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Unsupervised learning
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Unsupervised Learning

❖In unsupervised learning we are not trying to predict 

anything

❖The objective is to cluster data to increase our 

understanding of the environment



ML for Finance | CdS MQVEF | Zelda Marino e Paolo Zanetti

Clustering Customers 

❖Suppose you are a bank and have hundreds of thousands of 

customers and 100 features describing each one

❖Unsupervised learning algorithms can be used to divide your 

customers into clusters so that you can anticipate their needs 

and communicate with them more effectively 
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Feature Scaling

Before using many ML algorithms (including those for 

unsupervised learning), it is important to scale feature values so 

that they are comparable.

Z-score scaling:    𝑉𝑎𝑙𝑢𝑒 →
𝑉𝑎𝑙𝑢𝑒−𝑀𝑒𝑎𝑛

𝑆𝐷

Min-Max scaling: 𝑉𝑎𝑙𝑢𝑒 →
𝑉𝑎𝑙𝑢𝑒−𝑀𝑖𝑛𝑖𝑚𝑢𝑚

𝑀𝑎𝑥𝑖𝑚𝑢𝑚−𝑀𝑖𝑛𝑖𝑚𝑢𝑚
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A Distance Measure

❖For clustering we need a distance measure

❖The simplest distance measure is the Euclidean distance 

measure. 

Feature y
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B

 A  B

 A

 B

Feature x

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑥𝐵 − 𝑥𝐴
2 + 𝑦𝐵 − 𝑦𝐴
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Distance Measure continued

❖When there are m features the distance between P and Q is

෍
𝑗=1

𝑚

𝑣𝑝𝑗 − 𝑣𝑞𝑗
2

where 𝑣𝑝𝑗 and 𝑣𝑞𝑗 and the values of the j-th feature for P and Q
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Cluster Centers

❖The center of a cluster (sometimes called the centroid) is 

determined by averaging the values of each feature for all 

points in the cluster. 

Observ. Feature 1 Feature 2 Feature 3 Feature 4
Distance 

to center

1 1.00 1.00 0.40 0.25 0.145

2 0.80 1.20 0.25 0.40 0.258

3 0.82 1.05 0.35 0.50 0.206

4 1.10 0.80 0.21 0.23 0.303

5 0.85 0.90 0.37 0.27 0.137

Center 0.914 0.990 0.316 0.330
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k-means algorithm to find k clusters

Assign each observation to 
nearest  cluster center

Choose k random points as 
cluster centers

Calculate new cluster 
centers

Have cluster 
centers 

changed?
NoEnd Yes
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A Simple Example
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Example continued
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Step 1: Choose initial cluster centers
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Example continued
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Example continued
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Example continued
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Step 4: Reassign observations to nearest cluster
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Example continued
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Step 5: Recalculate Cluster Centers
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Inertia

❖For any given k the objective is to minimize inertia, which is 

defined as the within cluster sum of squares:

where di is the distance of observation i from its cluster center

❖In practice we use the k-means algorithm with several 

different starting points and choose the result that has the 

smallest inertia 

𝐼𝑛𝑒𝑟𝑡𝑖𝑎 =෍

𝑖=1

𝑛

𝑑𝑖
2
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Choosing k: the elbow method
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Choosing k

❖The silhouette method: 

For each observation i calculate a(i), the average distance from other 

observations in its cluster, and b(i), the average distance from observations in the 

closest other cluster. The silhouette score for observation i, s(i), is defined as 

𝑠 𝑖 =
𝑏 𝑖 − 𝑎(𝑖)

max 𝑎(𝑖), 𝑏(𝑖)

Choose the number of clusters that maximizes the average silhouette score 

across all observations   

❖Use the gap statistic which compares the within cluster sum of squares 

with what would be expected with random data
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The Curse of Dimensionality

❖The Euclidean distance measure increases as the number of 

features increase.

❖This is referred to as the curse of dimensionality

❖Consider two observations that have values for feature j equal 

to xj and yj.  An alternative distance measure that always lies 

between 0 and 2 is
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Country Risk Case

Objective is to cluster countries according to their riskiness for foreign 

investment using 2019 data

Measures of Country Risk

❖GDP real growth rate (IMF)

❖Corruption index (Transparency international)

❖Peace index (Institute for Economics and Peace)

❖Legal Risk Index (Property Rights Association)

Collected data on 121 countries. Used Z-score scaling.
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Part of Original Data

Country
Corruption 

Index
Peace Index

Legal Risk 
Index

Real GDP growth 
rate (% per yr)

Albania 35 1.821 4.546 2.983

Algeria 35 2.219 4.435 2.553

Argentina 45 1.989 5.087 −3.061

Armenia 42 2.294 4.812 6.000

Australia 77 1.419 8.363 1.713

Austria 77 1.291 8.089 1.605
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Data after Z-score Scaling 

Country
Corruption 

Index
Peace Index

Legal Risk 
Index

Real GDP growth 
rate (% per yr)

Albania −0.633 −0.390 −0.878 0.127

Algeria −0.633 0.472 −0.959 −0.041

Argentina −0.099 −0.026 −0.484 −2.231

Armenia −0.259 0.635 −0.685 1.304

Australia 1.612 −1.261 1.900 −0.368

Austria 1.612 −1.539 1.701 −0.411
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Scaled corruption and legal risk were highly correlated

Therefore analysis 
based on 

• GDP growth rate
• Peace index
• Legal risk index
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How the total within-cluster sum of squares declines 
as k increases when k-means algorithm is used
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Silhouette scores (suggests k=3)

Number of clusters Average silhouette score

2 0.351

3 0.360

4 0.340

5 0.344

6 0.348

7 0.355

8 0.355

9 0.332
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Cluster centers (scaled values)

Peace index Legal index GDP

High risk 1.35 −0.83 −1.11

Moderate 

risk
0.22 −0.55 0.60

Low risk −0.85 1.02 −0.24
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Hierarchical Clustering

❖Start with each observation in its own cluster

❖Combine the two closest clusters

❖Continue until all observations have been combined into a 

single cluster

❖Can be implemented in Python with AgglomerativeClustering.

❖Measures of closeness of clusters:

Average Euclidean distance between points in clusters

Maximum distance between points in clusters

Minimum distance between points in clusters

Increase in inertia (a version of Ward’s method)
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Density-based clustering

❖Forms clusters based on the closeness of individual 

observations

❖Unlike k-means the algorithm, it is not based on 

cluster centers.

❖We might initially choose 8 observations that are 

close. After that we add an observation to the cluster 

if it is close to at least 5 other observations in the 

cluster, and repeat. 
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Density-based Clustering Examples



ML for Finance | CdS MQVEF | Zelda Marino e Paolo Zanetti

Distribution-based Clustering

❖Assumes that observations come from a 

mixture of distributions and uses statistical 

procedures to separate the distributions 
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Principal Components Analysis

❖This is another approach to reducing the number of variables

❖PCA replaces a set of n variables by n factors so that:

Any observation on the original variables is a linear combination of 

the n factors

The n factors are uncorrelated

The quantity of a particular factor in a particular observation is the 

factor score

The importance of a particular factor is measured by the standard 

deviation of its factor score across observations  

❖The idea is to find a few variables that account for a high 

percentage of the variance in the observations
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Example: Daily interest rate changes

Maturity PC1 PC2 PC3

1yr 0.083 −0.242 0.685

2yr 0.210 −0.465 0.376

3yr 0.286 −0.467 0.006

5yr 0.386 −0.315 −0.332

7yr 0.430 −0.099 −0.349

10yr 0.428 0.119 −0.153

20yr 0.426 0.394 0.172

30yr 0.411 0.478 0.323
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Interest rate changes

❖SD of factor scores

❖The fraction of the variance accounted for by first factor is

or about 87.3%.

❖The first two factors account for about 95.6% of the variance

PC1 PC2 PC3

11.54 3.55 1.78

=
11.542

11.542 + 3.552 + 1.782 +⋯
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Application to Country Risk case when all 4 features 
are used

PC1 PC2 PC3 PC4

Corruption index 0.602 −0.015 0.328 0.728

Peace index −0.524 0.201 0.825 0.065

Legal risk index 0.594 0.022 0.425 −0.683

GDP Growth rate 0.103 −0.979 0.174 −0.013

PC1 PC2 PC3 PC4

SD of factor scores 1.600 1.001 0.614 0.243

% of variance 64% 25% 9% 2%
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