Formulario di Finanza delle Assicurazioni

Funzioni	numero decessi	$d_x = l_x - l_{x+1}$
biometriche	tasso di sopravvivenza	$p_x = \frac{l_{x+1}}{l_x}$
	probabilitá che una testa di etá	$_{n}p_{x}=rac{l_{x+n}}{l_{x}}$
	x sopravviva n anni	
	tasso di mortalitá	$q_x = 1 - p_x = \frac{d_x}{l_x}$
	probabilitá che una testa di etá	$q_x = 1 - p_x = \frac{d_x}{l_x}$ ${}_n q_x = \frac{l_x - l_{x+n}}{l_x}$
	x muoia entro n anni	
	probabilitá che una testa di etá	$_{k h}q_{x}=\tfrac{l_{x+k}-l_{x+k+h}}{l_{x}}$
	x muoia tra le etá $x+k$ e $x+k+h$	
	speranza matematica	$e_0 = \sum_{h=0}^{\omega-1} h \cdot {}_{h 1} q_0$ $e_x = \sum_{h=0}^{\omega-x-1} \frac{l_{x+h}}{l}$
		$e_x = \sum_{h=0}^{\omega - x - 1} \frac{l_{x+h}}{l_x}$

Rendite vitalizie	immediata e posticipata	$a_x = \sum_{k=1}^{\omega_x} {}_k p_x v^k$
	immediata e anticipata	$\ddot{a}_x = \sum_{k=0}^{\omega_x} {}_k p_x v^k = 1 + a_x$
	immediata, posticipata e temporanea	$_{n}a_{x}=\sum_{k=1}^{n}{_{k}p_{x}v^{k}}$
	immediata, anticipata e temporanea	$_{n}\ddot{a}_{x} = \sum_{k=0}^{n-1} {}_{k}p_{x}v^{k} = 1 + a_{x}$
	differita di m anni, posticipata	$_{m }a_{x}=\textstyle\sum_{k=m+1}^{\omega_{x}}{}_{k}p_{x}v^{k}$
	differita di m anni, anticipata	$m_{\mid}\ddot{a}_{x}=\sum_{k=m}^{\omega_{x}}{}_{k}p_{x}v^{k}=$
		$= {}_{m}p_{x}v^{m} + {}_{m }a_{x} = {}_{m}E_{x} + {}_{m }a_{x}$
	differita di m anni, posticipata e temporanea	${\textstyle \sum_{m n}} a_x = \sum_{k=m+1}^{m+n} {}_k p_x v^k$
	differita di m anni, anticipata e temporanea	${}_{m n}\ddot{a}_x = \textstyle\sum_{k=m}^{m+n-1}{}_k p_x v^k =$
		$= {}_{m}p_{x}v^{m} + {}_{m n}a_{x} - {}_{m+n}p_{x}v^{m+n} =$
		$_{m}E_{x}+_{m n}a_{x}{m+n}E_{x}$

Relazioni tra rendite	$\mathbf{e} \qquad \mathbf{a}_x = {}_m E_x a_{x+m}$	
	$_{m n}a_{x}={_{m}E_{xn}a_{x+m}}$	
	$_{m }\ddot{a}_{x}={_{m}E_{x}\ddot{a}_{x+m}}$	
	$ _{m n}\ddot{a}_{x} = {}_{m}E_{xn}\ddot{a}_{x+m} $	

Prestazioni	Capitale differito	$V(0,Y) = C_n p_x v^n = C_n E_x$
	temporanea caso morte	$V(0,Y) = \sum_{k=1}^{n} {}_{k-1 1}q_x v^k = C_n A_x$
	vita intera	$V(0,Y) = \sum_{k=1}^{\omega_x} {}_{k-1 1} q_x v^k = CA_x$
	polizza mista	$V(0,Y) = C({}_{n}E_{x} + {}_{n}A_{x})$
		$V(0,Y) = C^{v}{}_{n}E_{x} + C^{m}{}_{n}A_{x}$
	differita anticipata	
		$\Big = {}_m p_x v^m + {}_{m } a_x = {}_m E_x + {}_{m } a_x$

Premio Unico	U = V(0, Y)
Premio Annuo	$\boldsymbol{P}_n \ddot{\boldsymbol{a}}_x = V(0, Y)$

Fattori	Definizioni	$D_x = v^x l_x$
di		$C_x = v^{x+1}(l_x - l_{x+1})$
commutazione		$N_x = \sum_{h=0}^{\omega - x - 1} D_{x+h}$
		$M_x = \sum_{h=0}^{\omega - x - 1} C_{x+h}$
	Capitale differito	$_{h}E_{x} = \frac{D_{x+h}}{D_{x}}$
	Assicurazione elementare caso morte	$_{h 1}A_{x} = \frac{C_{x+h}}{D_{x}}$
	Rendita vitalizia anticipata	$\ddot{a}_x = \frac{N_x}{D_x}$
	Rendita vitalizia temporanea anticipata	$_{n}\ddot{a}_{x} = \frac{N_{x} - N_{x+n}}{D_{x}}$
	Rendita vitalizia differita anticipata	
	Assicurazione a vita intera	$A_x = \frac{M_x}{D_x}$
	Assicurazione temporanea caso morte	$_{n}A_{x} = \frac{m_{x} - M_{x+n}}{D_{x}}$