

Appunti di Analisi Matematica per il Corso di Microconomia

Francesco Ciniglio

Dipartimento di Studi Aziendali ed Economici

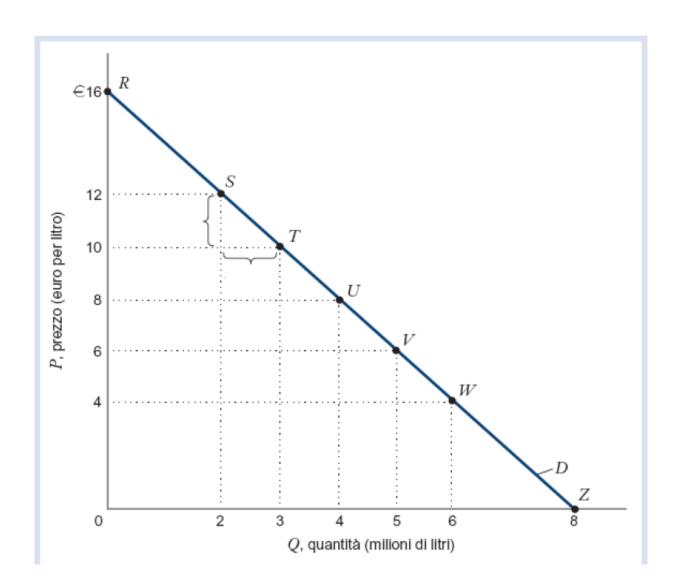
Università di Napoli Parthenope

Obiettivo di queste lezioni

- Elementi base di analisi matematica
- Alcune semplici metodologie e tecniche utili per affrontare al meglio il corso di Microeconomia
- Nota importante: queste slide ovviamente non possono in alcun modo sostituire il corso di Matematica

Argomenti della lezione

- Relazioni funzionali
- La derivata
- Come si calcola una derivata
- Problemi di massimo e di minimo


Relazioni tra variabili

- L'analisi economica richiede spesso di capire in che modo le variabili economiche si relazionino tra di loro.
- Tre modi per descrivere le relazioni fra variabili:
- 1. attraverso dei grafici
- attraverso delle tabelle
- 3. attraverso delle funzioni algebriche.

Domanda di vernici

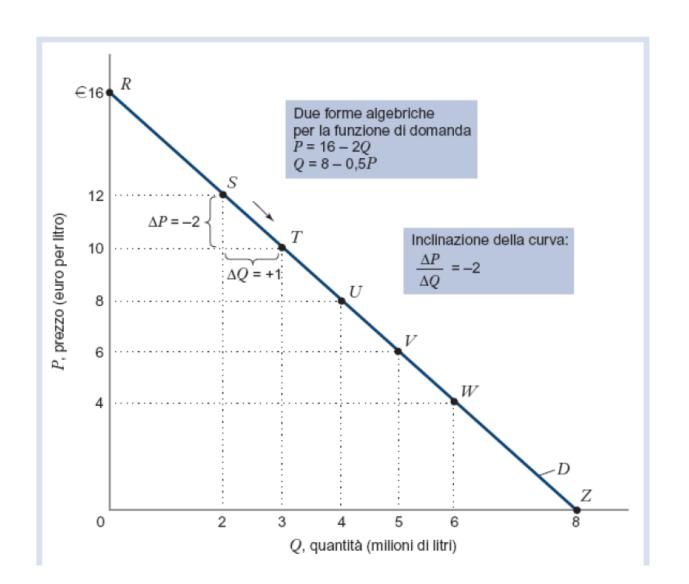
Punti del grafico	Prezzo della vernice (€ per litro)	Milioni di litri venduti in un anno
S	12	2
Т	10	3
U	8	4
V	6	5
W	4	6

Domanda di vernici

Equazione di domanda

- Q = f(P)
- Nel nostro caso: Q = 8-0.5*P
 - Esempio: se P=8, Q=8-0.5*=4

Equazione di domanda


• Equazione di domanda

$$Q = 8-0.5*P$$

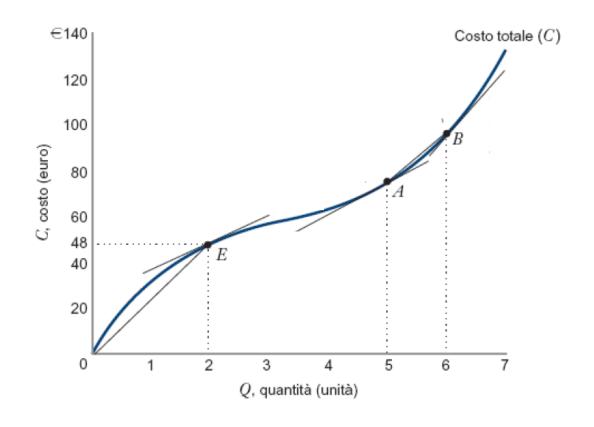
• Equazione di domanda inversa:

• Esempio: se Q=4, P=16-2*4=8

Grafico per la domanda di vernici

Grafico per la domanda di vernici

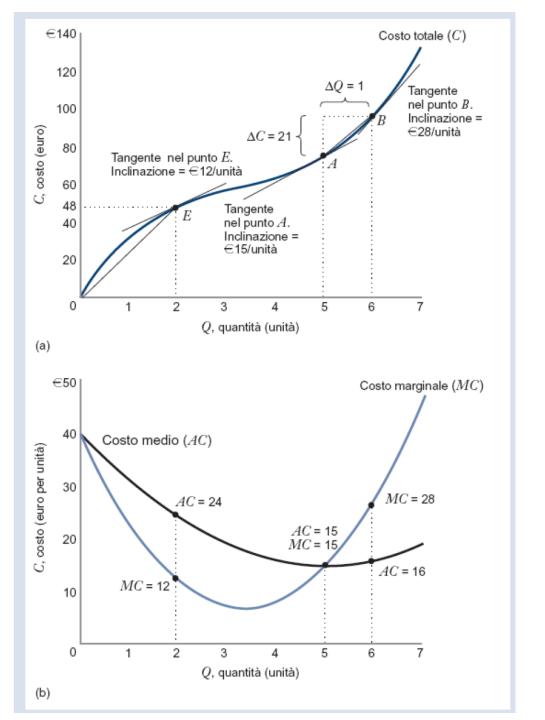
In generale: l'equazione di una retta è data da
 v = m*x+b

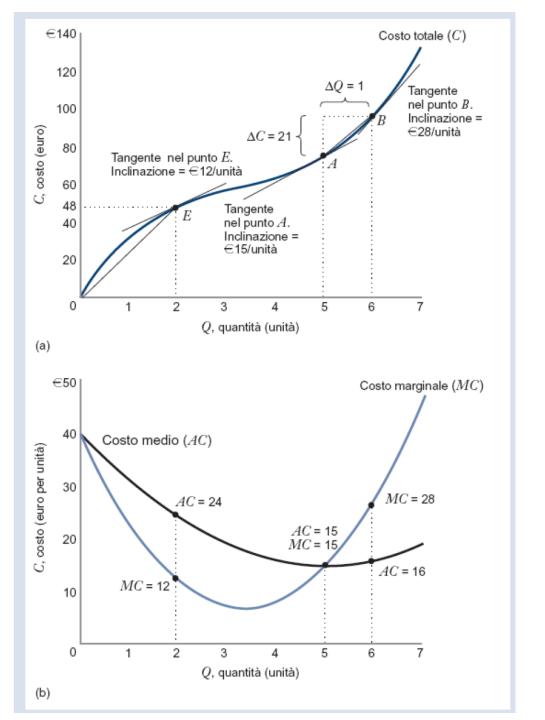

dove

- i valori di y sono riportati sull'asse verticale
- i valori di x sono riportati sull'asse orizzontale
- *m* è l'inclinaione della retta
- *b* è l'intercetta verticale

Nel nostro caso: $y \in P$; $x \in Q$; m=-2; b=16.

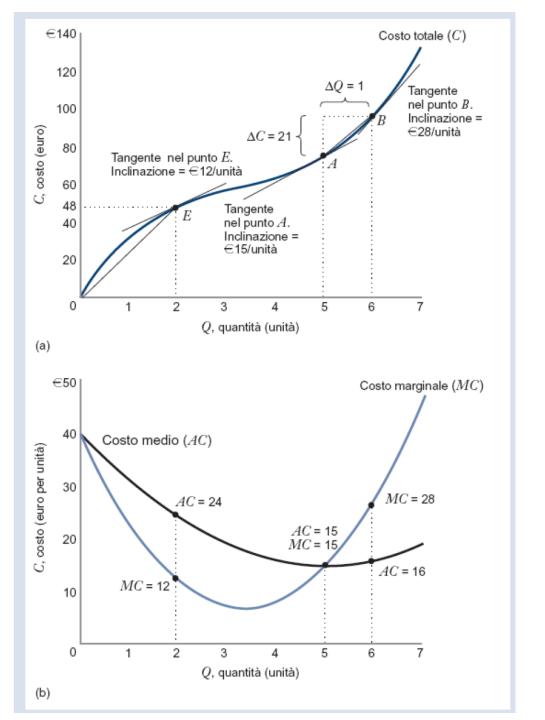
Funzione del costo totale

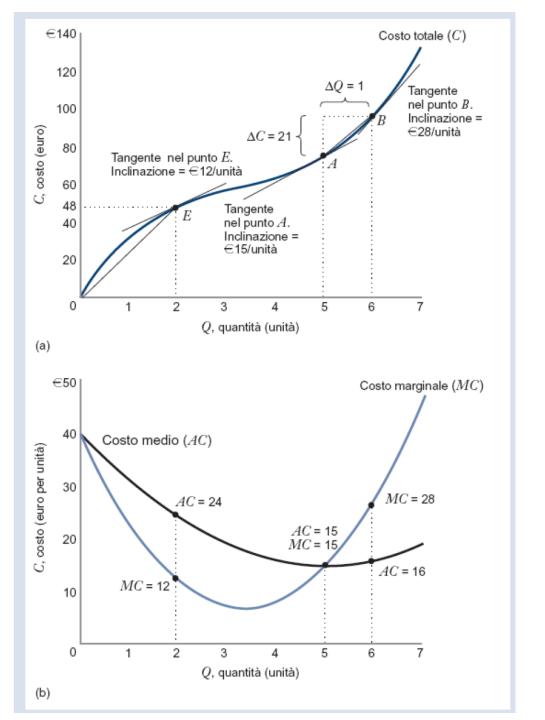

•
$$C(Q) = Q^3 - 10 * Q^2 + 40 * Q$$



(1) Quantity Produced (units) Q	(2) Total Cost (\$) C
0	0
1	31
2	48
3	57
4	64
5	75
6	96
7	133

Costo marginale


Il costo marginale misura l variabile dipendente a fon variazione unitaria nel valo indipendente.	te ^Q di difya	Total Cost	(3) "Arc" Marginal Cost (\$∕unit) C(Q) · C(Q · 1)
marpendence.	0	0	
Il costo marginale, per ese	resenta	$C(1) \cdot C(0) = 31$	
la variazione del costo tota	ad un	$C(2) \cdot C(1) = 17$	
incremento unitario della	produzione	e ed®è	
quindi dato da $\Delta C/\Delta Q$.	3	57	$C(3)\cdot C(2)=9$
	4	64	$C(4)\cdot C(3)=7$
	•	0.1	$C(5) \cdot C(4) = 11$
	5	75	-(-, -(-,
			$C(6)\cdot C(5)=21$
	6	96	C(7) C(4) 27
	7	133	$C(7) \cdot C(6) = 37$



Costo totale, costo marginale costo medio

(1) Quantity Produced (units) Q	(2) Total Cost (\$) C	(3) "Arc" Marginal Cost (\$/unit) C(Q) · C(Q · 1)	(4) "Point" Marginal Cost (\$/unit) dC/dQ	(5) Average Cost (\$/unit) C/Q
0	0	$C(1) \cdot C(0) = 31$	40	
1	31	$C(2) \cdot C(1) = 17$	23	31
2	48	$C(3) \cdot C(2) = 9$	12	24
3	57	$C(4) \cdot C(3) = 7$	7	19
4	64	$C(5) \cdot C(4) = 11$	8	16
5	75	$C(6) \cdot C(5) = 21$	15	15
6	96	$C(7) \cdot C(6) = 37$	28	16
7	133	() ()	47	19

Valore medio e valore marginale

Dato che il valore marginale esprime il saggio al quale varia il valore totale, è possibile verificare che:

- 1. Il valore medio deve necessariamente *aumentare* se il valore marginale è *maggiore* di quello medio.
- 2. Il valore medio deve necessariamente *ridursi* se il valore marginale è *minore* di quello medio.
- 3. Il valore medio è *costante* quando il valore marginale *uguaglia* quello medio.