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Introduction

ERSLab

Electromagnetic (EM) theory forms a chapter of
mathematical physics which can be organized as an
Introduction axiomatic theory.

Entities

All the fundamental concepts, as well as many notions of

equations

Relationsrip wih technical interest, can be deduced from a small set of

physics

Maxwell's postulates.

equations in
differential

L Generally speaking, each theory consists of three key
Boundary Steps:

conditions ALY f e

The wave Set of entities aimed at describing the phenomena of

equation interest.

:mef“""s Set of mathematical equations aimed at describing the
harmonic evolution of the entities.

F. Nunziata

regime

Relationship between the equations and the physics.

Comments
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EM theory

ERSLab

EM theory can be regarded as the study of fields; i.e. vector
functions whose magnitude and direction vary as function of

F. Nunziata

Inizoduction their position in space, produced by electric charges at rest
e or in motion:
Relationship with
physics
M I’ H H
Smanene i Static vs dynamic
differential
form .
Maxwels cauations m Electrostatic fields are usually produced by static
ety electric charges.
conditions
The wave m Magnetostatic fields are due to the motion of electric
i - 0 - o
:T:nf;s charges with uniform velocity (direct current).
|
Time- m Time varying fields are usually due to accelerated
I charges or time-varying currents.

Dynamic fields

Comments



Entities

ERSLab All the entities, in general, depend of both space r and time

F Nunziata t and, in the MKSS2 or Giorgi system of units, they are given
Introduction by
tiahencte me(r,t) (%) electric field;
R m h(r,t) (4) magnetic field;
g%?*awﬁi'éilm md(r,f) (%) electric induction;
o mb(r,f) (%2)or(T) magnetic induction;
BMoum;ary m p(r,t) (%) electric charge density;
condlians m j(r,t) (%) ocurrentdensity;

The wave
equation

Potentials

Time-

Macroscopic laws
harmonic

regime The theory to be presented here deals only with macroscopic
e e scale phenomena; i.e. those phenomena where consequences of
the discrete nature of the electric charge are irrelevant. 6/68
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Faraday’s law of em induction

ERSLab

It links e(r, t) and b(r, t) through an integral relationship
between the flux of b and the circulation of e

F. Nunziata

Introduction

Entities ' R d R
o j{e(r, t)-¢dC = N // b(r,t)- hdS (1)
c S

physics

Maxwell’'s
equations in

differential 0 0
form Physical meaning
Maxwell uations

Boundary
conditions

- The circulation of the electric field intensity around any
cEra closed path C equals the time-rate change of the flux of the
Potentials magnetic induction through a surface that has C at the
Time- edge_

harmonic

regime
Dynamic fields
Comments



Maxwell-Ampere law

ERSLab It links h(r, t), j(r, t) and the displacement current density
8"5;’” (%). Note that, at the very root, the displacement
ntroduction current was the fundamental Maxwell’s contribute.

7{ h(r,t) - £dC = / / (% i, t)) hdS (2
C S

physics

F. Nunziata

Maxwell’'s
equations in
differential
form

Maxwell's equations

Physical meaning

Boundary

conditions The circulation of the magnetic field intensity around any
Toe e closed path C equals the flux of the electric current density
Potentials through a surface that has C at the edge plus the time-rate
Time- change of the flux of the electric induction through a surface
I that has C at the edge.

Dynamic fields
Comments
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Gauss’ laws

m Gauss’ law for electric induction:

éﬁd(r, ) HdS = /// o(r, H)dr

m Gauss’ law for magnetic induction:

#b(r,t) .hdS =0
S

The flux of the electric induction through any closed surface

Physical meanings

(4)

equals the net charge inside the volume enclosed by the surface.

The flux of the magnetic induction through any closed surface
zero.

is

11/68
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Remarks on flux and circulation

The flux is defined as the rate of flow of an entity per unit
area

Flux of a vector field

ds = nds

. represents how much of the

—io field is going through a given
surface. It is usually defined

dScos with respect to a given
dsssn  surface and depends on how
Filg much the field is
St SR’ perpendicular to the surface.

If a field has a circulation along a given path, that means the

field will have net flow that adds together along the given
path.

12/68
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Relationship with physics

ERSLab

F Nunzata The link between em and mechanics is given by the Lorentz
Introduction force equation

Entities
Mathematical

equations

Relationship with f — Q(e + V X b) (5)

physics

e where f (N/m) is the force experienced by a particle with
diferential charge @ moving at velocity v (m/s) in an em field.

Maxwell's equations

Comments

Boundary
conditions

The wave

equation It can be considered as a “definition” of the electric field
Potentials intensity and the magnetic induction.

Time-
harmonic
regime
Dynamic fields
Comments

14/68



Maxwell’s equations in integral form

ERSLab In summary, the following four equations are referred to as

F. Nunziata Maxwell’s equations in integral form.

Introduction

A d .

e(r,f)-&dC = —— [[b(rt)-ndS (6)

Maxwell’'s c S

equations in g od r, t b A

dorora 7{ h(r.t) 8dC = / / <% L. t)) hdS (7)

Boundary G $

conditions 2

The wave ﬂ d(r7 t) ; ndS = /// p(r’ t)dT (8)

equation
S ar

Potentials

E;n;:;mic #b(r, t)-ndS = 0 9)
S

15/68
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Divergence equations

Sl The Maxwell’s equations in integral form can be rewritten in
" Nunziaia a “local” form using Stokes and Gauss theorems, under the
Introduction hypothesis that scalar and vector fields are regular, i.e. they

are continuous to all the orders implied in the calculations.

equations

Relationship with

h: ; Using Gauss theorem, eq.(3)-(4) can be written a follows:
axwell's

eguatioqs in

diferental V- d(r,t) = p(r, t) (10)
Maxwell's equations

Boundary V- b(r7 t) w0 (1 1)

conditions

The wave
equation

Magnetic charges

Potentials

Time-

harmonic Note that b is a solenoidal vector; hence, no free magnetic
e charges exist.

Dynamic fields
Comments

17/68



Curl equation

ERSLab

F. Nunziata

Introduction

Entities

Invoking Stokes theorem, eq.(1)-(2) can be written as

equations

follows:

physics

Maxwell’'s

fions i ob(r
St v x e(r, 1) = ~ 22010
form at

laxwell's equations r .
Boundary V x h(r, t) = M o l(ra t) (13)

conditions 8t

(12)

The wave
equation

Potentials

Time-

harmonic

regime
Dynamic fields
Comments

18/68



Maxwell's equations

ERSLab In summary, Maxwell’s equations in differential or local form

F. Nunziata are given by
Introduction

ob(r, t

Vxert) = — ét’ )

oo ad(r. 1) They are first-order
Maxwell’'s V x h(r, t) = 8—1: =7 j(r, t) Sl io(r, t) COUp|ed dlffel’en’[lal
equations in - .
diferenta vodrt) = p(rt) equatlgns reIatmg_ the
FS— il vector field quantities to

V.b(r,t) = 0

Boundary each other.
conditions
The wav . "y .
quation m Note that the total current j is partitioned into the sum of
Potentials a convection (or conduction current) j plus an imposed
pme current jo. The latter is a source term.
s m The term em field refers to a pair of vector functions e,
camments h that satisfy Maxwell’s equations.

19/68



ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’'s
equations in

differential Known terms
form

T We consider “known terms” the physical quantities whose
Boundary distributions can either “guessed” or experimentally
determined easily.

The wave
equation

Potentials

Usually, electric current density satisfies this requirement

Time- 0 Ot o o o 0 0 o
s since it is defined within a region in the space that includes
regime

the “sources”

Comments
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Constitutive relationships

ERSLab To solve Maxwell’s equations, the medium must be
F Nunziata accounted for. This can be done by introducing 3 equations
termed as constitutive relationships.

Introduction
Entities

Mathematical
equations

For a simple medium, i.e. linear, homogeneous, isotropic and

Relationship with
physics

time-invariant, they are given by:

Maxwell’'s
equations in
differential
form

Maxwell's equations d(r t = Ee(r, t) (14)
condiions b(r,t) = ph(r,1) (15)
rt) = oe(rt) (16)

The wave l(
equation

Potentials

Time- where ¢ is the electric permittivity (F/m), p is the magnetic

regime permeability (H/m) and o is the conductivity (S/m). Note that for
e feids a simple medium ¢, u, o are constants.

Comments

21/68



Vacuum

ERSLab The simplest medium, i.e. the vacuum, is characterized by
F. Nunziata the following constitutive relationships:

o dr.t) = eoe(r,t) (17)

b(r,t) = puoh(r,1) (18)

Maxwell’'s j(r’ ) = Ue(r7 t) = 0 (19)
equations in

et — where:

form
M cquators B ¢, ~ 8.85 x 1072 is called vacuum permittivity,
Pty permittivity of free space or electric constant.

The wave m o~ 1.25 x 1078 is called the vacuum permeability,
equaton permeability of free space, or magnetic constant.

Potentials

Free space

Time-
harmonic

regime

Free space is a good approximation of vacuum.

Comments

22/68



Classification of media

ERSLab

The medium where the field exists is characterized by its
constitutive parameters: ¢, © and o.

F. Nunziata

Introduction

- The medium is said to be:

physics

Maxwell’'s 0 .

equations in m linear: ¢, p and o are independent of e and h;

differential

form m homogeneous: ¢, ;1 and o are not function of space
laxwell's equations .

- variables;

conditions . 5 q . .

- m time-invariant: ¢, 4 and o are not function of time
e wave .

equation VarlableS;

roentals m isotropic: ¢, u and o are independent of direction (they

harmonic are scalar quantities).

regime

Dynamic fields

Comments
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Boundary conditions

ERSLab

F. Nunziata

Maxwell’s equations in the differential form are valid at any
point in a continuous medium.

Introduction
Entities

Mathematical
equations

Relationship with

- m They cannot be applied to discontinuous fields that may

Maxwell’'s
equations in occur at interfaces between different media.

differential

o s m Maxwell’s equations in integral form can be applied to
find the relations between the fields on the two sides of

e wae an interface.

ST m Such relations are known as Boundary Conditions

Potentials (BCs) or continuity conditions.

Time-
harmonic

Boundary
conditions

regime

Dynamic fields

Comments
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Boundary conditions

ERSLab

Maxwell’s equations in
F. Nunziata Integral form

Introduction

Entities

In a continuous At the interface

medium Bewteen two media
Mathematical

equations

Relationship with K = .
physics Maxwell’'s equations in Boundary Conditions

differential form

Maxwell’'s
equations in
differential
form

Maxwell's equations

Free space

Boundary
conditions

JUclee An infinitely large (unbounded) homogeneous medium,

equation

A characterized by constant € and p, is often referred to as
Time. free space.

harmonic
regime
Dynamic fields
Comments
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Boundary conditions

ERSLab At the interface separating two different media the field
F. Nunziata Sat|Sf|eS the fOIIOWing BCS

Introduction

Entities e

Mathematical
S 2
Relationship with
physics
) 1 A
Maxwell’'s (e1 — ez) X Mo = 0

equations in

%if::]rential (h'l — h2) X f’)12 — jS
m Medium 1: €1, 1, (di —do) - M2 = ps

Maxwell's equations

Boundary
conditions 0. (b1 1o b2) \ h12 = 0
WDTETS m Medium 2: €5, uo,

equation

Potentials g2.

Time-

harmonic where js (%) and pg (%) are surface currents and surface
e free charges, respectively.

Dynamic fields
Comments

26/68



Maxwell's equations in simple media

ERSLab Maxwell’'s equations in simple media can be rewritten as
F. Nunziata fO”OWS

Introduction ah(r t)

Entities v x e(r.t = Y

(r,1) ot

R:ylz:gxsmpmm 8e r t .

’ V xh(rt) = eM + oe(r,t) +jo(r, t)

Maxwell’'s 8 t
equations in

differential p(r, t)
Maxwell's equations €

form v 2 e(r, t) =
Boundary V- h(r, t) =)

conditions
Notation

The wave
equation

Potentials

Time-
f:g;irpnznic Note that hereinafter, to simplify the notation, the time and space
Dynamic fisds dependence of scalar and vector field functions is omitted.

Comments

27/68



The wave equation

ERSLab Maxwell's equations are solved in a simple medium and a
F Nunziata source-free solution region is considered, i.e. jo =0, p = 0.
Moreover, the medium is considered to be an ideal

Introduction X . )
e dielectric, i.e. 0 = 0.
equations
[ m Since Maxwell’s equations are coupled, to decouple
Maxwels them a second-order differential equation is obtained:
di?ferential a 62e
Letim VxVxe=—u—(Vxh)=—ue—
Maxwell’'s equations lu’at ( ) lu atz
Boundary . . il 6 24,
conditions Using the vector identity: V x V x ¢ = VV - ¢ — V<c:
The wave 2
i o°e
equation VV o (T v2e = e
Potentials H at2
Time- Since p =0, V-e =0, hence:
armonic
regime 2
Dynamic fields a e
Ve — jie— =0 (24)

3t2 28/68



The wave equation

ERSLab Eq.(24) is the time-dependent vector wave equation (aka

F. Nunziata D’Alembert’s vector equation). It is a second-order partial
troduction differential equation (PDE) which contains the e field only.
m Analogously, one can obtain the wave equation for the
e h field:

Sl dah
di?ferizntial 7 h— HE atz =) (25)

form
Maxwell's equations

Boundary
conditions

Solutions of D’Alembert’s equation

The wave
S Note that the solutions of D’Alembert’s equation are referred
Time. to as waves or wave functions and they can have quite

harmonic different physical dimensions and meanings.

Potentials

29/68



The wave equation

ERSLab

" Nunziaia m It must be explicitly pointed out that, since Maxwell’s
Introduction equations are first-order PDEs, only a linear

combination of the solutions of the wave equation (2nd
E‘qhn order differential equation) will be solution for the

N Maxwell’s equations.

Serontil m Spurious solutions are filtered out using divergence
AT equations (10-11).

Cty m Em wave is often taken as synonymous with em field, in
The wave the fast time-varying regime. However, it must be

qdation explicitly pointed out that wave equation can be derived
roentals from Maxwell’s equations under certain assumptions.

Time-
harmonic

regime

Dynamic fields

Comments
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Relationship with ) F IR
physics #
Maxwell’'s = 3 Ty ‘

equations in
differential : ] Wavelength
form (mees)

- Microwave Infrared  Visible  Ultraviolet ~ X-Ray ~ Gamma Ray
Maxwell's equations

Boundary Vi g e N T W we wr wo wn
The wave TS : TN
equation AT V117 [
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harmonic
regime
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Introduction
Entities

Mathematical
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Relationship with
physics

Maxwell’'s
equations in
differential
form

Maxwell's equations

Boundary
conditions

The wave
equation

Potentials

Time-
harmonic
regime
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Comments

Electromagnetic waves

m Eq.(24) is satisfied by any regular function of the
following type:

e(r,t) = e(r —fvst) (26)

m V= \/‘77 has the dimension of a velocity and is called
phase velocity.
m In the vacuum, vy =

speed of light.

=c~3-108 ms'isthe

v/ Ho€o

Propagation

Eq.(26) describes a propagation phenomenon, i.e.; a
function that travels unchanged in the direction 7 with
velocity vy

32/68



The scalar wave equation

ERSLab

F. Nunziata

e and h are vector fields

Introduction
Entities

Mathematical
equations

e = (eX7 ey7 ez),
h = (hx, hy, hz).

physics

Relationship with .
|

Maxwell’'s
equations in
differential
form

Maxwell’'s equations

Boundary

conditions

10% _
v2 ot -

The wave 2
equation ¢ -

Potentials

Time-
harmonic
regime
Dynamic fields
Comments
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Potentials

ERSLab

To solve practical problems (in particular radiation problems)
it is often convenient using auxiliary functions:

F. Nunziata

Introduction
Entities

Mathematical
equations

Reltonshp wih m the scalar electric potential, v;

physics

Maxwell's m the vector magnetic potential, a.
equations in
differential
form

Maxwell's equations

Helmholtz’s partition theorem

Boundary
conditions

1he wave At the very root the potentials rely on the fact that a given

equation

Potentials vector is completely specified once its irrotational and
Time- solenoidal parts are specified.

harmonic
regime
Dynamic fields

Comments
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Vector potential

ERSLab The vector potential a is defined by:

F. Nunziata

, b=V xa (28)
Introduction

Entities

cqvtore By substituting (28) in the Maxwell’s equation:
p:y\i:gxshup with

M I 3b

eqixgvﬁinz in VXE==

differential ot

form

Maxwell’'s equations 0 n e Obtal n S
Boundary
conditions

0
ZgLejavt\gg\ée Ve (s = —a(v X a)

Potentials oa
Time- V X (e + E) = O (29)

harmonic

regime

Dynamic fields

Comments

35/68



Vector potential

ERSLab

Eq.(29) represents an irrotational field. Hence it can be
written as the gradient of a scalar function v:

F. Nunziata

Introduction

Entities 8a

Mathematical =~ —

equations e + - _v v
Relationship with at

physics

Maxwells Hence:
aorontal oa
form e=-Vv-— E (30)

Maxwell's equations

Boundary
conditions

The role of auxiliary functions

The wave
equation

Folanias If one knows the potential functions a and v, the em field
Time- can be obtained using (30) and (28)

harmonic
regime
Dynamic fields

Comments
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Wave equation

ERSLab

F. Nunziata

The wave equation for a and v can be obtained starting
introduction from Maxwell’s equations and considering a simple medium:

Entities
Mathematical

RS- oe

physics v X h s ya il

Maxwell’'s § at + lo

equations in . q

?o%rire"“a' Using (28) and (30) one obtains:

Maxwell's equations a 8 aa

Gl V< Vxa = qi LaEnene tal ) +
ort Hgp T Hlo = Hel 5 at)) THe
equation ov 823

Potentials = _/J’GVE e at2 + Mo

Time-
harmonic

regime

Dynamic fields

Comments
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Wave equation

ERSLab

Using the equality V x V x a = VV -a — V?a:

F. Nunziata

Introduction = a 2

e VV.-a—Vea+ ueV— + pe— = yj

HeVgr t e = Ho

23 ov )

N Va— PE— 9 =V (V. -a+pue— 51 ) o (31)
equations in

differential

f . A -

Vel st According to the Helmholtz’s partition theorem, to
Boundary completely specify a well-behaved vector field its curl and
conditions .

The wave divergence are due.

equation Up to now the curl of a has been specified; hence a degree
Fotentials of freedom is still available to fix its divergence.

Time-
harmonic

regime

Dynamic fields

Comments
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Wave equation

ERSLab

B Hence, the divergence can be chosen to simplify (31):

Introduction 8
Entities |74
SIS (32)

Relationship with
physics

Maxwells Eq.(32) is called Lorentz’s gauge. Hence, eq.(31) can be
di?ferential rewritten as:

form > 82 33
Maxwell's equations V a x ST R i

Boundary iF 8t2 ’ulo ( )

conditions

The wave This is the inhomogeneous wave equation for the vector
eauaton potential a

Potentials

Time-
harmonic

regime

Dynamic fields

Comments
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Wave equation

ERSLab To derive the wave equation for the scalar potential v the
F. Nunziata divergence equation must be considered:

Introduction P
V.e=-

Entities

Mathematical €
equations

Relationship with S|nce e=-Vv— %:

physics

Maxwell’'s

equations in V . _v Vv — @ — B
differential ot B

form

Maxwell’'s equations

0

2 P
Boundar V V+_§7 ca = ——
conditionys ot €

i Using the Lorentz’s gauge:
Potentials 82 v
Time- Vv — e—s = wh (34)

harmonic (91‘2 €

regime . 0 .
This is the inhomogeneous wave equation for v

Comments

40/68



ERSLab Integral solutions of the two wave equations (33) and (34)

F. Nunziata are the so-called retarded potentials
Introduction a— ,u[]]

- 47rF?

Rilaﬂonshlp with L

physics [

ol

M I =
eqatjxgvﬁinz in 4 / 477-6Rd7—
differential =
form

Maxwell's equations
Boundary Retarded potentials
conditions
The wave
eauaton They are called retarded potentials because [j] and [p], i.e.
:‘"e""a's the source terms, are specified at a time \/% earlier than
ime-
harmonic the time a and v are being determined.

regime

Dynamic fields

Comments
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Time-harmonic regime

ERSLab

F. Nunziata

Maxwell’'s equations in simple media form a linear system;
Iniroduction hence no generality is lost by considering the

Entities

“‘monochromatic” or “steady-state” regime, in which all the

equations

s quantities are simply periodic in time, i.e. time-harmonic.

physics

Maxwell’'s
equations in
differential . ,
form Fourier’s theorem
Maxwell's equations

Boundary

conditions Note that by Fourier’s theorem, any linear field of arbitrary
i time-dependence can be synthesized from the knowledge
of the monochromatic field.

Potentials

Time-
harmonic

regime

Dynamic fields

Comments
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Phasors

ERSLab In the time-harmonic regime, e(r, t), h(r, t), d(r, t), b(r, ),

F. Nunziata j(r,t) and p(r, t), vary sinusoidally in time with an angular
Introduction frequency w.

th h The one-to-one mapping between the set of time-harmonic
s vectors in R® and the complex-vector space C2 can be
MOl exploited (Steinmetz’s representation):
Oierential Let f(r, t) = a(r)cos(wt + ¢(r)) a scalar time-harmonic field
Bl whose angular frequency w is fixed. According to Euler’s
condiions formula:
iy a(r)e/ @) — a(r)cos(wt + ¢(r)) + ja(r)sin(wt + ¢(r))
Potentials
s Hence:
harmonic ) )
e f(r,t) = a(r)cos(wt + ¢(r)) = R{a(r)e’*M e}

Comments
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Phasors

m Hence:

ERSLab

f(r,t) = R{F(r)e~t

F. Nunziata
| : m where:
ntroduction 0 r
F(r) = a(r)e”" (35)
p“hn it is called phasor and it is a complex number
Maxwel's characterized by a one-to-one relationship with a
R time-harmonic signal of angular frequency w.
o s m When a vector field is considered f(r, t):
e (1, 1) = a(r)cos(wt + ¢(r)) = R{a(r)e*" e}
The wave | |
equation . ) ; ] ;
Potentials F(r) = a(r)e®") = a,(ne>x + a,(r)e” " + a,(r)e/*-"z
Time- (36)
e is the generalized phasor associated with the vectorial
g p
time-harmonic field.

Comments
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Phasors

m Note that to reduce the system to the monochromatic
state, the e/“! time dependence is adopted, which

ERSLab

F. Nunziata
. implies that the following Fourier transforms pair is

o " understood:

Mqathemahca\ +OO .

Fw) = [ feiiar (37)
Maxwell’'s —o0
eguatioqs in 1 +00 )
o f(t) = — F(w)e™dw (38)
— ity N
st m Note that phasors are indicated using dotted capital
The wave letters. The only exception is the charge density scalar

equation

field function.
— m Phasors have the same physical dimension of the
harmonic un-transformed field functions.

regime

ynanic s m Phasors depend on the spatial coordinate only.

Comments

Potentials
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Steady state Maxwell’s equations

ERSLab Maxwell’s equations in sinusoidal steady-state

F. Nunziata

Introduction V x E(r) — —ij(r) (39)
i V x H(r) = jwD(r) +J(r) (40)
= vV-D(r) = p(r) &1)
e VB =00 (42)
form 4 4 . " 9 3 A
e Assuming a simple medium, the constitutive relationships
Boundary are given by:

s D(r) = ¢E(r)

Potentials B(r) = ,uH(r

b J(r) = oE(r

harmonic
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Steady state Maxwell’s equations

ERSLab

F. Nunziata
Remarks
Introduction

Entities

m Note that phasors have the same dimensions of the

equations

e un-transformed fields.

BT m Note that ¢, 1, o are constants since a simple medium is
e considered.

ey m In general ¢, 1, o are phasors.

conditons m Hereinafter, to simplify the notation, the dot symbol
cquaton which indicates phasors is omitted without ambiguity.

Potentials

Time-
harmonic

regime
Dynamic fields

Comments
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Potentials

ERSLab Given a time-harmonic source defined by an electric density
F Nunziata Jo(r), the em field generated by this source in the free
space satisfies Maxwell’s equations:

Introduction

Entities

V xE(r) = —juwuH(r) (43)
l\::j\cnslell’s VXH(r) = IWEE(T)-l-Jo(I’) (44)
il V-eE(r) = p(r) (45)
ot s V-uHr) = 0 (46)

Boundary
conditions

The wave
equation

Coupling

Potentials

ey It can be noted that the electric and magnetic fields are

harmonic

regime coupled in these equations. Moreover, the degree of

Dynamic fields

Commens coupling depends on the frequency.
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Static case

ERSLab When the frequency approaches 0, the static case is
F. Nunziata aChieved-

Introduction

Entities

m The electrostatic field produced by electric charges is

equations

Relationship with governed by

physics

Maxwell’'s

equations in = % =

di?ferential V Q E = 0 ’ V eE o p (47)
form

m The magnetostatic field produced by electric currents is
Boundary

conditions governed by

The wave
equation V xH= JO 5 V- ,LLH =0 (48)

Potentials

Time- Note that, to simplify the notation, the phasors’ space

harmonic i i
regime dependence is omitted.
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Electrostatic field

ERSLab To solve eq.(47), i.e. two first-order PDEs, for a single
F Nunziata unknown vector function E, it must be noted that:

Introduction

Enities m E is an irrotational vector function and, therefore, it can be

Mathematical

cquatons expressed as the gradient of a scalar function V which is

Relationship with

physics called electric scalar potential:

Maxwell’'s

equations in VxE=0—E=-VV (49)
differential

form

MeECE m Considering eq.(45), one obtains:

Boundary

conditions —V-eVV = P (50)

The wave

equation m Itis a second-order PDE that, in a homogeneous medium,
Potentials becomes: B
Time- VZ V=—- (51 )

harmonic €
onanctots m ltis called Poisson’s equation.
Comments
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Magnetostatic field

ERiSlely To solve eq.(48), i.e. two first-order PDEs, for a single
" Nunziaia unknown vector function H, it must be noted that eq.(46)
Introduction ImpIIeS that:

Entities

Mathematical
equations

Ftatonshi wi m B = ;H is a solenoidal vector function; hence it can be

physics

Maxwell's expressed as the curl of a vector function:
equations in
differential

form B = /JH = W% A (52)

Maxwell's equations

Cty m The vector function A is called magnetic vector
potential.

m Substituting eq.(52) in V x H = J,, one obtains:

The wave
equation

Potentials

Time-

harmonic V X <1V X A> = Jo (53)
regime 1%

Dynamic fields

Comments
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Helmholtz’s partition theorem

ERSLab

Eq.(53) is a second-order PDE that, for a homogeneous
medium, becomes:

F. Nunziata

Introduction

o = Niudo
Maxwels VV-A-V2A = udo (54)

equations in
differential
form

Maxwell's equations

Boundary m Since A is a vector field, according to the Helmholtz’s
e wave partition theorem, to completely specify A its curl and
equation divergence are due.

:_‘“e““""s m This is obvious if one consider eq.(53). In fact, it can be
harmonic easily proven that this equation is satisfied by A but

also by A + Vf (Note that V x Vf = 0).
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Helmholtz’s partition theorem

ERSLab

Since up to now only the curl of A has been specified
through eq.(52), to uniquely determine A its divergence
must be specified.

F. Nunziata

Introduction
Entities
Mathematical
eq
Relationship with
physics

Vaxwlls m With the intent to simplify eq.(54), one may set the
equations in divergence of A to zero (Coulomb gauge condition):

differential
form

V.A=0 (55)

Boundary
conditions

m Hence, eq.(54) becomes:

The wave
equation

Potentials V2A = _NJO (56)
Time-
harmonic

m Itis a vector Poisson’s equation
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Outline

ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’'s
equations in
differential
form

Maxwell's equations

Boundary
conditions

The wave

equation

Potentials B Time-harmonic regime
Time- m Dynamic fields

harmonic
regime

Dynamic fields

Comments
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Electrodynamics fields

ERSLab

Considering the Maxwell’s equation (43)-(46)

F. Nunziata

Introduction

m Eq.(46) implies that:

physics "’ B = V X A (57)

Maxwell’'s

equations in

differential Hence:
form

Maxwell's equations

Boundary VarE e —jwV x A
conditions
V x (E+jwA) = 0 (58)

The wave
equation

Potentials m Eq.(58) can be satisfied introducing the electric scalar
Time- potential V:

harmonic

E+jwA=-VV (59)
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Electrodynamics fields

ERSLab

As a matter of fact, E can be obtained once A and V are

F. Nunziata

known:
Introduction
sl E=-VV—jwA (60)
Maxw'ell's :
o m To obtain the Helmholtz’s equation for the vector
A potential A, eq.(60) is substituted into eq.(44):
Boundary
conditions 1 1 I
The wave pv xVxA = jwe(—VV—ij)—i—Jo
equation
Potentials VY- A — VzA = —jOJG,UV V + wzelu,A + udo
e VA + wleph = V (V- A+ jwenV)— o (61)
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Helmholtz’s equation

ERSLab

As far as for the magnetostatic case, only the curl of the
magnetic vector potential A is specified, see eq.(57).

F. Nunziata

(rodeton Hence, its divergence can be specified to simplify eq.(61)
ot without affecting the field itself.

Maxwell’'s

Ty m By choosing (Lorentz gauge condition):

form

VA= —jweuV (62)
Boundary

conditions

R one obtains:

equation VZA 7% k2A - _MJ (63)
Potentials

Time- m It is the vector Helmholtz’s equation with k% = —w? e
regima and its roots +k define the propagation constant.

Dynamic fields
Comments
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Helmholtz’s equation

ERSLab

Poisson’s and Laplace’s equations are special cases of the
Helmholtz equation.

F. Nunziata

Introduction

Entities 2 2

V2A — kA =G (64)
Relationship with

physics

where G is the source term.

Maxwell’'s

equations in . q q y
diferenta m When k =0, i.e. w = 0 static case, the Poisson’s
orm

equation is achieved:

Boundary

conditions

VARG
The wave
equation

Potentials m When k = G = 0, the Laplace’s equation is achieved:

Time- 2

harmonic =]
regime V A F 0
Dynamic fields

Comments
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ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’'s
equations in
differential
form

Maxwell's equations

Boundary
conditions

The wave
equation

Potentials

Time-

harmonic

regime
Dynamic fields
Comments

Helmholtz’s equation

Flmes 1V><A
I

E =/—jwA—-VV =—juA+—"—

Once A is known, the fields H and E can be easily obtained:

VV-A

Jweps

(65)

(66)
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Gauge condition

ERSLab It must be noted that both in the static and in the dynamic
F Nunzaia cases, the specification of the divergence of A is simply for
Introduction a unique determination of A itself.

Entities
Mathematical

equations
Relationship with
Gauge

Maxwell’'s
equations in

diterental Since A is an auxiliary function, its uniqueness is not
el important. Even if A is not unique, dueto utH =V x A, H
e will be always unique!

The wave The divergence of A does not affect the solution to the
eqation magnetic field H; hence it can be specified arbitrarily:

Gauge condition.

Potentials

Time-

harmonic Same comments apply for a.
regime

Dynamic fields

Comments
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Outline

ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’'s
equations in
differential
form

Maxwell's equations

Boundary
conditions

The wave

equation

Potentials B Time-harmonic regime
Time-

harmonic

i m Comments

Dynamic fields

Comments
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Why using potential functions ?

ERSLab

F. Nunziata

_ m Helmholtz’s equation was derived for the potential A,

see eq.(63).

m However, one can derive Helmholtz’s equation directly
from Maxwell’s equation (43)-(46):

physics

Maxwell’'s
equations in

diferenta VxVxE = —jwuV xH=—jup(jweE + Jo)
o - Pk e
conditions NNALE R VZE — wzeME — jw,uJo
ZQSJYS? V2E + w26,uE = VV- -E+jwudo (67)

Potentials

Time-
harmonic
regime
Dynamic fields
Comments
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m Since, for a homogeneous medium:

ERSLab

F. Nunziata v . v X H = jWCV ° E + V o Jo
Introduction 0 -= jWGV -E + V- Jo
Entities
Mathematical v . JO
e V.-E = —= (68)
p:yz:g‘s ip witl jwe

Maxwell’'s
equations in
differential
form

Maxwell's equations

Comments

This equation means that, inside a homogeneous medium, the

Boundary

e A divergence of the electric field can differ from zero only either
ST where the flow lines of the imposed current are open, or at the
equation boundary of the medium.

Potentials

Time-

harmonic Hence:

regime . J
o VIE —KPE =~ oy (69
Jjwe
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Why using potential functions ?

ERSLab On the surface, eq.(69) is more complicated than eq.(63).

F. Nunziata However, subtle differences exist.
Intoduction m Their left-hand side operators are exactly the same; hence
solutions of the same form are expected, as actually is.
s m The solution of eq.(63) in the free space is given by:
Maxv;l'ell's : efijl'
equations in
%%f:]rential A(r) = ﬁ /// J(r/) B dr
o g Mrmhy Xoh (70)
The wave ]UJGM
euation m When eq. (69 is accounted for:
Potentials
=)= [ {jnse) - v 9 aen} £
mrqm> ni )= =7= jwu i T
:]:gim(:a ¢ wa R
e (71)
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Why using potential functions ?

ERSLab

Mathematically, the two approaches to evaluate the fields
from given sources involve the same number of calculations:

F. Nunziata

Introduction
Entities
Mathematical

S, m A volume integral.
m Differential operators.

physics

Maxwell’'s
equations in
differential
form

Maxwell's equations

Differences

Boundary
conditions

The main and subtle difference is that in eq.(71) the
The wave 0 q . .
equation differential operators are applied to the source function;
Potentials whereas in eq.(70) these operations are applied to the
Time- vector potential.

harmonic
regime
Dynamic fields

Comments
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Why using potential functions ?

ERSLab

F. Nunziata For source functions that are analytic the two approaches
are indeed equivalent.

Introduction
Entities

Mathematical
equations

Felaionhip wih m Unfortunately, in many practical cases, source functions
Maxwells do not have such a behavior, e.g. line current and
diferental surface current. In such cases, they need to be
o s expressed in terms of Dirac delta functions and, hence,
Boundary the generalized functions must be used to evaluate
conditions \ .

differential operators.
The wave 3 y y Ny
equation m The vector potential function is always analytic in r;
Fotentials hence differential operators can be applied
Time- .
harmonic Stl’alghtforwardly

regime

Dynamic fields

Comments
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ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’'s
equations in
differential
form

Maxwell's equations

Boundary
conditions

The wave

equation

Potentials

Time-
harmonic
regime
Dynamic fields
Comments

Why using potential functions ?

Differentiation on J
J

Fields

With the introduction of
auxiliary potential functions
the requirement on the form

of the source functions is
significantly relaxed, making
the approach operationally
interesting.
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ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’'s
equations in
differential
form

Maxwell's equations

Boundary
conditions

The wave
equation

Potentials

Time-
harmonic

regime

Dynamic fields

Comments

http://www.youtube.com/watch?v=HPcAWN1V1-8
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