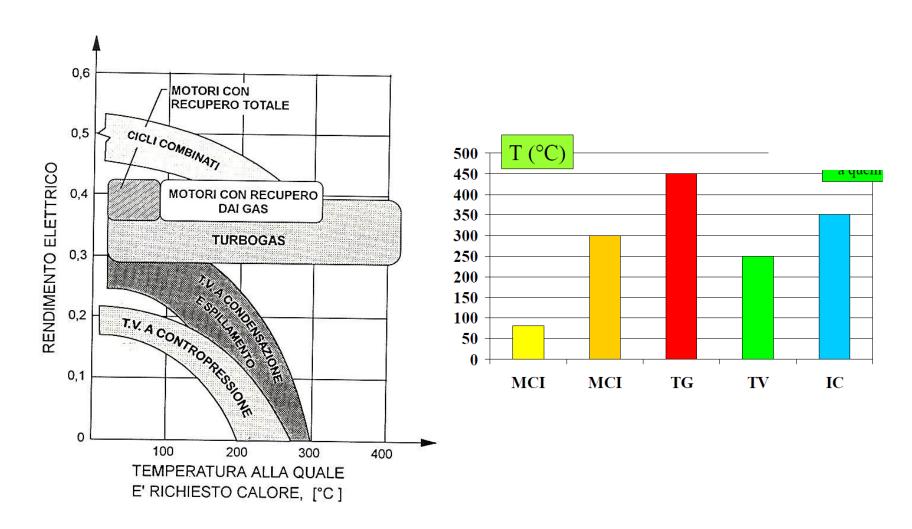
IMPIANTO DI COGENERAZIONE

SISTEMA CONVENZIONALE

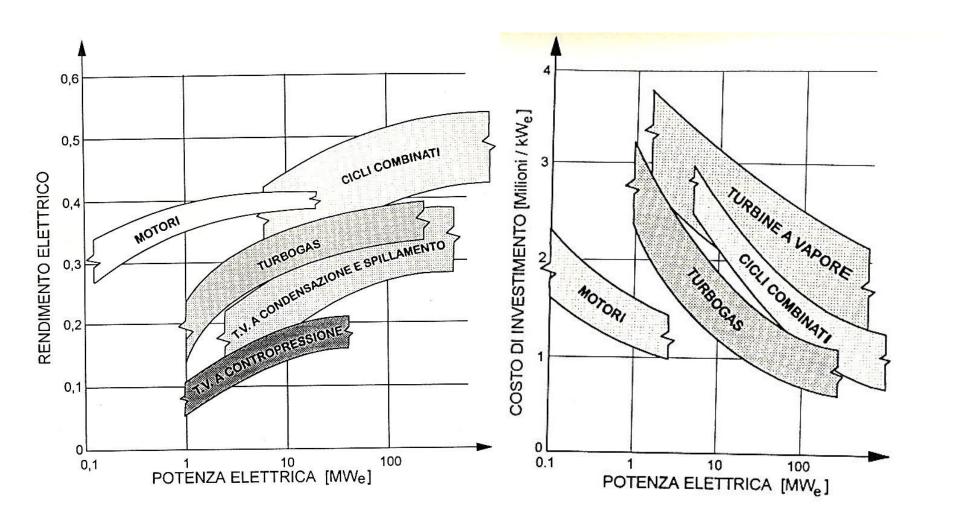
CENTRALE ELETTRICA



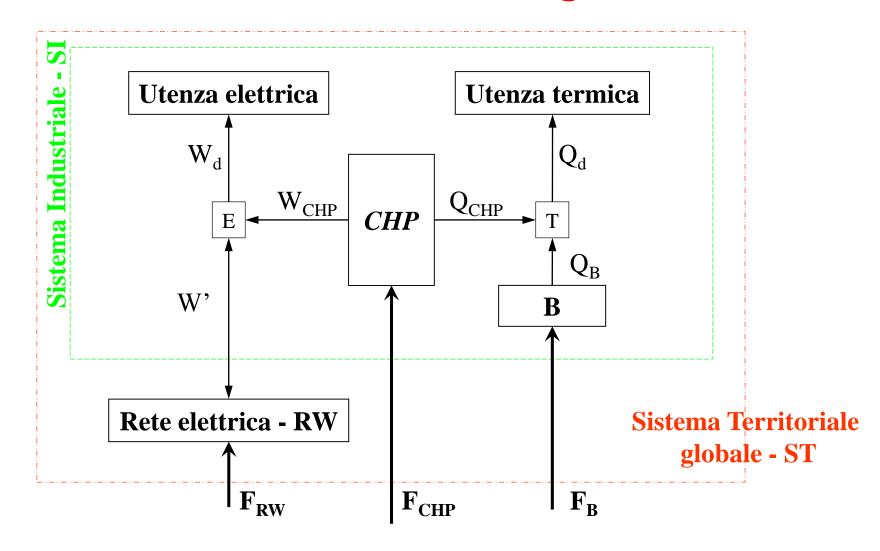
CENTRALE TERMICA


INDICE RISPARMIO CE
$$= \frac{[C_E + C_H] - C_{cog}}{[C_E + C_H]_{annelli}} = \frac{144 - 100}{144} = 30.6 \%$$

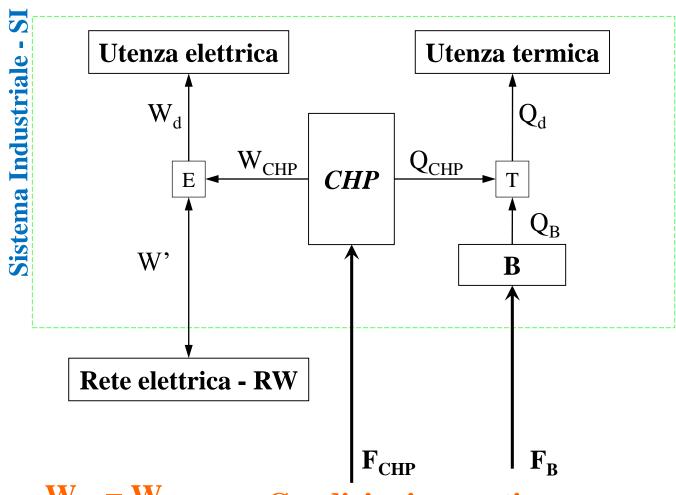
Campi di applicazione delle principali Tecnologie di cogenerazione



Rendimento elettrico al variare della temperatura di utilizzazione del calore per ciascuna tecnologia di cogenerazione



ISTUD


RENDIMENTO ELETTRICO E COSTO AL VARIARE DELLA TAGLIA DELLA TECNOLOGIA DI COGENERAZIONE

Caratterizzazione dei sistemi energetici

Caratterizzazione dei sistemi energetici

$$\mathbf{W}_{cg} = \mathbf{W}_{\mathbf{D}}$$
$$\mathbf{Q}_{cg} = \mathbf{Q}_{\mathbf{D}}$$

Condizioni operative:

* richiesta elettrica e termica

BILANCI ELETTRICI E TERMICI

$$W_{d} = W_{g} + W_{cg} + W_{in} + W_{out}$$

 $Q_{d} = Q_{b} + Q_{cg} + Q_{in} + Q_{out}$

Impianto CHP integrato con le reti ed i generatori ausiliari

$$EUF_{cg} = \frac{W_{cg} + Q_{cg}}{F_{cg}}$$

Indice di utilizzazione energetico dell'impianto CHP

$$EUF_{st} = \frac{W_d + Q_d}{F_{st}}$$

$$F_{st} = F_{rw} + F_g + F_{cg} + F_b + F_{rq}$$

Indice di utilizzazione energetico del Sistema di cogenerazione:

- impianto motore termico
- generatori
- reti ausiliari

$$EUF_{r} = \frac{W_{d} + Q_{d}}{F_{r}}$$

$$F_{r} = F_{rw} + F_{b}$$

Indice di utilizzazione energetico del sistema di riferimento

TEMPERATURA DI UTILIZZAZIONE DEL CALORE

Non è sufficiente che la quantità di calore richiesta sia uguale a quella fornita dall'impianto CHP, è necessario considerare anche il valore di temperatura a cui è disponibile il vapore.

Es.

Un motore diesel non è in grado di produrre in cogenerazione vapore surriscaldato

È necessario considerare: $T_D \leq T_{cg}$

STRATEGIA DI REGOLAZIONE DI UN IMPIANTO CHP

- a) Inseguimento del carico elettrico
- b) Inseguimento del carico termico

Impianto isolato (o in isola) — Non ricorre alle reti elettriche e termiche Impianto integrato con la rete

$$Q_D$$
 = potenza termica domandata

 W_D = potenza elettrica domandata

Termico a seguire

$$Q_D = Q_{CG}$$
$$W_D = W_{CG} + W$$

Elettrico a seguire

$$Q_D = Q_{CG} + Q$$
$$W_D = W_{CG}$$

In un impianto in isola la regolazione dell'impianto si basa sul carico elettrico. In un impianto collegato alla rete è possibile avere diverse soluzioni:

- inseguire il carico elettrico;
- inseguire il carico termico;
- inseguire la condizione di minimo costo.

Impianto CHP e Sistema Territoriale

$$t_0 \Rightarrow Q_D = Q_{cg}; W_D = W_{cg}$$

$$t_1 \Longrightarrow Q_D ' = Q_D + Q' \longrightarrow$$
 Aumenta la richiesta di energia termica

2 possibilità di intervento

CASO 1

Cambio il punto di funzionamento dell'impianto CHP

$$Q_D' = Q_{cg}'$$
 $W_D + W' = W_{cg}'$

CASO 2

Accendo un boiler ausiliario per soddisfare l'incremento di potenza termica richiesta

$$Q_D = Q_{cg}; Q' = Q_B$$

$$W_D = W_{cg}$$

Confronto regolazione CHP

CASO 1

Cambio il punto di funzionamento dell'impianto CHP

$$Q_D'=Q_{cg}'$$

$$W_D + W' = W_{cg}'$$

$$\delta F^I = \frac{W'}{\eta_{cg}}$$

$$Q_{cg} = (F_{cg} - W_{cg})\eta_x$$

$$Q_{cg} = (F_{cg} - F_{cg} \eta_{cg}) \eta_x = F_{cg} (1 - \eta_{cg}) \eta_x$$

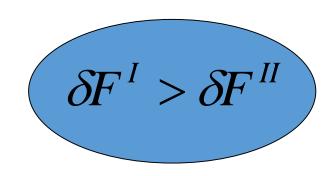
$$Q_{cg} = (1 - \eta_{cg}) \eta_x \cdot \frac{W_{cg}}{\eta_{cg}}$$

$$\frac{Q_{cg}}{(1-\eta_{cg})\eta_x} = \frac{W_{cg}}{\eta_{cg}}$$

$$\delta F^{I} = \frac{W'}{\eta_{cg}} = \frac{Q'}{(1 - \eta_{cg})\eta_{x}}$$

$$\eta_x \cong 0.7;$$

$$\eta_{cg} \cong 0.3 \div 0.4$$


$$\delta F^{I} = \frac{Q'}{(0.42 \div 0.49)}$$

CASO 2

Accendo un boiler ausiliario per soddisfare l'incremento di potenza termica richiesta

$$Q_D = Q_{cg}; Q' = Q_B$$
 $W_D = W_{cg}$

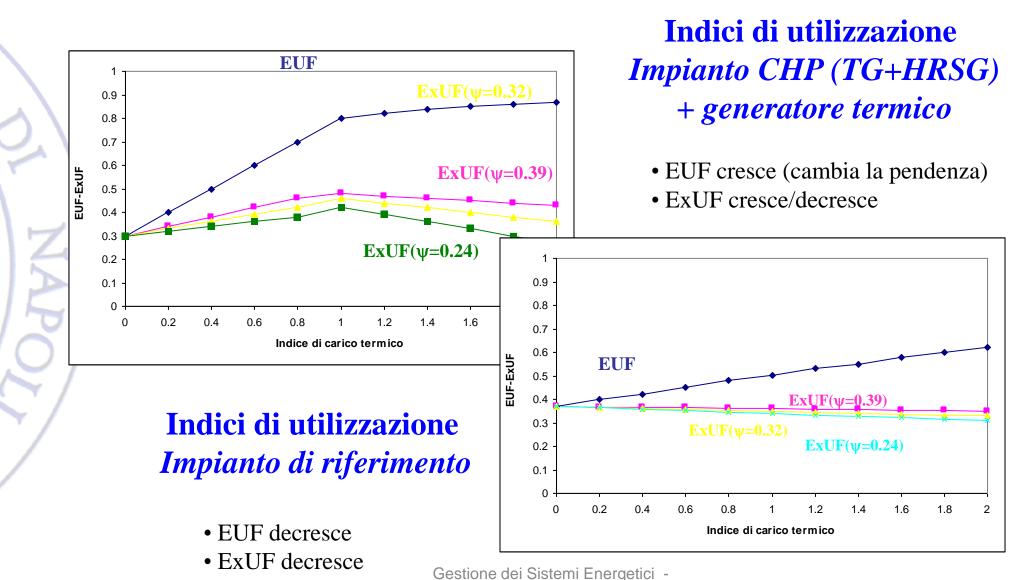
$$\delta F^{II} = \frac{Q'}{\eta_B} \qquad \qquad \boxed{\eta_B = 0.8 \div 0.9}$$

Impianto CHP e Sistema Territoriale

Risparmio del consumo di combustibile della rete a seguito dell'esportazione in rete di energia elettrica in eccedenza dell'impianto CHP

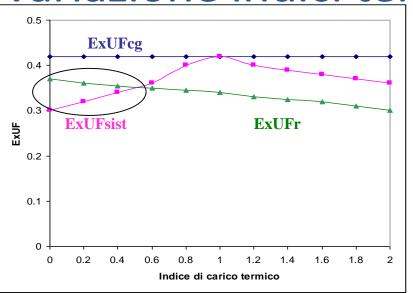
$$\delta F_{rete} = \frac{W'}{\eta_{rete}} \qquad \eta_{rete} = 0.37$$

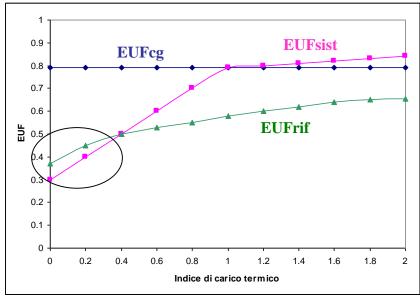
Incremento del consumo di combustibile del produttore

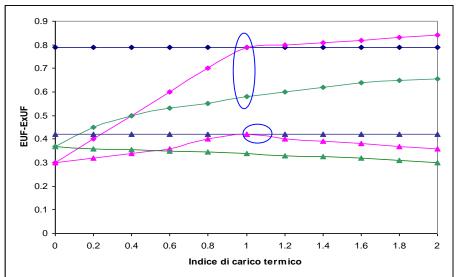

a seguito della modifica del punto di funzionamento dell'impianto al fine di soddisfare il carico termico

$$\delta F^{I} = \frac{W'}{\eta_{cg}} \qquad \eta_{cg} = 0.3 \div 0.4$$

$$\delta F_{rete} = \frac{W'}{\eta_{rete}} \qquad \delta F^{I} = \frac{W'}{\eta_{cg}}$$

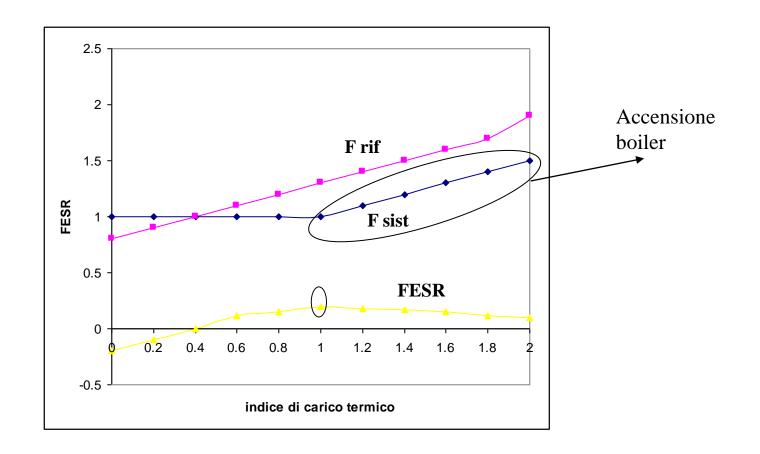


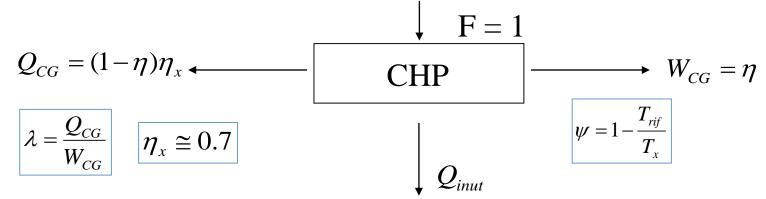

Variazione indici termodinamici



Prof.E.Jannelli

Variazione indici termodinamici





INDICE DI RISPARMIO DEL COMBUSTIBILE

ISTUD

SCELTA DI UN IMPIANTO DI COGENERAZIONE

Tipo di impianto								
	Wcg	Qcg	Fcg	T (°C)	λcg	EUFcg	ExUFcg	Ψ
TG+WHR	0.3	0.48	1	400	1.6	0.78	0.57	0.56
TV contropressione	0.25	0.65	1	180	2.6	0.9	0.47	0.34
TV cond.+spill.	0.38	0.1	1	300	0.26	0.48	0.43	0.48
MCI+WHR	0.33	0.4	1	85	1.21	0.73	0.4	0.17
Generatore di Vapore	0	0.9	1	550	-	0.9	0.57	0.64
Camera di Combustione	0	0.98	1	1000	-	0.98	0.75	0.77

La progettazione ottimizzata di sistemi CHP

Obiettivi:

- La possibilità di ottenere grandi efficienze di conversione dell'energia primaria in energia utile;
- Possibilità di superare le limitazioni socio-politiche alla costruzione di nuove grandi centrali;
- Possibilità di diversificazione delle fonti di approviggionamento di energia primaria;
- Riduzione delle perdite di vettoriamento dell'energia elettrica (produzione distribuita);
- Riduzione delle emissioni (minor consumo di combustibile)

La scelta della tipologia e della taglia dell'impianto deve scaturire da considerazioni di convenienza sia economica che energetica

La progettazione ottimizzata di sistemi CHP

La scelta della tipologia e della taglia dell'impianto deve scaturire da considerazioni di *convenienza sia economica che energetica*. Tali considerazioni <u>non possono limitarsi</u> solo a valutazioni condotte in riferimento al *punto di progetto*, poiché la necessità di soddisfare le richieste dell'utenza porta l'impianto CHP <u>fuori dalle condizioni nominali</u>. In tali casi la valutazione del vantaggio della soluzione CHP in luogo della tradizionale è più complessa.

Le grandezze che influenzano la scelta della taglia di un impianto sono numerose ad esempio la quantità di energia elettrica e termica e la temperatura a cui si vuole disponibile il calore.

Il fattore che influenza maggiormente una prima scelta è il rapporto di cogenerazione.

Un sistema CHP soddisfa convenientemente l'utenza se fornisce prestazioni elevate nelle condizioni di esercizio più frequenti.

INDICI DI VALUTAZIONE ECONOMICA

INDICI SEMPLICI: non considerano la variabilità dei costi nel tempo INDICI COMPLESSI: utilizzano il concetto di attualizzazione dei costi **INDICI SEMPLICI**

ISTUD

Periodo di recupero
$$PR = \frac{C_p - C_{p,r}}{C_{e,r} - C_e}$$
 Redditività percentuale $RP = \frac{C_{e,r} - C_e}{C_p - C_{p,r}}$

$$RP = \frac{C_{e,r} - C_e}{C_p - C_{p,r}}$$

$$C_e = C_{rw} + C_f + C_{rq} + C_m - R_{rw} - R_{rq}$$

$$C_p = CP_g + CP_{cg} + CP_b$$

INDICI COMPLESSI

Indice di confronto attualizzato

$$ACV = (YEW)_{cg} - (YEW)_{rw} + (YEQ)_{cg} - (YEQ)_{b}$$

ACV < 0 Convenienza economica

INDICI DI VALUTAZIONE ECONOMICA

Fattore di attualizzazione

$$\beta = \frac{(1+i)^n i}{(1+i)^n - 1}$$

i tasso di remunerazione del capitale

periodo di ammortamento in anni

Frazione di capitale investito da mettere da parte per recuperare il valore del bene acquistato

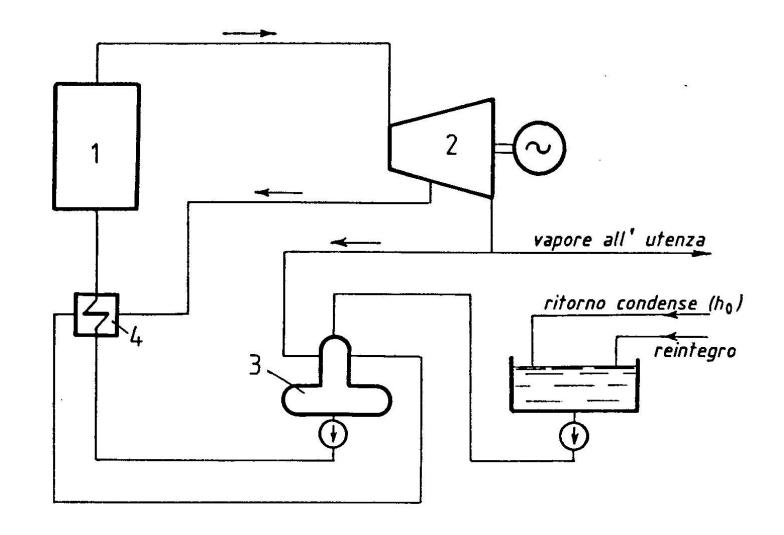
$$\beta \cdot \Delta C_p > \Delta C_e$$
Risparmio sui costi
Può non convenire l'impianto CHP

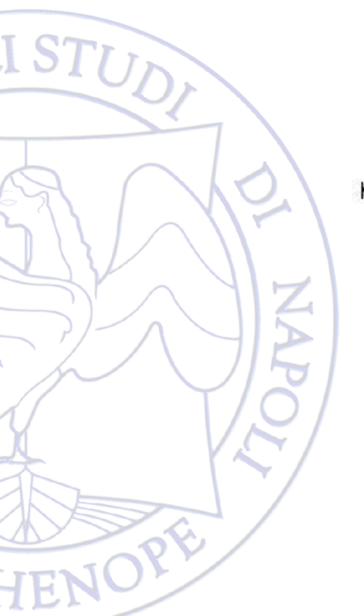
$$\beta \cdot \Delta C_p < \Delta C_e$$
 RISPARMIO

Costi di manutenzione Costo del combustibile Costi fissi rete elettrica Costi acquisto e.e. (contratti di fornitura)

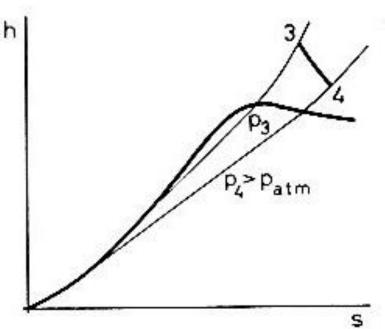
Costi impianto CHP Costi boiler ausiliari Costi generatori ausiliari Ricavi vendita e.e.

IMPIANTI DI COGENERAZIONE CON TURBINE A VAPORE


Gli impianti di cogenerazione con turbine a vapore possono ricondursi a tre tipologie fondamentali:


- Impianti con TV a contropressione
- Impianti con TV a deviazione e contropressione
- Impianti con TV a deviazione e condensazione

In ciascun tipo di impianto è possibile bruciare qualunque tipo di combustibile (combustione esterna)

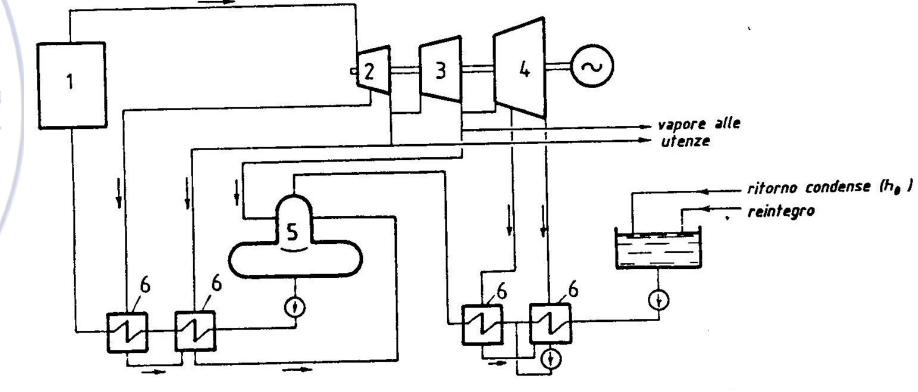


IMPIANTO A VAPORE A CONTROPRESSIONE

TRASFORMAZIONI NELL'IMPIANTO A CONTROPRESSIONE

Potenza elettrica e potenza termica sono rigidamente connesse.

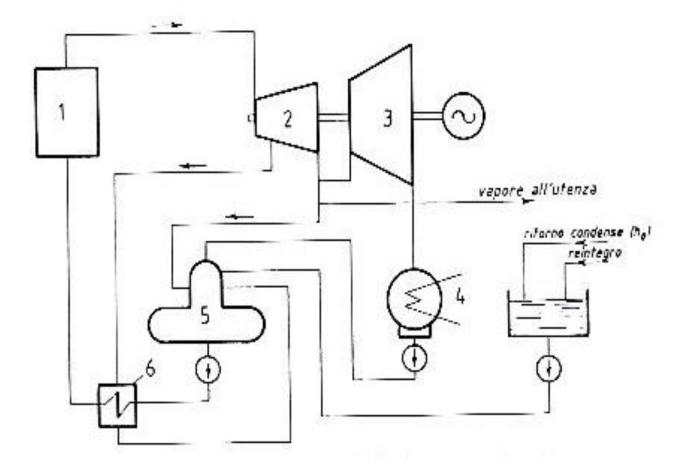
Al diminuire del fabbisogno di vapore diminuisce la produzione di energia elettrica.


$$E = \dot{m}_v (h_3 - h_4)$$

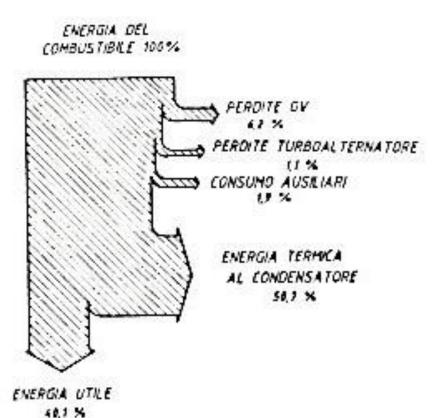
$$Q_u = \dot{m}_v (h_4 - h_0)$$

Entalpia della condensa di ritorno dall'impianto tecnologico

IMPIANTI A DEVIAZIONE E CONTROPRESSIONE


Tipologia di impianto in cui è possibile variare il rapporto tra la quantità di energia elettrica prodotta e la quantità di calore utilizzato

IMPIANTO A DEVIAZIONE E CONDENSAZIONE


- Presenza di un condensatore allo scarico della turbina
- Deviazione del vapore per usi tecnologici

Bilancio energetico di un impianto a deviazione e condensazione

Bilancio in impianti preposti alla sola produzione di energia elettrica

VANTAGGI

Grande flessibilità

SVANTAGGI

Valori più contenuti dell'indice di sfruttamento del combustibile per la presenza del condensatore

Energia disponibile ceduta alla sorgente fredda

TURBINE A GAS CON RECUPERO SEMPLICE

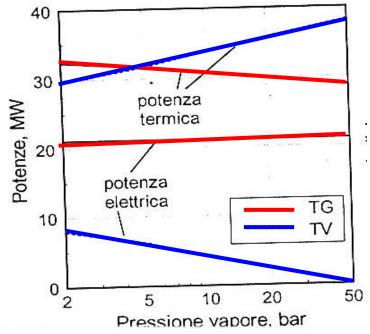
La turbina a gas in ciclo semplice è molto utilizzata in ambito cogenerativo.

Il recupero energetico dei gas combusti prevede:

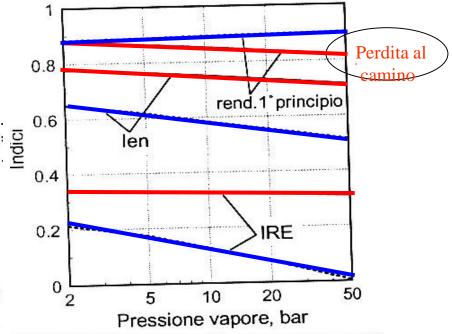
1.la possibilità di produrre vapore mediante impiego di una caldaia a recupero;

2.la possibilità di utilizzare direttamente i gas combusti

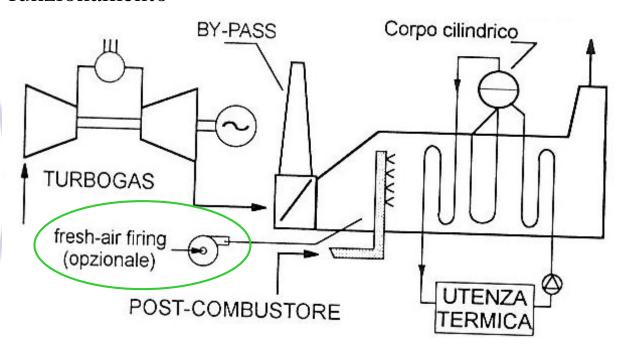
Il recupero termico non altera le prestazioni della turbina


In una Turbina a gas con caldaia a recupero impiegata per scopi cogenerativi si parla quindi di "Indifferenza della produzione elettrica da quella termica" diversamente da quanto può dirsi per un impianto a vapore a spillamenti

Confronto TG e TV in cogenerazione


TG con recupero semplice

- NON RISENTE dal punto di vista elettrico della PRESSIONE a cui è prelevato il vapore
- la portata di vapore diminuisce con la P di esercizio della caldaia a recupero (Q diminuisce)

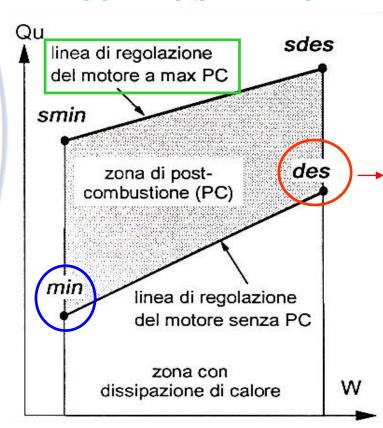

IMTV a spillamento e condensazione

- La perdita di potenza cresce con la pressione a cui è prelevato il vapore
- maggiore quantità di calore disponibile con la l'aumento della PRESSIONE a cui è prelevato il vapore

GESTIONE DI UN IMPIANTO COGENERATIVO CON TG

Un impianto di cogenerazione è chiamato a soddisfare *utenze elettriche e termiche variabili* nel tempo e non coincidenti con il punto nominale di funzionamento

L'impianto, per soddisfare diverse esigenze e quindi per essere **flessibile**, deve disporre di due dispositivi:


- > Sistema di by-pass (per dissipare calore)
- Post-combustore(per produrre calore addizionale)

FRESH-AIR FIRING

In alcuni casi il sistema può essere dotato di un ventilatore che adduce aria primaria agli ugelli di post-combustione_{Gestione dei Sistemi Energetici} -Prof.E.Jannelli

REGOLAZIONE IMPIANTO DI COGENERAZIONE CON TG

CAMPO DI FUNZIONAMENTO DI UN IMPIANTO DI COGENERAZIONE CON TG A RECUPERO SEMPLICE

La regolazione agisce:

- sulla portata d'aria (varia la portata dei gas e quindi il calore recuperabile)
- sulla portata di combustibile (varia la TIT)

→ W_{des} e Q_{u,des} → punto nominale
 Limiti tecnici di funzionamento
 Limiti della post-combustione:

- ✓ completa ossidazione dell'ossigeno presente nei gas
- ✓ temperature dei gas troppo elevate

ANALISI COSTI E RICAVI

COSTI RIMANENTI	RICAVI		
Quota di energia termica ed elettrica non soddisfatta dal cogeneratore	Energie elettrica non acquistata dalla rete elettrica		
COSTI OPERATIVI	Energie termica non prodotta da generatore tradizionale (caldaia)		
 Investimento iniziale (cogeneratore ed installazione) 	Recupero di accise		
 Costo del gas metano (alimentazione cogeneratore) 	Certificati Bianchi		
Costi operativi (manutenzione)	Eventuale valorizzazione di energie elettrica ceduta alla rete nazionale		

CALCOLO COSTO ENERGIA ELETTRICA PRODOTTA

Equation 1

$$COE = \frac{\beta \cdot C}{P \cdot H} + \frac{f}{\eta} + \left\{ \frac{OM_f}{P \cdot H} + \mu \cdot OM_{v,b} \right\}$$
Capital Fuel OM

Usare il rendimento di produzione elettrica per valorizzare il calore prodotto

where

 β = Levelized carrying charge factor or cost of money

C = Total plant cost (\$)

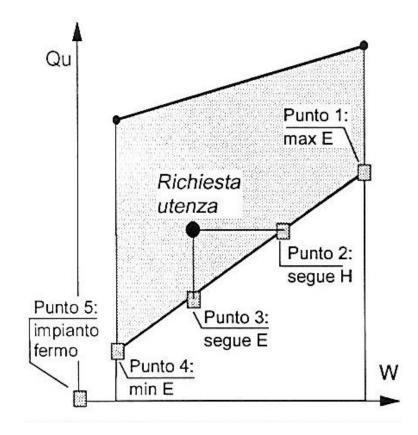
H = Annual operating hours

P = Net rated output (kW)

f = Levelized fuel cost (\$/kWh [LHV])

 η = Net rated efficiency of the combined-cycle plant (LHV)

 OM_f = Fixed 0&M costs (\$ or \$/kW-yr)

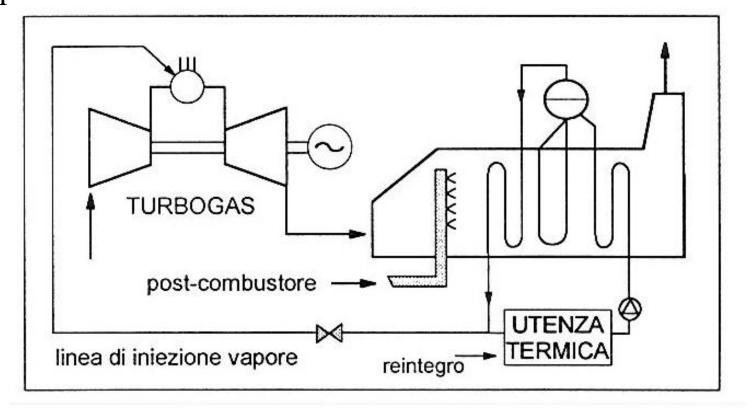

 $OM_{v,b}$ = Variable 0&M costs for baseload operation ($\frac{kWh}{}$)

 μ = Maintenance cost escalation factor (1.0 for baseload operation)

SCELTA CONDIZIONI OPERATIVE CHP CON TG

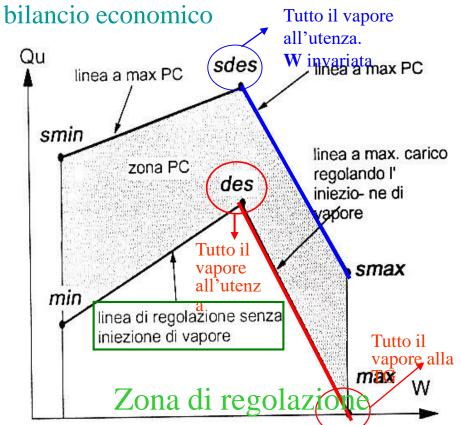
POSSIBILI PUNTI DI FUNZIONAMENTO

- 1. TG a massima potenza
 - ✓ Eccedenza elettrica alla rete
 - ✓ Azionamento sistema di by-pass
- 2. "Termico a seguire"
 - ✓ Eccedenza elettrica alla rete
- 3. "Elettrico a seguire"
 - ✓ Post-combustione
- 4. TG a minima potenza
 - ✓ Acquisto di energia dalla rete
 - ✓ Post-combustione
- 5. Impianto fermo
 - ✓ Acquisto energia dalla rete
 - ✓ Fresh-air firing o caldaia ausiliaria


LA SCELTA DEL PUNTO DI ESERCIZIO DELL'IMPIANTO DIPENDE DA ASPETTI ECONOMICI, DALLA VALUTAZIONE DEI COSTI

TURBINA A GAS CON INIEZIONE DI VAPORE

Il vapore prodotto nella caldaia a recupero può essere inviato:


- all'utenza termica
- iniettato in camera di combustione a seconda che si voglia privilegiare la potenza termica o la potenza elettrica

REGOLAZIONE IMPIANTO CHP CON STIG

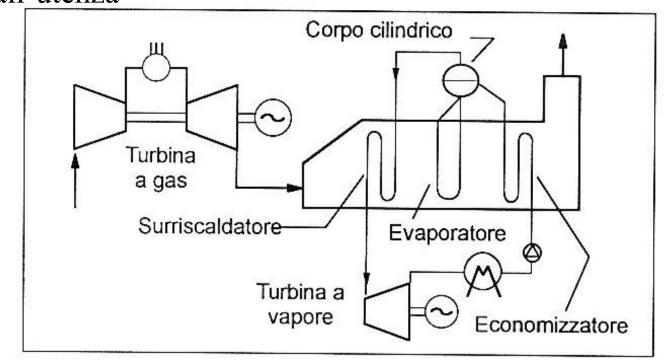
CAMPO DI FUNZIONAMENTO DI UN IMPIANTO DI COGENERAZIONE CON TG A INIEZIONE DI VAPORE

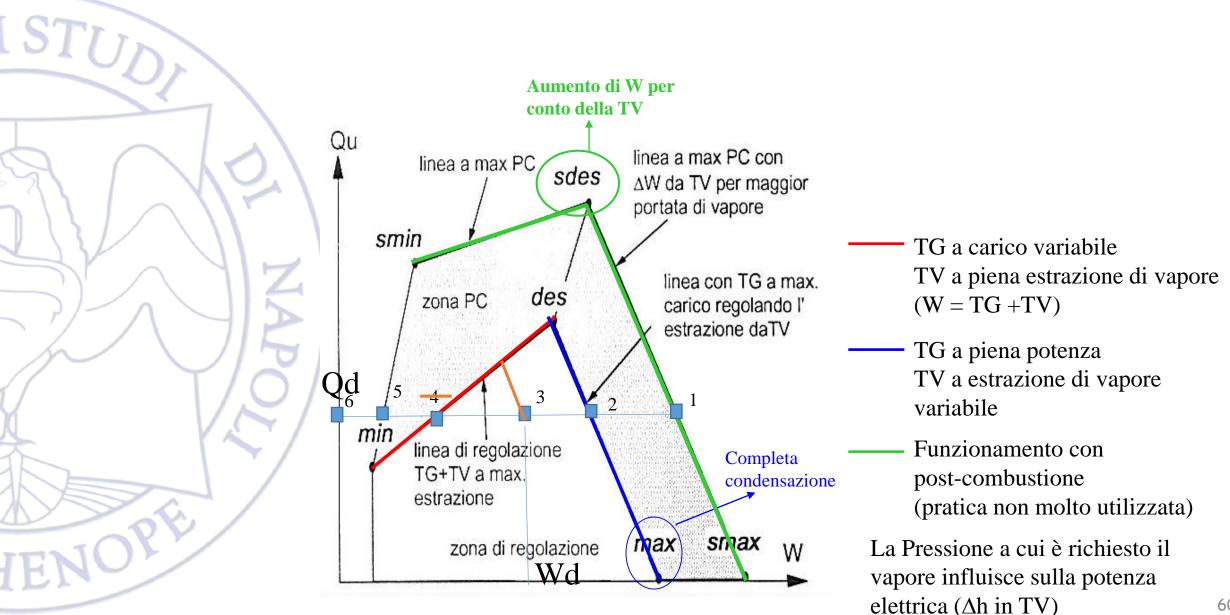
Il criterio di **scelta del punto operativo** è quello del miglior

- TG massima potenza.

 L'iniezione di vapore
 passa da 0 al massimo
 valore prodotto
 nell'HRSG
- TG massima potenza.
 Funzionamento con post-combustione.
 Aumenta la massa di vapore prodotto.

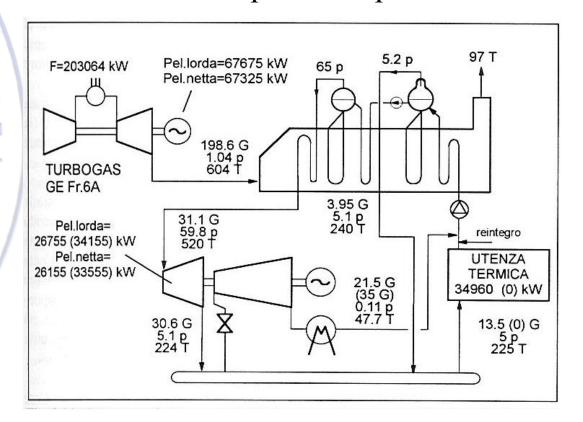
Nella zona di regolazione varia la massa di combustibile e la massa di vapore iniettato.

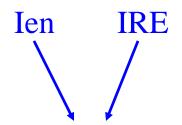

Sistema più efficiente ai carichi ridotti


CHP CON CICLI COMBINATI GAS-VAPORE

Un ciclo combinato gas-vapore può essere esercito come impianto cogenerativo nel caso in cui sia previsto il prelievo di vapore dal corpo cilindrico o dalla turbina a vapore

Il vapore è prelevato dove è disponibile alla pressione richiesta dall'utenza

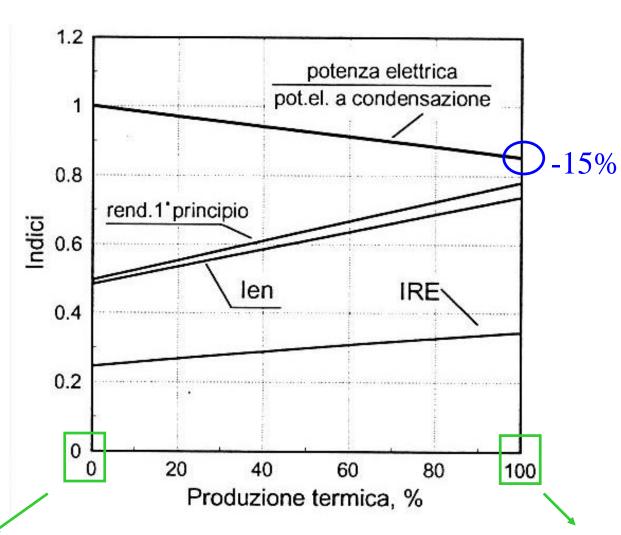

REGOLAZIONE CHP CON CICLI COMBINATI



CICLI COMBINATI IN COGENERAZIONE

Superiorità dei CC rispetto a IMTV, TG, e TG-STIG

elevati rendimenti quando la potenza termica richiesta dall'utenza è nulla



Elevati anche per bassi valori di Qu

REGOLAZIONE CICLI COMBINATI

Al diminuire della potenza termica gli indici restano comunque elevati grazie all'entità dell'energia elettrica

Estrazione di vapore nulla

Massima estrazione di vapore

CONFRONTO TRA DIVERSE SOLUZIONI IMPIANTISTICHE

TIPO DI MOTORE IMPIEGATO (Q prodotta = 32 MW)	Potenza Elettrica (MW)	len
IMTV a contropressione	6.1	0.62
TG a recupero semplice	21.1	0.77
CC in piena estrazione	38.0	0.74
CC con media estrazione	95.5	0.58

Elevato a carico nominale, ma si riduce notevolmente a carico ridotto (by-pass)

Il mercato della cogenerazione si sposta verso impianti di grande taglia, ossia impianti combinati con elevate potenze elettriche

Bibliografia

Giovanni Lozza, "Turbine a gas e cicli combinati", Società Editrice Esculapio, ISBN 978-88-7488-934-1.