

UNIVERSITA'DEGLI STUDI DI NAPOLI "PARTHENOPE" DIPARTIMENTO DI INGEGNERIA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA GESTIONALE

Altri Cicli a gas e cicli misti (a.a. 2022/2023)

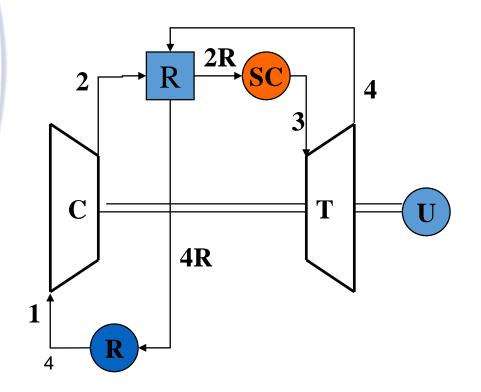
Prof. Ing. Elio Jannelli

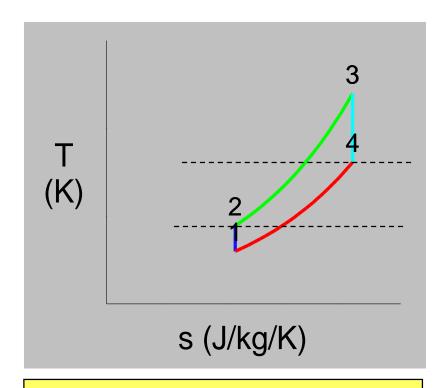
Ordinario di Sistemi per l'Energia e l'ambiente

Dipartimento di Ingegneria

elio.jannelli@uniparthenope.it

Un impianto a ciclo combinato

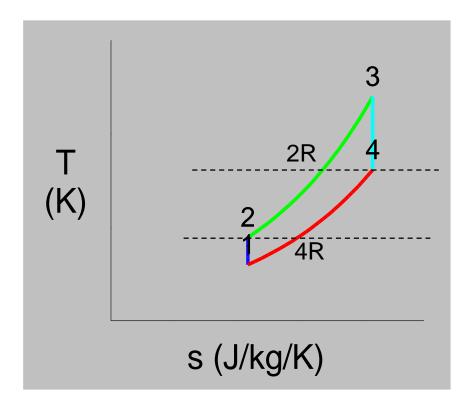

http://www.youtube.com/watch?v=W1hSFLXADQ0



Altri cicli a gas e cicli misti

- Cicli derivati dal ciclo a gas semplice con un unico fluido di lavoro (aria/gas combusti)
 - Rigenerazione
 - Compressione interrefrigerata
 - Ricombustione
- Cicli con due fluidi di lavoro, aria/gas combusti + acqua/vapore
 - Cicli misti

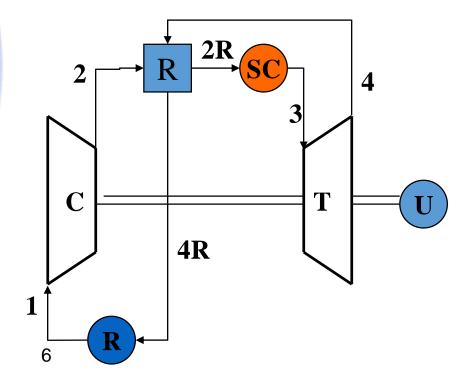
Per valori del rapporto di compressione minori di $[T_3/T_1]^{(1/2\theta)}$, la temperatura di scarico della turbina T_4 è maggiore di uscita dal compressore T_2 .

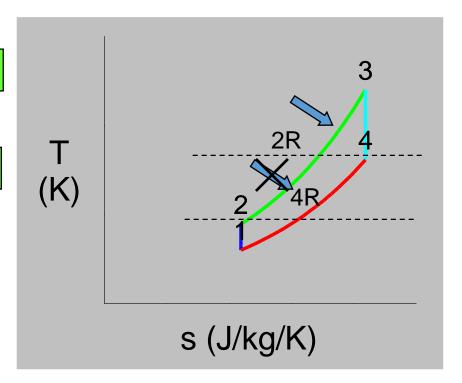


E' quindi possibile adottare un rigeneratore (**R**) che, attraverso uno scambio in controcorrente, sottragga calore ai gas di scarico per preriscaldare il gas all'uscita del compressore.

Rigenerazione ideale

- Perdire di carico nulle
- •Perdite di calore nulle
- ◆∆T infinitesimi tra fluido caldo e fluido freddo -> superfici scambio infinite ed uguale capacità termica

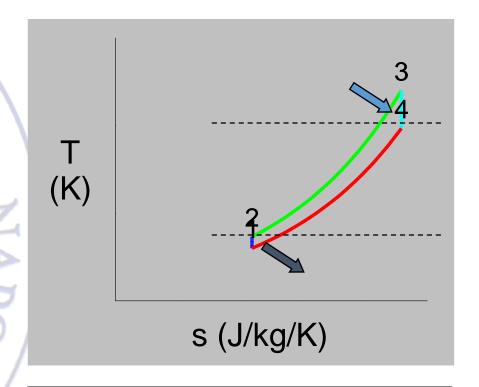


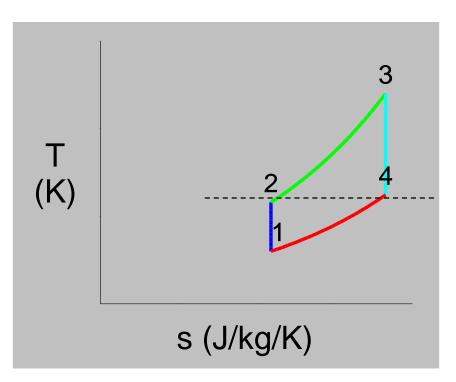

Bilancio entalpico del rigeneratore:

$$h_{2R} - h_2 = h_4 - h_{4R}$$

Se portate e c_p sono costanti:

$$T_{2R} - T_2 = T_4 - T_{4R}$$

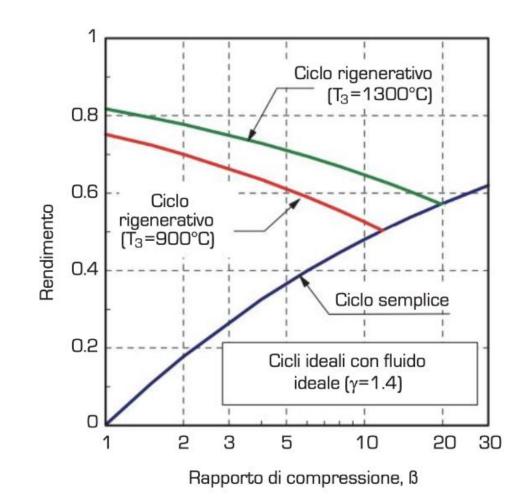



Nel caso ideale (rigenerazione perfetta) i gas compressi possono uscire dal rigeneratore ad una temperatura T_{2R}=T₄. Si ottiene quindi una riduzione del <u>calore</u> fornito dall'esterno Q₁, mentre il <u>lavoro</u> resta invariato.

Il <u>rendimento</u> quindi aumenta.

Cicli con rigenerazione

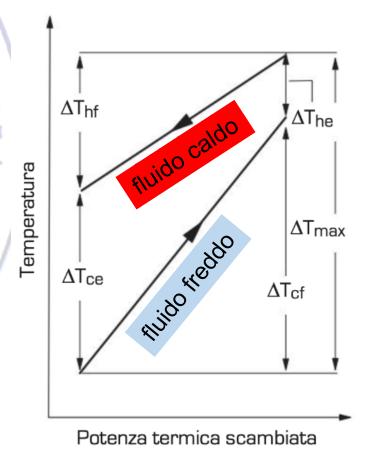
Quando β→1, il lavoro tende a zero ed il rendimento tende al <u>rendimento</u> <u>di Carnot</u>: il calore è addotto alla massima temperatura e sottratto alla minima temperatura del ciclo.

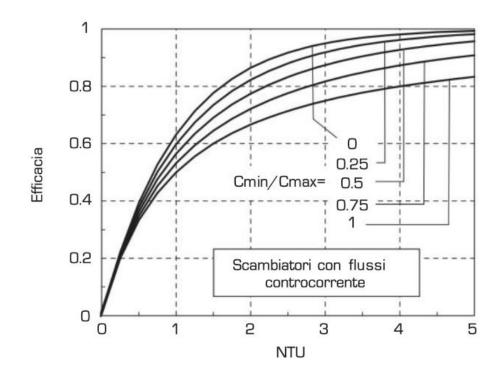


La rigenerazione è possibile finché è β < $[T_3/T_1]^{(1/2\theta)}$, condizione in cui il lavoro è massimo e le temperature T_2 e T_4 sono uguali.

Rigenerazione ideale

$$\eta = 1 - \frac{T_1}{T_4} = 1 - \frac{T_1}{T_3} \beta^{\Theta}$$

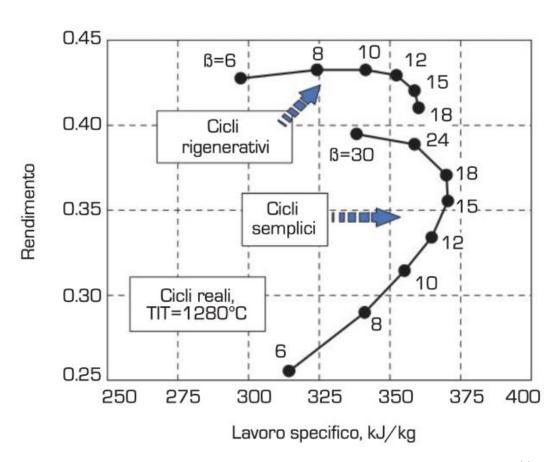

Rigenerazione reale


- Perdite di carico
 - Maggiori sezioni di passaggio -> minor velocità del fluido->Minor scambio termico -> maggiori superfici di scambio
- Perdite termiche
 - Definite attraverso il coefficiente di perdita $\xi = 1 \frac{C_{cf} \Delta T_{cf}}{C_{hf} \Delta T_{hf}}$
- •∆T finiti
- •Diverse capacità termiche tra fluido caldo e freddo -> $\Delta T_{hf} \neq \Delta T_{cf}$ -> $\Delta T_{he} \neq \Delta T_{ce}$
- •Si calcola l'efficacia dello scambiatore con l'approccio ε-NTU:

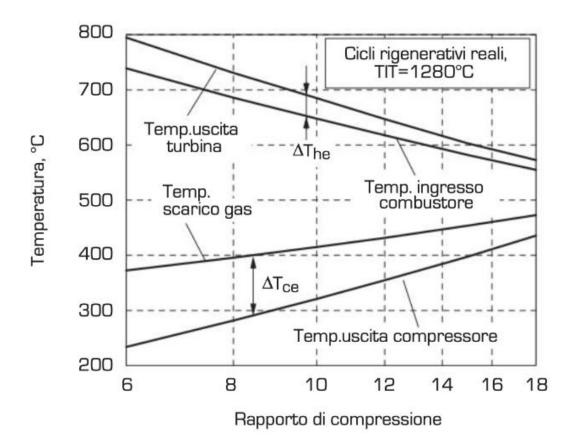
$$\varepsilon = \frac{\Delta T_{\text{Cmin}}}{\Delta T_{\text{max}}}; \quad NTU = \frac{UA}{C_{\text{min}}}; \quad C_R = \frac{C_{\text{min}}}{C_{\text{max}}}$$

$$\varepsilon = \frac{1 - \exp[-NTU(1 - C_R)]}{1 - C_R \exp[-NTU(1 - C_R)]} \quad \text{Scambiatori controcorrente}$$

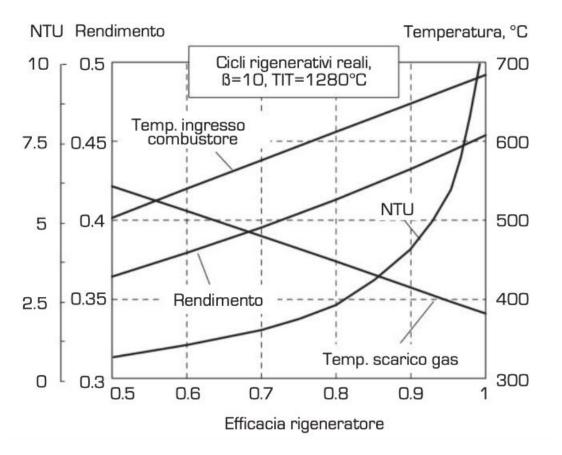
Rigeneratori reali con flussi in controcorrente



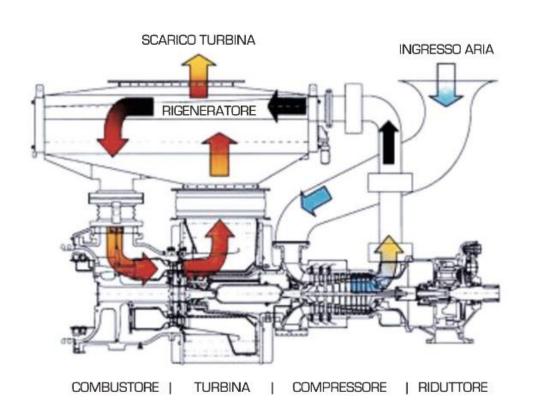
Confronto cicli rigenerativi reali con cicli semplici


Ipotesi di calcolo

- •Efficacia ε =0.9
- •Perdita di carico $\Delta p/p=0.02$
- •Coeff. di perdita ξ = 0.7%



Andamento temperature in cicli rigenerativi reali

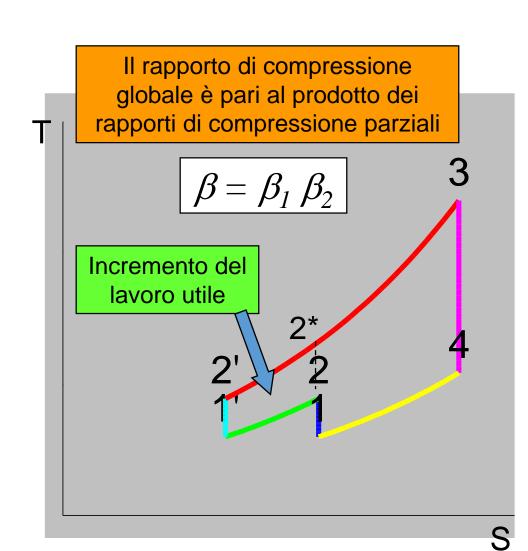


Influenza dell'efficacia del rigeneratore

TG Mercury 50 – 4.5 MWel

Applicazioni

- Poco impiegata per applicazioni di media / alta potenza
- •Idonea ad applicazioni di bassa potenza e microturbine che presentano bassi valori di β e η

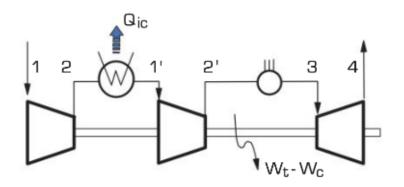


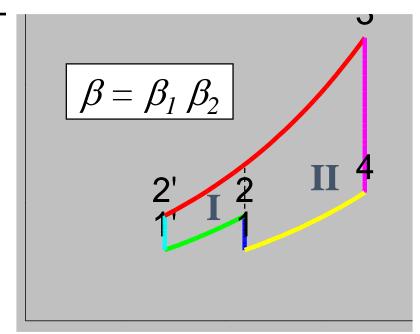
Compressione interrefrigerata

La compressione può essere frazionata in più stadi, interponendo dei refrigeratori tra i compressori.

L'adozione della compressione interrefrigerata permette di ridurre il lavoro di compressione, e quindi di aumentare il lavoro utile.

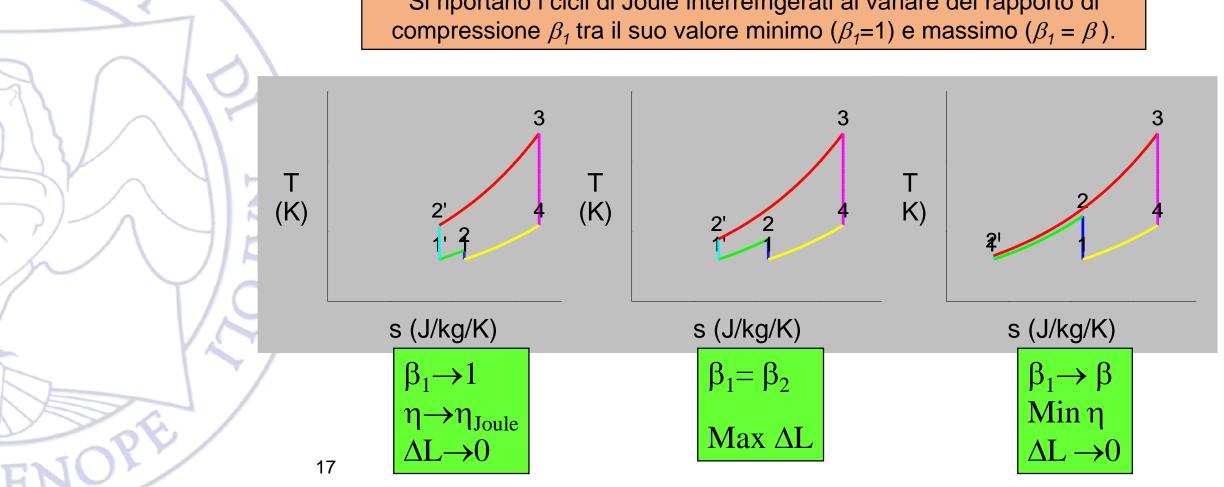
Il calore da fornire al ciclo aumenta, in quanto la temperatura di fine compressione 2' si riduce.

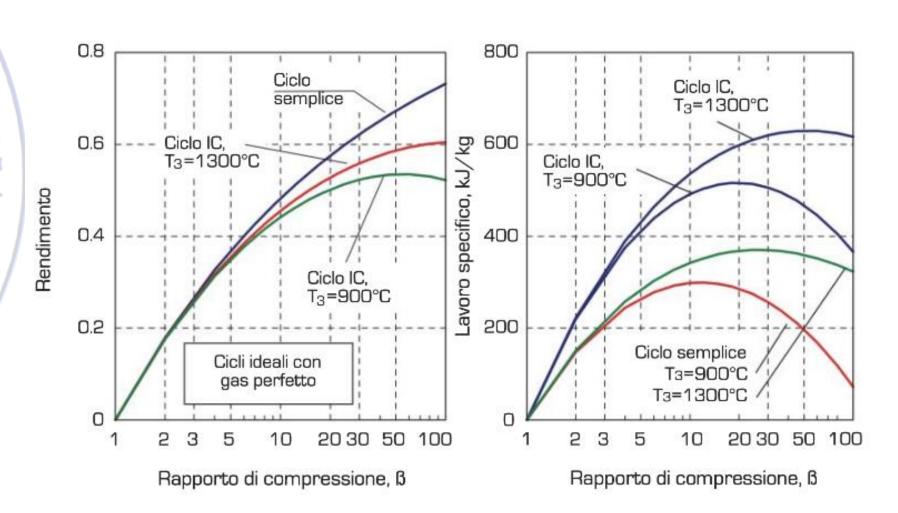



Compressione interrefrigerata

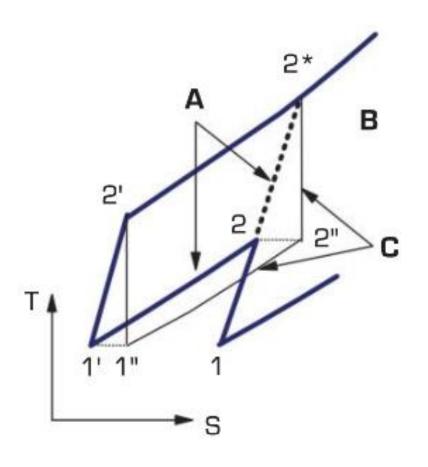
Il ciclo può essere scomposto in due cicli parziali Joule ideali: il ciclo I (rapp.di compr.= β_2) e ciclo II (ciclo originario, rapp.di compr.= β).

$$\eta = \frac{\eta_{I} Q_{1I} + \eta_{II} Q_{1II}}{Q_{1I} + Q_{1II}}$$


Il ciclo I ha un rendimento minore del ciclo II, avendo un rapporto di compressione inferiore ($\beta_2 < \beta$): quindi il rendimento (ideale) <u>si</u> <u>riduce</u>.

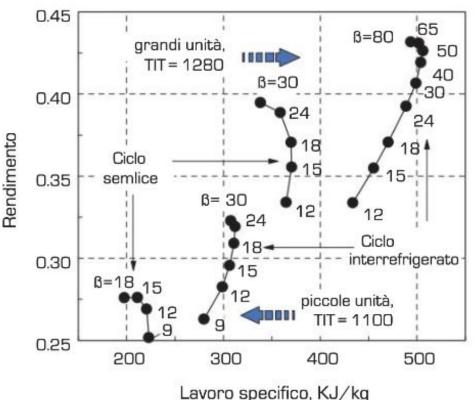

Scelta del rapporto di compressione intermedio

Si riportano i cicli di Joule interrefrigerati al variare del rapporto di


Compressione interrefrigerata

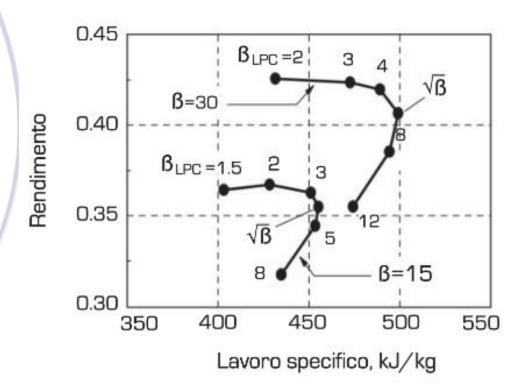
Analisi ciclo ideale

Analisi ciclo reale



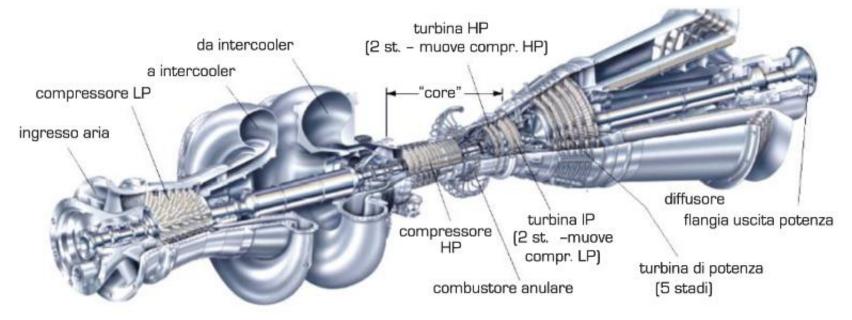
- Il ciclo A (1'2'2*2) presenta lo stesso rendimento del ciclo C (1"2'2*2"), ideale e con β maggiore
 - η_A potrebbe essere maggiore di η_B
- Il raffreddamento delle palette è favorito dalla minore temperatura di compressione
 - Minor portata di refrigerante
 - Maggiore TIT
 - Maggior β

Compressione interrefrigerata


Analisi lavoro e rendimento per piccole e grandi unità

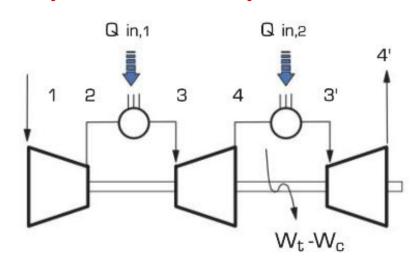
- Per le piccole unità (tecnologia E, <5 MWel), incremento sia di η che di lavoro
- Per le grandi unità (tecnologia F, > 100 MWel), incremento di lavoro e, nel caso di elevati β, di η

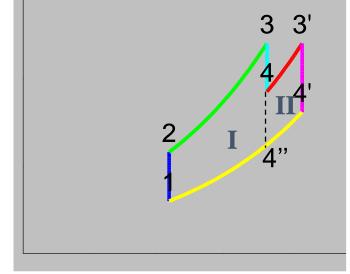
Analisi lavoro e rendimento al variare di β_{LP}



- Lavoro massimo per β_{LP=} β_{HP}
- Per β_{LP} maggiori si ha una riduzione di η per adduzione di calore a temperatura più bassa
- Miglior compromesso per β_{LP}
 di poco inferiore a β_{HP}

Compressione interrefrigerata


Applicazioni


- Normalmente realizzata per unità di piccola potenza
- Per le unità di maggior potenza, è resa poco appetibile dall''incremento eccessivo di ingombri/costi e dalla richiesta di ingenti portate di acqua per la refrigerazione

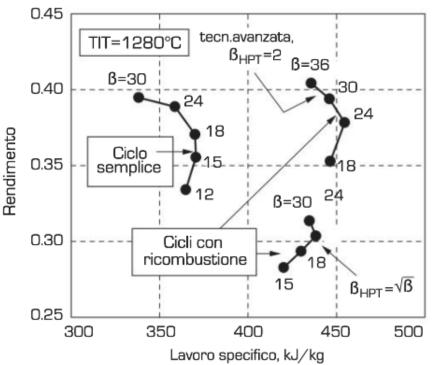
Espansioni ripetute - Ricombustione

Т

Un'altra tecnica per aumentare il lavoro utile consiste nel frazionare l'espansione, riportando il fluido alla temperatura massima dopo l'espansione parziale.

Analogamente al caso della compressione interrefrigerata, si dimostra che il rendimento ideale si riduce, perché il ciclo parziale aggiunto (II) ha rapporto di compressione e rendimento inferiore al ciclo originario (I).

S

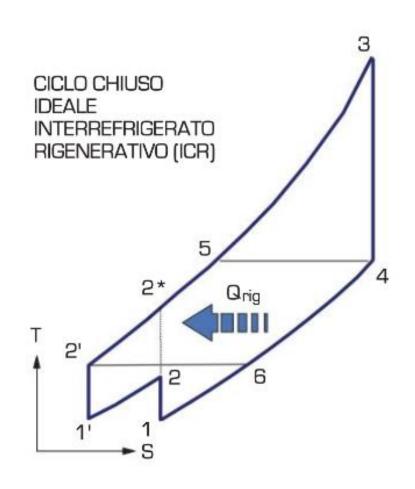

Il massimo aumento del lavoro di espansione si ottiene adottando rapporti di espansione parziali pari a:

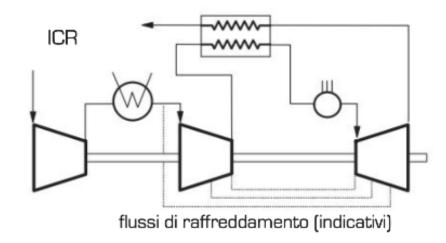
$$\beta_i = \sqrt[n]{\beta}$$

Ricombustione

Analisi lavoro e rendimento nel caso reale

- Nel caso reale, il ciclo aggiunto può essere assimilato ad un ciclo ideale con β maggiore, per cui η_{II} potrebbe essere maggiore di η_I
- Il raffreddamento delle palette è più complesso per la necessita di raffreddare anche la turbina di bassa pressione
- Lavoro massimo per β_{LP=} β_{HP}
- Per β_{HP} maggiori si ha una riduzione di η per elevata temperatura di scarico
- Miglior compromesso per β_{HP} di poco inferiore a β_{LP}

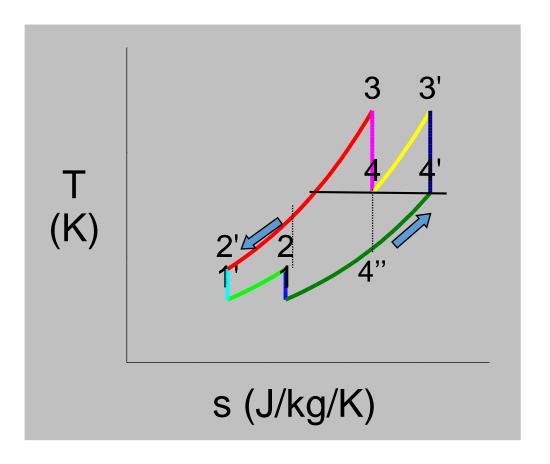



Ricombustione

Applicazioni

- Notevoli benefici nell'impiego in ciclo combinato per l'elevata temperatura di scarico che rende disponibile calore ad alta temperatura per il ciclo di recupero
- Difficoltà tecnologiche per la doppia sezione combustore-turbina

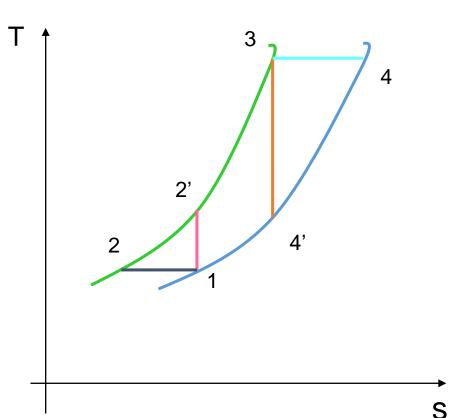
Compressione interrefrigerata + Rigenerazione



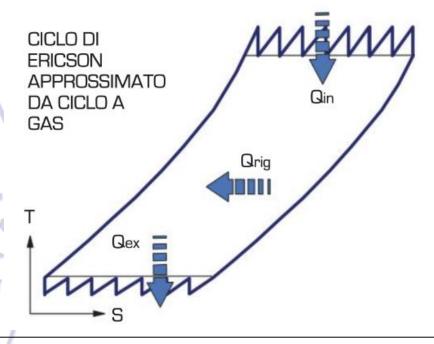
- Maggior recupero termico nel rigeneratore per effetto della minor temperatura di mandata (2' invece che 2*)
- Minor calore da fornire nel combustore.
- Incremento di rendimento e lavoro

Interrefrigerazione, espansioni ripetute e rigenerazione

L'adozione congiunta di queste tecniche permette di sommarne i vantaggi: infatti, la riduzione della temperatura di fine compressione (compressione interrefrigerata) e l'aumento della temperatura di fine espansione (espansioni ripetute) consentono un maggiore recupero termico dai gas di scarico attraverso il rigeneratore.


E' quindi possibile aumentare sia il lavoro che il rendimento, a prezzo però di una notevole complicazione dell'impianto e di maggiori costo, ingombro e peso.

Ciclo di Ericsson


Il ciclo di Ericsson si può considerare come il caso limite della evoluzione del ciclo Joule. Prevede:

- una compressione isoterma1-2;
- una adduzione di calore a pressione costante 2-3 di tipo rigenerativo, ottenuta a spese del calore sottratto nella 4-1;
- una espansione isoterma 3-4;
- una sottrazione di calore 4-1 (il calore è utilizzato per la fase 2-3).

Le temperature medie di adduzione e sottrazione coincidono con le temperature massime e minime del ciclo: il rendimento è pari al rendimento di Carnot.

Ciclo di Ericsson

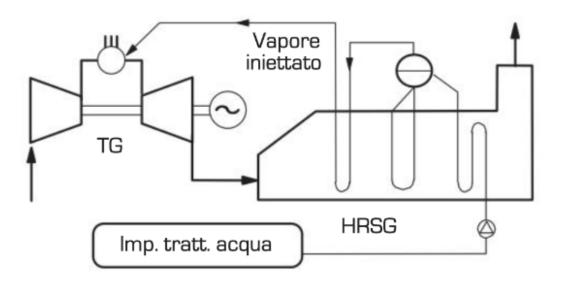
ICR:

• 1 Compr. interrefrigerata + rigen.

ICRRH:

- 2 Compr. Interrefrigerate
- Rigenerazione
- Ricombustione

Tipo di ciclo (TIT=1280°C)	ICR	ICRRH
rapporto compressione ottimale	β=16	β=42
Rendimento LHV	49.39	50.35
Lavoro specifico, kJ/kg	438.1	619.5
Potenza elettrica, MW (G=600 kg/s)	262.9	371.7
Temp. uscita compr. HP, °C	189.7	170.5
Temp. ingresso 1° combustore, °C	563.6	576.3
Temp. ingresso 2° combustore, °C	-	995.2
Temp. gas ingresso rigeneratore, °C	593.6	606.4
Temp. gas scarico, °C	280.3	299.3
Pressioni uscita compressori, bar	4/15.9	3.5/12/42
Pressione uscita 1° turbina, bar	1.04	15.0
Portata totale raffredd. turbine, %	10.4	16.1
Potenza termica rigeneratore, MWth	214	214
Efficacia rigeneratore (ΔT _{min} =30°C)	0.925	0.931
Analisi entropica: Perdite		
Compressione	1.794	3.154
Interrefrigerazione	5.115	4.783
Rigenerazione	2.171	1.932
Combustione	27.208	25.955
Espansione	5.510	6.578
Scarico gas	9.592	8.047
Elettromeccaniche	0.840	0.858

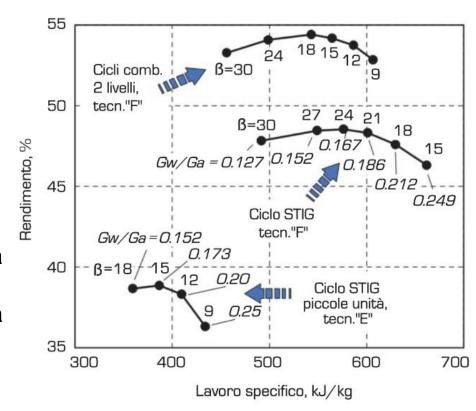


Cicli misti gas/vapore

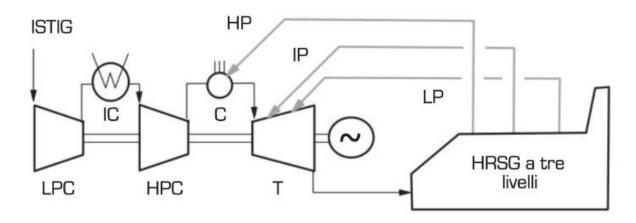
- Obiettivo:
 - Incremento di rendimento dei cicli combinati con semplificazione impiantistica dei cicli aperti
 - Varie configurazioni
 - Iniezione di vapore STIG
 - ISTIG
 - RWI
 - HAT

Ciclo con iniezione di vapore - STIG

Aspetti impiantistici-funzionali

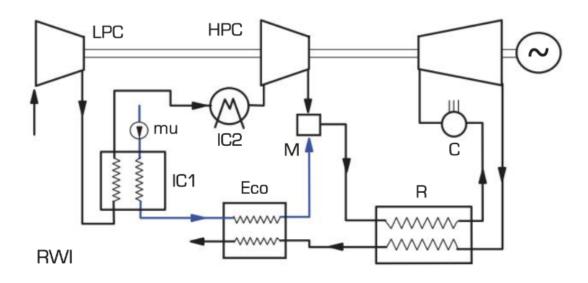

- Trattamento acqua per eliminazione sostanze incrostanti e chimicamente aggressive nel vapore
- Aumento portata ingresso turbina (G_a+G_v) -> aumento β -> verifica margine di stallo compressore
- Aumento sollecitazioni meccaniche struttura
- Irreversibilità miscelamento aria/vapore

Ciclo con iniezione di vapore - STIG


Analisi prestazioni

- Irreversibilità nel miscelamento tra aria e vapore
- Minor η vs. CC; Maggior η vs. ciclo semplice
- Al ridursi di β aumenta la temp. allo scarico con aumento di G_v e del lavoro
- Vantaggi più evidenti per piccole unità (<10 MW)
- Impiego cogenerativo per disponibilità vapore allo scarico
- Consumo di acqua 0.3 ÷ 0.6 kg/s per MW_{el}

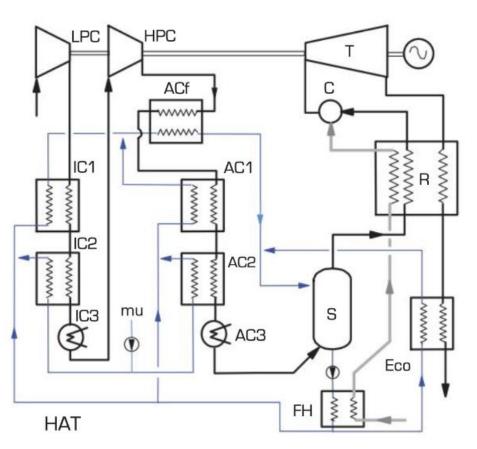
Ciclo con iniezione di vapore - ISTIG



Schema funzionale

- •Compressione interrefrigerata per operare con maggior β e TIT a parità di raffreddamento palette
- •GVR a tre livelli di pressione per miglior recupero termico
- •Irreversibilità miscelamento aria/vapore
- •Applicazione per unità di media/grande potenza

Ciclo con iniezione di acqua - RWI



Schema funzionale

- Compressione interrefrigerata e rigenerazione
- Preriscaldamento acqua con intercooler ed economizzatore sui gas di scarico
- Miscela sovra-satura aria-vapore a monte del rigeneratore
- Irreversibilità miscelamento aria/vapore
- Incremento del recupero termico dai gas combusti nel rigeneratore

Ciclo "umidificato" - HAT

Schema funzionale

- •Ciclo ICR
- •Progressivo riscaldamento dell'acqua negli intercooler, negli aftercooler e nell'economizzatore
- •Miscelamento aria-acqua nel saturatore
- •Scambio di calore e massa tra due flussi in controcorrente a ridotto ∆T attraverso un processo di umidificazione progressiva
- •Massimo recupero termico nel rigeneratore
- •Minima irreversibilità legata al miscelamento aria/vapore

Confronti cicli misti

Tecnol	l	
IACDO	וממום	\vdash
	logia	

Tecnologia G

Confronto tra le prestazioni di cicli combinati e cicli mist					
Tipo di ciclo	CC (3LR) fig.4.16	ISTIG fig.5.25	RWI fig.5.26	HAT fig.5.27	
TIT=1250°C					
β ottimo	15÷21	30÷42	18÷24	24÷30	
Rendimento, %	54÷55	50÷51	52÷53	54÷55	
Lavoro spec., kJ/kga	530÷580	550÷590	510÷560	600÷640	
TIT=1500°C (CC=1400)					
β ottimo	18÷24	40÷50	27÷36	40÷55	
Rendimento, %	58÷59	52÷53	54÷55	56÷57	
Lavoro spec., kJ∕kgª	620÷680	740÷780	700÷750	830÷890	

Analisi prestazioni

- Solo il ciclo HAT raggiunge valori di η prossimi ai CC
- Alle alte temperature prevale il CC per irreversibilità nel rigeneratore
- Lavoro specifico superiore per i cicli misti per IC ed incremento portata in Turbina
- Cicli HAT potenzialmente interessanti per bassi costi specifici
- Costi ricerca e sviluppo HAT elevati, non ancora supportati dal mercato

Bibliografia

Giovanni Lozza, "Turbine a gas e cicli combinati", Società Editrice Esculapio, ISBN 978-88-7488-934-1.