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1.  Neural networks. 

2.  Prediction of secondary structure. 

 

3.  Protein contact prediction. 

 

4.  3D structure prediction with Deep Learning. 

 

 



 
•  Computational structures based on 

(inspired to) the anatomy and 
physiology of biological neural 
networks 

•  Initially developed to simulate 
information processing and learning 
in brain 

Physiologically, a neuron 
receives excitatory and 
inhibitory stimuli (input) 
and emits a response 
signal (output) in case 
the intensi ty of the 
stimulus overcomes a 
given threshold 

Artificial neural networks (ANNs) 



ANN 

synapse 

Artificial neural networks (ANNs) 



Artificial neural networks (ANNs) 
•  They are an example of  machine-learning techniques, 

whose aim is automatically fitting a model value to a 
known value as closely as possible 

•  The algorithm will learn from a set of known examples by 
iterative changes to its parameters – weights of the input 
data – until the prediction best fits the reality  
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Artificial neural networks (ANNs) 

•  ANNs operate by processing information through 
“layers”; each layer can have many nodes or units 

•  The simplest NN is a two-layered network, an input 
layer and an output layer, called perceptron 

•  The firing of a node in a NN is simulated by assigning 
the binary values of 1 or 0 to its output; 1 is assigned 
when the weighted sum of inputs exceeds a 
predetermined threshold value 

•  The algorithm will learn from a set of known examples 
by iterative changes to its parameters – weights of the 
input data – until the prediction best fits the reality  



a1 a2 outputexpected 

Ex. 1 1 0.3 1 
Ex. 2 1 1 1 
Ex. 3 0 0.8 0 
Ex. 4 0.5 0.4 0 
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One of the solutions: w1 = 1, w2 = 0.5, θ = 0.9 

Ex. 1:  a1*w1 + a2*w2 = 1*1 + 0.3*0.5 = 1.15 (>0.9) à 1 
Ex. 2:  a1*w1 + a2*w2 = 1*1 + 1*0.5 = 1.5 (>0.9) à 1 
Ex. 3:  a1*w1 + a2*w2 = 0*1 + 0.8*0.5 = 0.4  (<0.9) à 0 
Ex. 4:  a1*w1 + a2*w2 = 0.5*1 + 0.4*0.5 = 0.7 (<0.9) à 0 
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Example of a 2D network 

1)  We assign 2 values (coordinates, ai) to each point & 
 associate a positive      or negative       output 

X=ΣaiWi 

0  0.2  0.4  0.6  0.8  1.0  1.2 

1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
   0 



X=ΣaiWi 
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a neural networks can learn from its own mistakes 

Example of a 2D network 

1)  We assign 2 values (coordinates, ai) to each point & 
 associate a positive      or negative       output 



What function best discriminates between  & ? 

A simple ANN would find at most a dashed straight line  
è  We need a more complex network, by introducing an 

hidden layer 



Hidden layer 
 
 
 

More parameters to be 
optimized 

Feed-forward ANN 
(direction) 

1 a 2 a 

1 0 

? ϑ> 

1 b 2 b 3 b 

yes no 

f (b1, k’1) f (b2, k’2) f (b3, k’3) 

f (a1, k11) f (a1, k12) 

f (a1, k13) f (a2, k21) 

f (a2, k22) 

f (a2, k23) 



A straight line is not enough to solve the problem, we need two! 

Solution 



Artificial neural networks (ANNs) 

•  A more complex and more common NN is one that has 
one or more layers between the input and output ones, 
the so-called hidden layers 

•  The hidden layers perform nonlinear transformations of 
the inputs entered into the network, because there is 
more than one path to the output node 



(positives) & What function best discriminates between 
(negatives)? 

Calculation of: 
TP, FP, TN, FN 

No matter how sophisticated the network is, it will always generate 
some incorrect predictions (FP & FN) 
All statistical methods need a validation to be confidently used 



ANNs for the prediction of secondary structure (SS) 

•  NNs have been widely used in Bioinformatics for the 
prediction of the secondary structure (SS) of proteins 

β -	strand	

α-helices and β-strands are the only regular protein secondary 
structure motifs; they are connected by turns (ordered 3/4-
residue motifs) or loops 



ANNs for the prediction of secondary structure (SS) 

•  Application of NNs to the prediction of the protein 
secondary structure is ideal for at least two reasons: 

   1.   The NN prediction is context-dependent, i.e. different 
 positions in the sequence (or alignment) can have a 
 different relevance (weight) for the prediction 



ANNs for the prediction of secondary structure (SS) 

•  Application of NNs to the prediction of the protein 
secondary structure is ideal for at least two reasons: 

   2.  Many examples to learn from are available for the 
 protein SS 

α-helix 
β-strand 

Protein Data Bank 



Defining the protein SS: DSSP (Dictionary of protein 
secondary structure) 

http://swift.cmbi.umcn.nl/gv/dssp/ 

DSSP-software:    assigns the SS according to hydrogen-  
   bond patterns 

DSSP-database:  contains SS assignments (plus more info) 
   for all the protein entries in the PDB. 



Defining the protein SS: DSSP (Dictionary of protein 
secondary structure) 

The DSSP code 
• H = alpha helix 
• B = residue in isolated beta-bridge 
• E = extended strand, participates in beta-sheet 
• G = 3-helix (3/10 helix) 
• I = 5 helix (pi helix) 
• T = hydrogen bonded turn 
• S = bend 
• Blank = loop or irregular 
 
Sequence:  MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLT-SLDAAKSELDKAIGRNTNGV 

DSSP:         HHHHHHHHH EEEEEE TTS EEEETTEE - HHHHHHHHHHHHTS TTB 

Sequence:  ITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVA 

DSSP:     HHHHHHHHHHHHHHHHHHHHH TTTHHHHHHS HHHHHHHHHHHHHHHHHHHH 

Sequence:  GFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYK 

DSSP:   T HHHHHHHHTT HHHHHHHHHSSHHHHHSHHHHHHHHHHHHHSSSGGG 

PDB ID: 103L (hydrolase) 



ANNs for the prediction of secondary structure (SS) 
•  The input signal for an amino acid is usually a group of 20 

units in the input layer; the signals of the input will be all 0 
except that representing the particular residue, which will be 1 

•  Usually the sequence is sampled by a sliding window, with the 
central residue being that for which the SS is predicted (the 
input is thus a long string of 0/1: for a 13-res window 13x20 units) 

           A  C  D  E  F  G  H  I  K  L  M  N  P  Q  R  S  T  V  Y  W 
A A A A V  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0 
D D D E E  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
E E E E E  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
F F W F F  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
I L L L L  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0 
G G G G G  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
H H H H H  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  
C C C C C  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
I L L L L  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0   
K K R K R  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0   
L I I I I  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0   
M M M M M  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0   
N N S S S  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0   
C C C C C  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

           A  C  D  E  F  G  H  I  K  L  M  N  P  Q  R  S  T  V  Y  W 
A A A A V  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0 
D D D E E  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
E E E E E  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
F F W F F  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
I L L L L  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0 
G G G G G  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
H H H H H  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  
C C C C C  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
I L L L L  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0   
K K R K R  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0   
L I I I I  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0   
M M M M M  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0   
N N S S S  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0   
C C C C C  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 



ANNs for the prediction of secondary structure (SS) 
•  When using multiple aligned sequences, the input layer 

signals will be related to sequence profiles based on these 
alignments 

•  Information contained in multiple alignments increases the accuracy 
of prediction, because proteins preserve their SS during evolution 

           A  C  D  E  F  G  H  I  K  L  M  N  P  Q  R  S  T  V  Y  W 
A A A A V .8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 .2  0  0  
D D D E E  0  0 .6 .4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
E E E E E  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
F F W F F  0  0  0  0 .8  0  0  0  0  0  0  0  0  0  0  0  0  0  0 .2   
I L L L L  0  0  0  0  0  0  0 .2  0 .8  0  0  0  0  0  0  0  0  0  0 
G G G G G  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
H H H H H  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  
C C C C C  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
I L L L L  0  0  0  0  0  0  0 .2  0 .8  0  0  0  0  0  0  0  0  0  0   
K K R K R  0  0  0  0  0  0  0  0 .6  0  0  0  0  0 .4  0  0  0  0  0   
L I I I I  0  0  0  0  0  0  0 .8  0 .2  0  0  0  0  0  0  0  0  0  0   
M M M M M  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0   
N N S S S  0  0  0  0  0  0  0  0  0  0  0 .4  0  0 .6  0  0  0  0  0   
C C C C C  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 



ANNs for the prediction of secondary structure (SS) 
•  The output layer usually consists of 3 units, corresponding to 

the three alternative conformations to predict (a-helix, b-strand, 
loop/coil) 

•  An output like (1, 0, 0) would correspond to a perfect helix 
prediction; however prediction is usually done based on the 
highest number in output (see below) 

A simplified representation of a 
multilayer NN: 

prediction is made on the central 
residue of the window (an Ile); 
layer nodes receiving signals 

above a certain value, e.g. the 
red one, will fire to the output 

layer (prediction: helix); 
confidence of prediction can be 
related to how close to 1 is the 

highest number 



 

Implementing a NN requires three phases: 

 

• Training: method development using non-homologous protein 
sequences of known structure 

 

• Test: check of the method on protein sequneces of known 
structure 

 

• Validation: statistical analysis of obtained results 

ANNs for the prediction of secondary structure (SS): 
procedure 



w1, w2, w3, w4,... 

o correct? 

yes 
continue 

No 
change wi 

ANNs for the prediction of secondary structure (SS): 
training 

α-helix β-strand 



w1, w2, w3, w4,... 

o correct? 

Yes/No 
continue 

No 
change wi 

What sequences do we use for the test phase? They must also 
be structure-known   

ANNs for the prediction of secondary structure (SS): 
test 



Validation  
•  To be reliable, knowledge-based methods must be tested 

with a rigorous statistics  

•  The most commonly used validation statistics is the cross-
validation (or jack-knife test) 

•  From cross-validation results measures of the prediction 
performance (such as sensitivity, specificity, correlation 
coefficient etc.) can be calculated, which are universal, 
therefore comparable and reproducible 



L o w - s e q u e n c e 
similarity proteins, to 
have a comp le te 
information (dataset) 

Accuracy 
calculation 

ANN-training 
(80%) 

ANN-test 
(20%) 

random 
division 

100 times 

Final accuracy 
(averaged over 100) 

ANNs for the prediction of secondary structure (SS): 
cross-validation 

α-helix β-strand 



Accuracy evaluation parameters  
•  Q3 = percentage of sequence expected to have a correct 

SS prediction based on 3-state classification, H-E-C 

•  Matthew’s =  geometrical mean of the correlation  
coefficients relative to the three states H-E-C (preferable to 
Q3) 

TP(H)*TN(H) – FP(H)*FN(H) 
CCH= 

(TP(H)+FP(H))*(TP(H)+FN(H))*(TN(H)+FP(H))*(TN(H)+FN(H)) 

CCM =     CCH * CCE * CCC 

3 (geometrical mean) 

  TP(H)  TP(E)  TP(C) Q3 = Tot(H)  Tot(E)  Tot(C) + +  * 100 ( )  



Server online: PSIPRED 

PSIPRED dual network 
prediction: first a raw profile 
generated by PSI-BLAST is 

taken and scaled to a 0-1 
range. A window of 15 

elements is fed to the 1st 
network, which performs 

the initial SS prediction 
using various residue 

parameters. This initial 
prediction is fed into a 2nd 

NN where it is filtered to 
produce the final three-

state SS prediction 

Several SS prediction servers based on NNs are available, including 
PSIPRED and PHDsec  



>gi|15595724|ref|AAG03916.1| transcriptional  

regulator Dnr [Pseudomonas aeruginosa PA01] 

MEFQRVHQQLLQSHHLFEPLSPVQLQELLASSDLV 

NLDKGAYVFRQGEPAHAFYYLISGCVKIYRLTPEG 

QEKILEVTNERNTFAEAMMFMDTPNYVATAQAVVP 

SQLFRFSNKAYLRQLQDNTPLALALLAKLSTRLHQ 

RIDEIETLSLKNATHRVVRYLLTLAAHAPGENCRV 

EIPVAKQLVAGHLSIQPETFSRIMHRLGDEGIIHL 

DGREISILDRERLECFE 

 

An example… PSIPRED results 



>gi|15595724|ref|AAG03916.1| transcriptional regulator Dnr [Pseudomonas aeruginosa PA01] 

MEFQRVHQQLLQSHHLFEPLSPVQLQELLASSDLVNLDKGAYVFRQGEPAHAFYYLISGCVKIYRLTPEG 

QEKILEVTNERNTFAEAMMFMDTPNYVATAQAVVPSQLFRFSNKAYLRQLQDNTPLALALLAKLSTRLHQ 

RIDEIETLSLKNATHRVVRYLLTLAAHAPGENCRVEIPVAKQLVAGHLSIQPETFSRIMHRLGDEGIIHL 

DGREISILDRERLECFE 

 

An example… 

PHDsec results 



Confidence scores 

To each predicted sequence position a confidence score is 
associated which indicates the probability of the prediction to 
be correct 

Dnr da Pseudomonas aeuruginosa 
…LLTLAAHAPGENCRVEIPVAKQ… 

…LLTLAAHAPGENCRVEIPVAKQ… 
…HHHHHHhcCCCceEEEEeCCHH… 
…9998874499802899725989… 

…LLTLAAHAPGENCRVEIPVAKQ… 
…HHHHhh  CCCC  ee cc HH… 
…8887411677750343023558… 

 

PSIPRED PHDsec 



Metaserver: resources exploiting and combining the best 
SS prediction methods and improve their performance 

Dnr da Pseudomonas aeuruginosa 
…LLTLAAHAPGENCRVEIPVAKQ… 

…LLTLAAHAPGENCRVEIPVAKQ… 
…HHHHHHhcCCCceEEEEeCCHH… 
…9998874499802899725989… 

…LLTLAAHAPGENCRVEIPVAKQ… 
…HHHHhh  CCCC  ee cc HH… 
…8887411677750343023558… 

 

PSIPRED PHDsec 

…LLTLAAHAPGENCRVEIPVAKQ… 
…HHHHHHhcCCCceEEEEeCCHH… 
…HHHHhh  CCCC  ee cc HH… 

 

…LLTLAAHAPGENCRVEIPVAKQ…  
…HHHHHH  CCCC  EE  C HH… 

(consensus) 



 

 

 Accuracy of NN-based methods for the prediction of protein 
secondary structure can be vary high, up to 90-95%  
 

Accuracy for a given query depends on the availability of 
homologs for it, i.e. on the availability of evolutionary 
information… 

ANNs for the prediction of secondary structure (SS) 



Protein contact map 
A protein contact map is a 2D representation of a protein where 
a black dot is present at the cross-over of two residues (i and j), 
if they are closer than a given cut-off distance (usually 6 Å). 

i 

j 

res-i 

res-j 

22 

48 



Protein contact map 

Both axes are the 
sequence of the protein 

In this example only contacts between residues with their Cα 
within 6 Å are considered 



Protein contact map 

Both axes are the 
sequence of the protein 

In this example contacts between residues with any of their 
heavy (non-hydrogen) atoms within 6 Å are considered 



Residue-residue contacts 

Residue which are in close contact tend to be complementary 
in shape and properties 



Residue-residue contacts 

Residue which are in close contact tend to be complementary 
in shape and properties 
 

If one of them gets mutated, a compensating mutation will most 
probably occur to the other amino acid involved in the contact 

Initial sequence single loss of 
function mutation 

rescued by a 
compensating 

mutation 



Residue-residue contact prediction 

The theoretical basis for residue-residue contact prediction is 
that residues which are in contact tend to co-evolve, in order 
to stay nicely complementary 



Residue-residue contact prediction 

The theoretical basis for residue-residue contact prediction is 
that residues which are in contact tend to co-evolve, in order 
to stay nicely complementary 



The MSA of a protein family comprises homolog sequences from 
a common ancestor aligned relative to each other 
Therefore, compensatory mutations in MSA columns can be 
used to infer spatial proximity of residue pairs  

Residue-residue contact prediction 



Early contact prediction methods used local pairwise statistics 
to infer contacts considering pairs of amino acids as statistically 
independent from others 
 

The traditional covariance approaches suffered from high false 
positive rates because of their inability to cope with transitive 
effects that arise from chains of correlations between multiple 
residue pairs  
 Considering three residues A, B and C, 

where A physically interacts with B and B 
with C, strong statistical dependencies 
between pairs (A,B) and (B,C) can induce 
strong indirect signals for residues A and C, 
although they are not physically interacting, 
which can be even larger than signals of 
other directly interacting pairs (D,E) and 
thus lead to false predictions 

Residue-residue contact prediction 



To deal with this, first a global statistical model that made 
predictions for a single residue pair while considering all other 
pairs in the protein was developed, which represented a huge 
leap forward 
 

Then,  machine-learning based methods, including neural 
networks, have emerged that extract features from MSAs in 
order to learn associations between input features and residue-
residue contacts  
 
Sequence features used in input typically include predicted 
solvent accessibility, predicted secondary structure, contact 
potentials, conservation scores, pairwise coevolution statistics, 
etc. 

Residue-residue contact prediction 



Residue-residue contact prediction 

When residue pairwise interactions (contact maps) are 
predicted based on coevolution, i.e. on the MSA obtainable for  
a protein, they can be used for predicting its 3D structure 



Deep learning 
Deep learning methods are machine 
learning (ML) methods based on 
artificial neural networks (ANNs), also 
named deep neural networks (DNNs)  
 
The adjective "deep" in deep learning 
refers to the use of multiple layers in the 
network 

Since the 2010s, advances in ML algorithms 
and computer hardware have led to more 
efficient methods for training DNNs that 
contain many layers of non-linear hidden units 



Deep learning: common applications 

DNNs have been successfully applied to predict the biomolecular 
target of a drug, to detect toxic effects of environmental chemicals in 
nutrients, household products and drugs, etc. 

Within science 

Outside science 
Fraud detection 
Customer relationship management systems 
Computer vision 
Vocal AI 
Natural language processing 
Autonomous vehicles 
Supercomputers 
Investment modeling 
E-commerce 
Siri, Alexa, Cortana, Google Assistant, etc., are all very popular 
applications of Deep Learning 



Deep learning: limitations 
Deep learning and neural networks in general may have two main 
limitations: 
 
overfitting, i.e. the production of an analysis that corresponds too 
closely or exactly to a particular set of data, and may therefore fail 
to fit to additional data or predict future observations on unseen 
data; an overfitted model contains more parameters than can be 
justified by the data. It can be a consequence of the training data 
being incomplete and redundant 
 
computational time, the more sophisticated is the network the 
more CPU time it will require 



Data diversity (heterogenicity) vs overfitting  

(the most diverse the better) 

Example: dog recognition 

risk of overfitting: data 
correspond to a 

specific dog breed 

Future observations to be predicted 



Jumper et al., (2021) Nature 596: 583–589 

AlphaFold2: the structure prediction miracle 
Performance on the CASP14 dataset (n = 87 protein domains) 

GDT_TS: percentage of corresponding  
α-carbons within a 4 Å distance 



AlphaFold2: the structure prediction miracle 
Performance on the CASP14 dataset (n = 87 protein domains) 

The leap in performance in CASP14  



AlphaFold2: the structure prediction miracle 
overview 

https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-
miracle/ 

Jumper et al., (2021) Nature 596: 583–589 



AlphaFold2: the structure prediction miracle 
overview 

First, AlphaFold 2 uses the input amino acid sequence to query several databases of 
protein sequences, and constructs a multiple sequence alignment (MSA) highlighting 
the parts of the sequence that are more likely to mutate and possible correlations 
 

It also tries to identify proteins that may have a similar structure to the input 
(“templates”), and constructs an initial representation of the structure (the “pair 
representation”), i.e. a model of which amino acids are likely to be in contact with 
each other 

1 



AlphaFold2: the structure prediction miracle 
overview 

Then, AlphaFold 2 takes the MSA and the templates, and passes them through a 
transformer (Evoformer, a neural network), sort of an “oracle” that can quickly 
identify which pieces of information are more informative  
 
The objective of this part is to refine the representations of the MSA and the pair 
interactions, and to iteratively exchange information between them. This process is 
organised in blocks that are repeated iteratively (48 blocks in the published model) 

2 



AlphaFold2: the structure prediction miracle 
overview 

The last part is the structure module. This piece of the pipeline (again a 
neural network) takes the refined “MSA representation” and “pair 
representation”, and leverages them to construct a three-dimensional model 
of the structure  
 

This network does not use any optimization algorithm: it generates a final 3D 
structure, including side chains, in a single step  

3 



AlphaFold2: the structure prediction miracle 
overview 

The model works iteratively. After generating a final structure, it will take all the 
information (i.e. MSA representation, pair representation and predicted structure) and 
pass it back to the beginning of the Evoformer blocks 
 

This allows the model to refine its predictions 

3 2 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03819-2/
MediaObjects/41586_2021_3819_MOESM5_ESM.mp4 



AlphaFold2: the DataBase 



Also available in FASTA 



An example… 



AlphaFold2 confidence score 
The AlphaFold2 confidence score is the pLDDT: predicted 
Local-Distance Difference Test 
 
w Regions with pLDDT > 90 are expected to be modelled to 
high accuracy. These should be suitable for any application that 
benefits from high accuracy (e.g. characterizing binding sites) 
 
w Regions with pLDDT between 70 and 90 are expected to 
be modelled well (a generally good backbone prediction) 
 
w Regions with pLDDT between 50 and 70 are low 
confidence and should be treated with caution. 
 
w Regions with pLDDT < 50 should not be considered, they 
are most probably unstructured (disordered) in physiological 
conditions or only structured as part of a complex 



Another example… 



Lesson 12. 
Content 

1.  Neural networks (NNs). Mimic physiological NNs. Part of 
Artificial Intelligence (AI) methods. Can learn from their 
own errors. Need many diverse examples with a known 
answer to learn (to be trained) from; when complex 
(multilayers etc.) need high computational power 

2.  Prediction of secondary structure. Highly efficient. 
Performed based on NNs since at least two decades. 

3.  Protein contact prediction. Recently recognized as an 
efficient basis for protein 3D structure prediction. Exploits 
evolutionary info through co-evolution in MSAs. 

4.  3D structure prediction with Deep Learning. Come into 
field in the last few years, set a revolution in it. Reaches 
experimental-like accuracy in most cases.  


