
Machine Learning per la Finanza
Docenti: Zelda Marino e Paolo Zanetti

Email: {zelda.marino;paolo.zanetti}@uniparthenope.it



How Much Data Is Created Every Day

bit b 1

byte B 8 bit

kilobyte KB 103 bytes

megabyte MB 106 bytes

gigabyte GB 109 bytes

terabyte TB 1012 bytes

petabyte PB 1015 bytes

exabyte EB 1018 bytes

zettabyte ZB 1021 bytes

yottabyte YB 1024 bytes

https://financesonline.com/how-much-data-is-created-every-day/#:~:text=Every%20day%20Big%20Data%20statistics,(2021%2C%20February%209).
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What is Machine Learning

❖Machine learning is a branch of AI

❖The idea underlying machine learning is that we give a 

computer program access to lots of data and let it learn about 

relationships between variables and make predictions 

❖Some of the techniques of machine learning date back to the 

1950s  but improvements in computer speeds and data 

storage costs have now made machine learning a practical 

tool
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Software

❖There a several alternatives such as Python, R, MatLab, 

Spark, and Julia 

❖Need ability to handle very large data sets and availability of 

packages that implement the algorithms.

❖Python seems to be winning at the moment

❖Libraries such as Numpy, Pandas, Scikit-Learn (Sklearn), and 

Tensorflow make it easy to handle large data sets and 

implement machine learning algorithms in Python
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Machine Learning vs. Automation

❖Computers have been used to automate many business 

decisions (payroll, sending out invoices, summarizing sales by 

region, etc)

❖This is digitization: the third industrial revolution

❖Machine learning is central to the fourth industrial revolution 

where computers are used to create intelligence
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Example: Loan Applications (digitization vs. ML)

❖If loan officers applied certain known rules we could digitize 

their activities

❖If we did not know the rules used, we could use ML to 

determine them

❖But we could go one step further and use ML to improve upon 

the rules for accepting or rejecting loans
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Traditional statistics

❖Means, SDs

❖Probability distributions

❖Significance tests

❖Confidence intervals

❖Linear regression

❖etc
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The new world of statistics

❖Huge data sets 

❖Fantastic improvements in computer processing speeds and 

data storage costs

❖Machine learning tools are now feasible

❖Can now develop non-linear prediction models, find patterns 

in data in ways that were not possible before, and develop 

multi-stage decision strategies

❖New terminology: features, labels, activation functions, target, 

bias, supervised/unsupervised learning……
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Traditional Statistics vs Machine Learning

Develop Hypothesis

Collect Data

Test Hypothesis

Collect Data

Try different 
models

Find Patterns or Develop a 
Predictive Tool

Statistics Machine Learning
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Types of Machine Learning

❖Unsupervised learning (find patterns)

❖Supervised learning (predict numerical value or classification)

❖Semi-supervised learning (only part of data has values for, or 

classification of, target)

❖Reinforcement learning (multi-stage decision making)
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Applications of ML

❖Credit decisions

❖Classifying and understanding customers better

❖Portfolio management

❖Private equity

❖Anti-money laundering

❖Identifying fraudulent transactions

❖Language translation 

❖Voice recognition

❖Biometrics

❖etc
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Model evaluation

Historical data

Training set
Validation

set
Test
set

Split the data

Train the model Evaluate the modelValidate
the model

❖Divide data into three sets

Training set

Validation set

Test set

❖Develop different models using the training set and examine 
how well they generalize to new data using the validation set

❖Rule of thumb: increase model complexity until model no longer 
generalizes well to the validation set

❖The test set is used to provide a final out-of-sample indication 
of how well the chosen model works
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A Baby Data Training Set
(Salary as a function of age for a certain profession in a certain area)
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A Good Fit (Y = Salary, X = Age)

𝑌 = 𝑎 + 𝑏1𝑋 + 𝑏2𝑋
2 +𝑏3𝑋

3 +𝑏4𝑋
4 +𝑏5𝑋
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An Out-of-Sample Validation Set

Age (years) Salary ($)

30 166,000

26 78,000

58 310,000

29 100,000

40 260,000

27 150,000

33 140,000

61 220,000

27 86,000

48 276,000
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The Fifth Order Polynomial Model Does Not Generalize 
Well

❖ The root mean squared error (rmse) for the training      

data set is $12,902

❖ The rmse for the validation data set is $38,794

❖ We conclude that the model overfits the data
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Quadratic Model for Baby Data Set

❖𝑌 = 𝑎 + 𝑏1𝑋 + 𝑏2𝑋
2
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Linear Model for Baby Data Set

𝑌 = 𝑎 + 𝑏1𝑋
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The linear model under-fits while the
5th degree polynomial

Polynomial 

of degree 5

Quadratic 

model

Linear 

model

Training set 12, 902 32,932 49,731

Validation 

set
38,794 33,554 49,990
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Overfitting/Underfitting;
predicting salaries for people in a certain profession in a certain area
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Test Set Results for Quadratic Model

Age (years) Salary ($) Predicted salary ($) Error ($)

26 110,000 113,172 −3,172

52 278,000 279,589 −1,589

38 314,000 232,852 +83,148

60 302,000 264,620 +37,380

64 261,000 245,457 +15,543

41 227,000 249325 −22,325

34 200,000 199,411 +589

46 233,000 270,380 −37,380

57 311,000 273,883 −37,117

55 298,000 277,625 +20,375

SD of error is $34,273
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Typical Pattern of Errors for Training Set and Validation 
Set
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Bias-variance trade-off

❖Bias refers to error caused by underfitting

❖Variance refers to errors caused by overfitting
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Cross Validation

24
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Data Cleaning

❖Dealing with inconsistent recording

❖Removing unwanted observations

❖Removing duplicates

❖Investigating outliers

❖Dealing with missing items
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Tidy Data

26
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Tidy Data
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Tidy Data

28



ML for Finance | CdS MQVEF | Zelda Marino e Paolo Zanetti

Homogeneity

29
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Homogeneity

30
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Data types

31
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Data types

32

Missing values

Reasons:
• Data entry
• Error
• Valid missing value

Solutions:
• impute
• drop
• keep
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Bayes Theorem

𝑃 ȁ𝑌 𝑋 =
𝑃(𝑋&𝑌)

𝑃(𝑋)
=
𝑃(𝑋ȁ𝑌)𝑃(𝑌)

𝑃(𝑋)

We observe that 90% of fraudulent transactions are for large amounts late in the 
day. Also 3% of transactions are for large amounts late in the day and 1% of 
transactions are fraudulent 

P P
P

P


= = =

(large&late fraud) (fraud) 0.9 0.01
(fraud large&late) 0.3

(large&late) 0.03

𝑃(𝑌ȁ𝑋) =
𝑃(𝑋 𝑎𝑛𝑑 𝑌)

𝑃(𝑋)
𝑃(𝑋ȁ𝑌) =

𝑃(𝑋 𝑎𝑛𝑑 𝑌)

𝑃(𝑌)

𝑃 𝑋 𝑎𝑛𝑑 𝑌 = 𝑃 𝑌 𝑋 𝑃(𝑋) 𝑃 𝑋 𝑎𝑛𝑑 𝑌 = 𝑃 𝑋 𝑌 𝑃(𝑌)

Example
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Bayes can be counterintuitive

❖One person in ten thousand has a certain disease

❖A test is 99% accurate (i.e., if person has the disease the test 

gets this right 99% of the time; similarly when the person does 

not have the disease the test is right 99% of the time)

❖You test positive

❖What is the chance that you have the disease?

❖X=test positive, Y=has disease, ത𝑌= does not have disease

❖𝑃 ȁ𝑋 𝑌 = 0.99; 𝑃 𝑌 = 0.0001

❖𝑃 𝑋 = 𝑃 ȁ𝑋 𝑌 𝑃 𝑌 + 𝑃 ȁ𝑋 ത𝑌 𝑃 ത𝑌 = 0.99 × 0.0001 + 0.01 ×
0.9999 = 0.0101

❖𝑃 ȁ𝑌 𝑋 =
𝑃 ȁ𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)
=

0.99×0.0001

0.0101
= 0.0098
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