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Propagation

_ “We have strong reason to conclude that
Motivation

SV method light itself—including radiant heat and
Helmholtz eq. r = = r
other radiation, if any—is an
Plane waves . . '
st electromagnetic disturbance in the form
Praseoct of waves propagated through the
Appendix electromagnetic field according to
For Further Reading

electromagnetic laws.”

—James C. Maxwell
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Hermann von Helmholtz

AKA Hermann Ludwig Ferdinand von Helmholtz

Born: 31-Aug-1821

Birthplace: Potsdam, Germany

Died: 8-Sep-1894.

Location of death: Charlottenburg, Berlin, Germany
Cause of death: unspecified

Gender: Male

Race or Ethnicity: White
Sexual orientation: Straight
Occupation: Physicist

Nationality: Germany
Executive summary: Law of Conservation of Energy

German philosopher and man of science, born on the 31st
of August 1821 at Potsdam, near Berlin. His father,
Ferdinand, was  teacher of philology and philosophy in
the gymnasium, while his mother was a Hanoverian lady,
alineal descendant of the great Quaker William Penn. Delicate in early life, Helmholtz became by
habit a student, and his father at the same time directed his thoughts to natural phenomena. He
soon showed mathematical powers, but these were not fostered by the careful tra

mathematicians usually receive, and it may be said that in after years his attention was directed to
the higher mathematics mainly by force of circumstances.

V’E-K’E=0
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From a PDE to ODEs

One of the most used approaches to solve Partial
Differential Equations (PDEs) in mathematical physics is the
so-called method of Separation of Variables (SV).

ERSLab
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Motivation

i It basically consists of breaking a given PDE in a set of

Plane waves Ordinary Differential Equations (ODESs), which can be
- solved separately from one another, by isolating each
independent variable in a separate equation.

/ODE(xl)
PDE{x1,x2..xn)= \ H
ODE(xn)

Appendix

For Further Reading



SV method

FhSkab SV method is applicable only under restrictive assumptions:

F. Nunziata

Motivation m The PDE must be separable. The set S of solutions
S obtained by SV method needs to be a complete set of
Plane waves solutions. This means that S is dense enough to allow

Classification

one writing any PDE solution as a linear combination of
solutions belonging to S. A given PDE is typically
separable only in few reference frames.

m The boundary conditions must be separable. Any
differential equation must satisfy suitable boundary
conditions (BC). BCs are themselves separable if the
boundary is a coordinate surface (or a set of coordinate
surfaces) in one of the reference frames where the
PDE is separable.
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The em problem

The PDE which governs both radiation and propagation
phenomena is the so-called Helmholtz equation. It is a
second-order elliptic PDE.

The following electromagnetic (em) problem is defined:
Domain: 3D space/w.

Medium: linear, isotropic, homogeneous and lossy.
Sources: no imposed currents (J, = 0).
BCs: Sommerfield conditions for the field at infinity.

Unigueness theorem ensures (w exterior problem) that,
once the above mentioned requirements are known,
Maxwell's equations have a unique solution in the given
domain.
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The em problem
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The em field satisfying Maxwell’s equation under the
SV method previously stated requirements may be calculated solving
Heimholiz e Helmholtz equation for E or H through the SV method.

Plane waves
Cl; i

Motivation

The Helmholtz equation to be solved is given by:

Appendix

For Further Reading V2E ¥ k52E == 0 9 (1)

where: y
k€2 = —wlpuee = —w?p (5 —j—) . (2)
w

10/53



SV method: Helmholtz equation

ERSLab 3D Helmholtz equation (1) is separable only in a few
F. Nunziata number of coordinate systems which can be derived from
the orthogonal ellipsoidal coordinate system:

Motivation

SV method
Helmholtz eq.

S Orthogonal Cartesian.
. Circular cylindrical.

o Elliptical cylindrical.
Appendix Parabolic cylindrical.
Rotation parabolic.

@A Paraboidal.
Spherical.

B Prolate spheroidal.

El Oblate spheroidal.
Conical.

For Further Reading
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SV method: Helmholtz equation

A Cartesian orthogonal coordinate system (xy, X2, X3) is
hereinafter adopted:
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Motivation %

v meihod Eq.(1) can be written by components:
Plane waves 2. 2 . 2.
Cl; " VZEI = 8 E[ 8 El a E/ _ szl ) (3)

2 2 2 — e
oxy  Ox5  OX5

Appendix
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*2
The three scalar equations are independent of each other,
hence, the linearity of the medium allows, without loss of
generality, considering:
E=EXx . (4)
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SV method: Helmholtz equation
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The SV method consists of making the following ansatz:

Motivation

SV method
Hoimnots e E(x1, X2, X3) = f1(X1)fo(X2)f3(X3) ()

Plane waves
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which leads to:

/!

f
fy

/1

f
f>

/1

5 _ i 6)

== +g:a

where £ denotes the second derivative of .
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SV method: Helmholtz equation
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- For a fixed w, k2 is constant and, therefore, (6) can be

SV method satisfied if and only if:

Helmholtz eq.

Plane waves f” >

lassification ] H

:ravelmgwaves T = Si I = 172) 3 ) (7)
Phase velocity ]

Poynting vector
Appendix with the following separation condition:

For Further Reading

S% + S5 +/85I=kE (8)
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SV method: Helmholtz equation
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F Nunziata SV method leads to the following three ODEs:

Motivation f”
i

SV method e — S,-2 i=1,2,3 , (9)

Helmholtz eq. ’

Plane waves

Clsstcaten whose general integral can be written as follows:

appencis e S e G e L (10)

For Further Reading

where Fq; and Fp; are arbitrary complex constants.
m The separation equation (8) deals with S2. It does not
tell anything about S; = +,/S?.
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SV method: Helmholtz equation

) Accordingly, there is no loss of generality in the following
S formula:
F. Nunziata
Motivation E(X1 , X2, X3) = f1 (X1 )fg(Xg)fg(Xg)
SV method = —(S1Xx1+Sax2+S3x:
HelmToizeZ = Eoe ( 4 27 3 3)
Plane waves = Eoe_s'r , (1 1 )
s
Phase velocity

Poynting vector

Appendix 0
e ressne |l PYOpAgation vector

S:ZS,'),(\,' 5 r:Zx,-)?,-
i i
are the propagation vector and the position vector,

respectively.
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Electric and magnetic fields
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It must be noted that S = a + jk, where a is called
dsipite attenuation vector and k phase vector, is such that:
SV method

Helmholtz eq.

e P2
Plane waves S-S= k"': S

Classification

Traveling waves

Note that, since S is a complex vector: S-S # S - S* = |S|2.
Poynting vector
e E=Eco ¥ | (12)
where:
Eo = Eo)?1
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Electric and magnetic fields

From Maxwell’s equations, it follows that:
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E —Sr
Motivation H = _V><—oe (13)
w
SV method j M
W By invoking the vector identity:
V x (fA) = fV x A+ VFx A
SLdSSB  where f and A are a scalar and a vector function of space
coordinates, (13) becomes:
_Sro
_ Eogasr, o SXEEK
Jwi Jwp
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Remarks

ERSLab From (14) it follows that:

F. Nunziata

SxE
Motivation H = = (1 5)
SV method Jwp
Helmholtz eq.
EUCRVEVES] . 2 3 i
Classiatn m This term provides a relationship between E and H

which further confirms that (15) is always true, despite
the restrictive hypothesis of linear polarization
previously made, see eq.(4).

m Under the (unnecessary) hypothesis that all the
components of E share the same propagation vector S,
the general solution for E is given by:

E=Eo,e S . (16)
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.' he solution provided by (17)-(18) is physically unt

m In general, it does not satisfy Sommerfield co
and, therefore, the uniqueness theorem (not e
case of lossy medium).

m It carries on an infinite power.

nin the

Nevertheless, the solution (17)-(18) is:

m Perfectly legitimate as a mathematical solution of
Maxwell’s equations.

m A fundamental brick in building up a
physically-consistent em field.
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Remarks

Inserting (18) in Maxwell’s equation V x H = jwe E:

ERSLab

F.Nur.wzwala E _ V X H _ 1 v « (S X 'Eoefs-r)

Motivation Jwee Jwee Jwop

SV method

Helmholtz eq. - _ 1 .i X (V X E) — ;.i X _jwuH
Plane waves Jwee Jw Jwee Jw

S SxH SxExS

(19)

WE e w2ecpt

Appendix
For Further Reading In the same Way

_VxE_BSxExS__jw_,quHxS
Jup  jop wieop Jop.wiecp
_S><H><S

wlecp

H =

(20)
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Remarks

From (19)-(20).it follows that: |
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Motivation
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Complex vectors

By similarities with vectors defined in a real space, one may
ERRONEQOUSLY think that (21) implies that E, H and S are
mutually orthogonal.

This is actually true only for linearly polarized uniform plane
waves!!

A
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Plane waves

ERSLab

F. Nunziata Inserting S = a + jk in (17)-(18) it follows that:

Motivation E— Eoe_(a+jk).r _ Eoe_a.re_jk.r
SV method

Helmholtz eq

E— The following /oci can be defined:

Classification

(22)

Pty a - r = const - Equi-amplitude planes

Poynting vector

AoPene o m It implies |E| = const and |H| = const.

m These loci are given by planes orthogonal to the
attenuation vector and are generally called
equi-amplitude or constant amplitude planes.
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Plane waves
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k - r = const - Equi-phase planes

Motivation

SV method m It implies ZE; = const and /H; = const.

Helmholtz eq

Classification

vector and are generally called equi-phase or constant
R phase planes.

Poynting vector

m These loci are given by planes orthogonal to the phase
Plane waves

Appendix
For Further Reading
Since the equi-phase surfaces are generally called
“wavefronts” and, in this case, they are planes; such
solutions of Maxwell’s equations are called:
Plane waves.
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Plane wave wavefronts
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At the very root propagation is just the motion of wavefronts
as the time goes!
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Remarks on plane waves

ERSLab

F. Nunziata The plane perpendicular to
the vector k is seen from its
side appearing as a line P-W.
The dot product k - r is the
projection of the radial vector
r along the normal to the
Appendis s plane and will have the
For Furhor Rading constant value OM for all

points on the plane.
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Plane waves
Cl;

The equation k - r = const is the characteristic property of a
plane perpendicular to the direction of propagation k.
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Plane waves classification

Plane waves can be classified according to the relationship

between the attenuation and phase vectors. It must be
noted that:

Motivation

SV method kz—::a"i_jﬁ:”ka :\/T/LEC S

Helmholtz eq

SEEES  belongs to the first quadrant of the complex plane.
Therefore, > 0 and « > 0. The latter inequality is
saturated when the medium is lossless.

S-S:az—k2+2ja-k:k§:—wzﬂ(g—jg)
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Separating real and imaginary parts:

a®—k® = —wue (23)
2a-k = wuo (24)



Plane waves classification
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_ From (23) it follows that |k|? > |a|? and, therefore:

SV method
Helmholtz eq ‘ k‘ > 0 9 (25)
Plane waves
Classification
Traveling waves
Phase velocity N X
Poyning vector Traveling solution
Appendix

For Further Reading

According to (25), the solutions of Maxwell’s equations can
never have a constant phase in the region where they are
defined.
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Plane waves classification
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The meaning of (24) depends on the fact that the medium is

Motivation lossless (0' = 0) or IOSSY (O’ 75 O)

oY method m 0 =0 = a -k =0. This is satisfied in either of the two
Plane waves fOIIOWing cases.

Classification

sty B =10

Poynting vector Th|S Imp|IeS that |E| = Const and |H| — Const hold for
Appendix the whole 3D space. Therefore, any plane is a

For Further Reading

equi-amplitude plane. Generally, a convention is
adopted which makes equi-amplitude planes coincident
with the equi-phase ones.

Such a wave is called uniform plane wave.
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Evanescent wave

Therefore, equi-phase planes are orthogonal to
equi-amplitude ones. This implies that this wave attenuates
while propagating in a lossless medium.

Such a wave is called evanescent plane wave.
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Excitatim} Glass

\ \ > (n=1518)

http://www.olympusmicro.com/primer/techniques/fluorescence/tirf/tirfintro.html
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Plane waves classification
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m 0 #0 = a-k> 0. This means that:
Motivation

« mothog m |a| # 0. The wave attenuates while propagating in a
e o lossy media.

e TEES m The angle between a and k is smaller than 7 /2.
Classification

T aes Such a wave is called dissociated plane wave.

Poynting vector

Appendix

e eade It must be explicitly pointed out that, in the special case
where a and k are parallel, the wave is still called
uniform plane wave.
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In a nutshell

The classification depends on medium parameters only
F. Nunziata

Motivation
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Medium
property

Plane waves
Classification
Traveling waves
Phase velocity
Poynting vector

Appendix

For Further Reading

0=0 <> LOSSLESS 070 & LSSV

Uniform plane

Evanescent plane Uniform plane Dissociated plane
wave wave wave wave




Remarks on orthogonality

It can be shown that E, H and S are mutually orthogonal if
and only if the following conditions are satisfied:

The wave is linearly polarized.
Motivation

S a and k are parallel (including also the special case
Helmholtz eq a — O)

Plane waves

iasicaton This means that, both in a lossless and in a lossy medium,
the three above mentioned vectors are mutually orthogonal
only for:

ERSLab
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linearly polarized uniform plane waves

Note that orthogonality between the complex vectors E, H
and S should not be confused with orthogonality between
instantaneous time-harmonic vectors. The latter are of
course mutually orthogonal!!!
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m Traveling waves
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Traveling waves

ERSLab
- Nunziata To analyze the physical features that characterize the plane
wave solution, eq.(17) is transformed into the correspondent
SV method time-domain solution:

Plane waves

Motivation

ctenir e(r,t) = R(E,e STe!) = E,e @cos(wt —k-r)  (26)
Traveling waves

o where, without any loss in generality, E, is assumed to be a
Appendix real constant.

For Further Reading

Poynting vector

Traveling wave

e(-) varies sinusoidally in time and (neglecting the
exponential decay factor) in space.
A wave of this kind is called a Traveling Wave
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Do it yourself - Plane wave lossless case
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Eq.(26);x =y =0:0.01: 2,A=1;t=0

40/53



Do it yourself - Plane wave lossy case
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Eq.(26);x =y =0:0.01 : 2 A=1;t=0a =1
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self - Spherical wave lossless case
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x

50

Spherical wave: e~ with r = 1/x2 + y2
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Do it yourself - 2D time evolution
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Spherical wave

x=y=—1:0.01:1,x = 1m, t = linspace(0, 60e — 9, 100) 43/53
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Phase velocity

Eq.(26) is a traveling wave and the factor cos(k - r — wt)

describes an ondulatory motion.

w/ k|

3

The ondulatory motion can be

4
Jvih analyzed by looking at points

7 with constant phase:

/ d(k-r—wt)=0

/ k-?dr — wdt

Y ar w w

e |k|cosy

(27)
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Phase velocity

S m The minimum value of (27) is obtained when
f w
F. Nunziata
Vi = —
Y
Motivation
SV method m In a lossless medium two cases must be analyzed:
ootz ea m a = 0 - Uniform plane wave. According to (23):
Plane waves 2 1
Classification T
Traveling waves k = Wi/ = = — Vi = ——
Phase vgelochy | I 'u ﬂ A 4 f \/E
Poynting vector
el Note that in the vacuum vy = c.
For Further Reading ma ;é 0 - EVanescent wave. ACCOI‘dIng tO (23)
Vi < !
i i

The evanescent wave in a lossless medium is also
called “slow wave”

) ) 1

Lossy medium. Since a # 0, vf < T
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m Poynting vector
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Poynting vector

m The Poynting vector is defined as:

ERSLab

unziata E H>|<
e P— X2 (28)
Motivation
SV method m Hence, replacing E and H with the traveling wave
solution (17-18) and considering that S + S* = 2a, one
Flane waves obtains: par

, p EorSBRL Bojom (29)
Poynting vector 2 ]w I
Aopene o m Invoking the vector identity:

Ax (BxC)=(A-C)B- (A B)C:

Poynting vector

o |EO|2 * EOS>’< * _2a-r
P < 2ionS + o, o) e (30)




Poynting vector
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Plane wave solution is physically untenable

Motivation

P depends on space coordinates only through the
SV method exponential factor e—2a":

Helmholtz eq

Plane waves m This implies that the flux of P through any plane in
iassfcaton space is infinite.

Traveling waves
Phase velocity
Poynting vector

Appendix This is physically untenable.

For Further Reading

To determine the direction of P it is convenient to analyze
separately the cases of uniform, evanescent and
dissociated waves.
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Poynting vector: TEM wave in a lossless

medium

m A uniform plane wave calls for S = jk = jﬁf( = jw\/ﬁf(
that implies: E, L k. Hence, eq.(30) becomes:
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" Eol? 2
Motivation P = ﬁk (3 1 )
SV method 26&),&
Helmholtz eq. 2
Plane waves = ’E—O| E R
C:sslhcaﬁones 2 €

_ B

21)

m Where ) = \/E is the intrinsic wave impedance and k is
aka direction of wave normal.

Poynting vector

The complex power carried by a uniform plane wave is real,
hence it consists of active power only.
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Uniform plane wave: TEM wave
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\

oy — wive fronis

The wave fronts are constant phase surfaces separated by one
wavelength A. The wave vector k is normal to the wave fronts and
its length is the wavenumber . Note that, since n ~ 3772, The

electric and magnetic field components are in phase. ~ .| .,



For Further Reading |
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[§ C.G. Someda. Electromagnetic Waves

CRC press - Taylor & Francis, Boca Raton, FL, 2006.
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For further reading
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otaton 'O tell me, when along the line
SV method From my full heart the message flows,
paevares What currents are induced in thine?
One click from thee will end my woes’.
Through many an Ohm the Weber flew,
And clicked the answer back to me,

'T am thy Farad, staunch and true,

Charged to a Volt with love for thee',
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