
Word Embeddings

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 22-23

Natural Language Processing

Basic Applications of Word Embeddings

• Given trained word embeddings, one might use them for
• Finding analogies between words and calculating the similarity of words
• Combining with a classifier
• to perform, for instance, sentiment analysis or
• To classify customer comments or reviews from user feedback surveys

Some basic applications of word embeddings

Semantic analogies
and similarity

village
towncity

countrygas
oil

petroleum happy
joyfulsad

Sentiment analysis Classification of
customer feedback

Advanced Applications of Word Embeddings

Advanced applications of word embeddings

Question answeringInformation extractionMachine translation

What we’re going to learn

• Identify the key concepts of word representations
• Words’ numerical representation for using mathematical models

• Generative word embeddings
• How a model learns word embeddings from data

• Prepare text for machine learning
• Transforming a corpus of text into a training set for a machine learning model

• Continuous bag-of-words model
• One of the ways to create word embeddings

Basic word representation

• With word vectors, one will be able to create a numerical matrix to
represent all the words in a vocabulary
• Each row vector of the matrix corresponds to one of the words

• There are several ways to represent words a numbers
• Integers
• One-hot vectors
• Word embeddings

Integers

• To assign a unique integer to each word
+ Simple
- Ordering: little semantic sense

Integers
Word Number

a 1
able 2
about 3
... ...

hand 615
… …

happy 621
... ...

zebra 1000

Integers

+ Simple

- Ordering: little semantic sense <hand
615

happy
621

zebra
1000<

?! ?!

One-hot vectors

• Represent the words using a column vector where each element
corresponds to a word in the vocabulary

One-hot vectors

1
0
0
⋮
0
⋮
0
⋮
0

a
able
about
...
hand
…
happy
...
zebra

“a”
0
0
0
⋮
0
⋮
1
⋮
0

a
able
about
...
hand
…
happy
...
zebra

“happy”
0
0
0
⋮
0
⋮
0
⋮
1

a
able
about
...
hand
…
happy
...
zebra

“zebra”

... ...1000
rows

One-hot vectors

• Words can be considered categorical variables
• Simple to go from integer to one-hot vectors and back

• Mapping the words in the rows to their corresponding row number

One-hot vectors
Word Number

a 1
able 2

about 3
... ...

hand 615
… …

happy 621
... ...

zebra 1000

0
0
0
⋮
0
⋮
1
⋮
0

a
able
about
...
hand
…
happy
...
zebra

“happy”
1
2
3
...

615
…

621
...

1000

One-hot vectors

• + Simple
• + No implied ordering

• - Huge vectors

• - No embedded meaning

One-hot vectors

+ Simple

+ No implied ordering

0
⋮
1
⋮
0

a
…
happy
...
Zyzzyva

~10k—1M+
rows

paper

happy

excited

d(paper, excited)
= d(paper, happy)
= d(excited, happy)

- Huge vectors

- No embedded meaning

One-hot vectors

+ Simple

+ No implied ordering

0
⋮
1
⋮
0

a
…
happy
...
Zyzzyva

~10k—1M+
rows

paper

happy

excited

d(paper, excited)
= d(paper, happy)
= d(excited, happy)

- Huge vectors

- No embedded meaning

Word Embeddings

• Meaning as vectors
• Example
• Words along one axis

• Imagine storing their positions as numbers in a single 1-length vector
• We can use any decimal value

• happy and excited most similar to each other as compared to paper

Meaning as vectors

negative -1 0 1 2-2 positive

anger boringrage paper happy excitedkittenspider
(-2.08) (-0.91)(-2.52) (0.03) (1.75) (2.31)(1.09)(-1.53)

Meaning as vectors
• We can extend by adding a vertical number line

• The vocabulary of words is represented with a small vector of length 2

• We gained some meaning while losing some precision
• It is possible for two words to be located on the same point in this 2D plot (e.g., snake and spider)

• The more coordinates you have, the more things you can capture

• That is an example of the word embedding

Meaning as vectors

negative -1 0 1 2-2 positive

-1

1

abstract

concrete

rage
anger

spider

boring

kitten

happy

excited

paper

thought

puppy

snake

(-2.52, -0.54)
(-2.08, -0.71)

(-1.53, 0.41)

(1.75, -0.81)

(2.31, -0.54)

(0.03, 0.79)

(0.03, -0.93)

(0.98, 0.57)
(-1.53, 0.41)

(1.09, 0.57)

Word embedding vectors

• + Low dimension
• Practical for computations

• + Embed meaning
• e.g., semantic distance

• forest ≈ tree and forest ≠ ticket
• e.g., analogies

• Paris:France = Rome:?

• Encoding the meaning of words is also the first step towards encoding the
meaning of entire sentences
• which is the foundation for more complex NLP use cases, e.g., question answering and

translation

+ Low dimension

Word embedding vectors
0.123

⋮
-4.059

⋮
1.891

~100—~1000
rows

“happy”

forest ≈ tree forest ≉ ticket

Paris:France :: Rome:?

+ Embed meaning
○ e.g. semantic distance

○ e.g. analogies

Terminology

word vectors

Terminology

integers one-hot vectors word embedding vectors

word embeddings
“word vectors”

• All vector representations of words, including one-hot vectors and word
embedding vectors, are known as word vectors
• More commonly, the terms word vector and word embeddings are used as well to refer

to word embedding vectors

How to create word Embeddings

Word embeddings process

• To create a word embedding we need
• a corpus text

• The context of a word tells you what type of words tend to occur near that specific word. The
context is important as this is what will give meaning to each word embedding

• an embedding method

Corpus

e.g. Wikipedia

Embedding method

Word embedding process

General-
purpose

Specialized

Words in context

Word embeddings

Transformation

Hyperparameters
Word embedding size

Machine learning model
words

integers, vectors

...

“I think [???] I am”
Learning task

e.g. contracts,
law books

Self-supervised
= unsupervised

+ supervised
Meaning

Basic Word Embedding Methods

• Word2vec (Google, 2013)
• Uses a shallow neural network to learn word embeddings

• Continuous bag-of-words (CBOW)

• Continuous skip-gram/Skip-gram with negative sampling

• Global vectors (GloVe) (Stanford, 2014)
• Factorizes the log of the corpora word co-occurrence matrix

• fastText (Facebook, 2016)
• Considers the structure of words by representing words as an n-gram of

characters
• Supports out-of-vocabulary (OOV) words
• Word embedding vectors can be averaged together to make vector

representations of phrases and sentences

Advanced Word Embedding Methods

• Use advanced deep neural network architectures to refine the representation
of the words' meaning according to their contexts
• The words have different embedding depending on their context

• Deep Learning, contextual embeddings
• BERT (Google, 2018)

• Bidirectional Encoder Representations from Transformers

• ELMo (Allen Institute for Ai, 2018)
• Embeddings from Language Models

• GPT-2 (OpenAI, 2018)
• Generative PreTraining models

• Available off-the-shelf pretrained models

Continuous Bag-of-Words Model

• Recap, one needs
• Corpus
• ML model for the learning task
• Corpus transformation into a representation suited to the ML model

• The set of word embeddings is a byproduct of the learning task

Corpus

Embedding method

Continuous bag-of-words word embedding process

Word embeddings

Transformation “I think
[???] I am”

CBOW “therefore”

Center word prediction: rationale

• If two unique words are both frequently surrounded by similar sets of
words in various sentences, then those words are semantically related

• The model will end up learning the meaning of words based on their
contexts

Center word prediction: rationale

The little is barking

dog
puppy
hound
terrier
...

?

Corpus CBOWTransformationCenter word prediction: rationale

The little is barking

dog
puppy
hound
terrier
...

?

Corpus CBOWTransformation

Creating a training example

• Using the corpus to create training data
• I am happy because I am learning

• Given a center word, e.g., happy, define the context as the C words just
before and after the center word
• C (hyperparameter of CBOW) is the half size of the context, C = 2 in this example
• The window is the count of the center word plus the context words

Center word prediction: rationale

The little is barking

dog
puppy
hound
terrier
...

?

Corpus CBOWTransformation

Creating a training example

I am happy because I am learning

center word

context words
C = 2

window
window size = 5

context half-size

Corpus CBOWTransformation

From corpus to training

• To train the models, one needs a set of examples
• Context words and the center word to predict, each

From corpus to training

Corpus

Embedding method

Word embeddings

Transformation

I am happy because I am learning
Context words Center

word
I am because I happy
am happy I am because

happy because am learning I

CBOW

Context words

Predicted center word

Corpus CBOWTransformation
From corpus to training

Corpus CBOWTransformation

Corpus

Embedding method

Word embeddings

Transformation

I am happy because I am learning
Context words Center

word
I am because I happy
am happy I am because

happy because am learning I

CBOW

Context words

Predicted center word

From corpus to training
Corpus CBOWTransformation

Corpus

Embedding method

Word embeddings

Transformation

I am happy because I am learning
Context words Center

word
I am because I happy
am happy I am because

happy because am learning I

CBOW

Context words

Predicted center word

CBOW in a nutshell

• To the model
• context words as inputs
• center words as outputsCBOW in a nutshell

Source: Mikolov, T., Chen, K.,
Corrado, G.S., & Dean, J. (2013).
Efficient Estimation of Word
Representations in Vector Space

Cleaning and tokenization
• The words of the corpus should be case insensitive

• Uppercase or lowercase

• Handling of punctuations
• E.g., all interrupting punctuation marks as a single special word in the vocabulary

• One could ignore non-interrupting punctuation marks, e.g., quotation marks

• Collapse multi-sign marks into single marks, …

• Handling of numbers
• Drop all numbers not carrying any meaning

• Keep the numbers if having special meaning for the use case

• Tag as a special token if too many, e.g., many area codes

• Handling of special characters (Math, currency, … symbols)

• Usually, dropped

• Handling special words (from tweets or reviews, e.g., Emojis, hashtags)

• Depending on the goals of your task

Cleaning and Tokenization

• Cleaning and tokenization matters

• Letter case

• Punctuation

• Numbers

• Special characters

• Special words

Cleaning and tokenization matters

● Letter case

● Punctuation

● Numbers

● Special characters

● Special words

“The” == “the” == “THE”

, ! . ? → . “ ‘ « » ’ ” → ∅ … !! ??? → .

1 2 3 5 8 → ∅

→ lowercase / upper case

∇ $ € § ¶ ** → ∅

😊 #nlp → :happy: #nlp

3.14159 90210 → as is/<NUMBER>

Transforming words into vectors

• To feed the context words into the model and to predict and central
word, they must be suitably represented
• Center words into vectors

• First, create the vocabulary V of unique words in the corpus

• Encode each word as a one-hot vector of size |V|
Transforming center words into vectors

I am happy because I am learningCorpus

Vocabulary am, because, happy, I, learning

One-hot
vector am

because
happy

I
learning

am because happy I learning
1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

Transforming context words into vectors

• To feed the context words into the model and to predict and
central word, they must be suitably represented
• Context words into vectors

• Create a single vector that represents the context from all the context wordsTransforming context words into vectors

Average of individual one-hot vectors

am
because

happy
I

learning

I am because I
0
0
0
1
0

1
0
0
0
0

0
1
0
0
0

0
0
0
1
0

+ + + =

0.25
0.25

0
0.5
0

/ 4

I am because I

Final prepared training set

• Example
• First window

• Note that the vectors are actually column vectors

Final prepared training set

Context words Context words vector Center word Center word vector

I am because I [0.25; 0.25; 0; 0.5; 0] happy [0; 0; 1; 0; 0]

am happy I am [0.5; 0; 0.25; 0.25; 0] because [0; 1; 0; 0; 0]

happy because am learning [0.25; 0.25; 0.25; 0; 0.25] I [0; 0; 0; 1; 0]

The quickest recap on neural networks
Towards the CBOW model

Biological neuron

• A neuron is a small
“computational” unit
• 1010 in our brain
• Its “power” is due to links to other

neurons making a big network of
100 trillion connections!!!

Artificial neuron

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Weights
Input layer

Weighted sum

Non-linear transform

Output value

bias

Feedforward Neural Networks

• Can also be called multi-layer perceptrons (or MLPs)
8 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

x1 x2

y1

xn0…

…

+1

b

…
U

W

y2 yn2

h1 h2 h3 hn1

Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight vector wi and bias bi for each unit i into a single weight matrix W and
a single bias vector b for the whole layer (see Fig. 7.8). Each element Wji of the
weight matrix W represents the weight of the connection from the ith input unit xi to
the jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now the hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following, using the
sigmoid function s :

h = s(Wx+b) (7.8)

Notice that we’re applying the s function here to a vector, while in Eq. 7.3 it was
applied to a scalar. We’re thus allowing s(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have n0
represent the number of inputs, so x is a vector of real numbers of dimension n0,
or more formally x 2 Rn0 , a column vector of dimensionality [n0,1]. Let’s call the
hidden layer layer 1 and the output layer layer 2. The hidden layer has dimensional-
ity n1, so h 2 Rn1 and also b 2 Rn1 (since each hidden unit can take a different bias
value). And the weight matrix W has dimensionality W 2 Rn1⇥n0 , i.e. [n1,n0].

Take a moment to convince yourself that the matrix multiplication in Eq. 7.8 will
compute the value of each h j as s

�Pn0
i=1 Wjixi +b j

�
.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single
output node, and its value y is the probability of positive versus negative sentiment.

Architecture of the CBOW model

• The CBOW model is based on a shallow dense neural network
• Hyperparameters

• N: word embedding size … (typically 100 - 1000)

• W1,b1, W2, b2, parameters to be learned during training
• Word embeddings are derived from weight matricesArchitecture of the CBOW model

Input layer Hidden layer Output layer

“I am happy
because I am

learning”
→ V = 5

Context words
vector

V

V

Center word
vector

V

x = ŷ =

N V

Hyperparameters
Word embedding size ...N:

x h ŷ

biases

weights
W1

b1

ReLU

biases

weights
W2

b2

softmax

⋮

⋮

⋮

⋮

⋮

⋮

Dimensions (single input)Dimensions (single input)
Input layer Hidden layer Output layer

x h ŷ

W1

b1

ReLU

⋮

⋮

⋮

⋮

⋮

⋮

z1 = W1x + b1

h = ReLU(z1)

N x V

N x 1

N x 1

N x 1

W2

b2

softmax

z2 = W2h + b2

ŷ = softmax(z2)

V x N

V x 1

V x 1

V x 1
V x 1 N x 1 V x 1Dimensions (single input)
Column vectors

Row vectors

z1 = W1x + b1

z1 = xW1
T + b1

x =

N x 1

z1 = b1 =

V x 1
N x 1

N x VW1 =

x = 1 x V

N x VW1 = 1 x Nb1 = 1 x Nb1 =

Dimensions (single input)
Column vectors

Row vectors

z1 = W1x + b1

z1 = xW1
T + b1

x =

N x 1

z1 = b1 =

V x 1
N x 1

N x VW1 =

x = 1 x V

N x VW1 = 1 x Nb1 = 1 x Nb1 =

Dimensions (batch input)

Dimensions (batch input)
Input layer Hidden layer Output layer

X H Ŷ

W1

B1

ReLU

⋮

⋮

⋮

⋮

⋮

⋮

Z1 = W1X + B1

H = ReLU(Z1)

N x V

N x m

N x m

N x m

W2

B2

softmax

Z2 = W2H + B2

Ŷ = softmax(Z2)

V x N

V x m

V x m

V x m
V x m N x m V x m

x(1)

Context words
vectors

X = x(m)… V

m

→ matrix

b1B1 = b1… N
m

broadcastingb1 →

Dimensions (batch input)
Input layer Hidden layer Output layer

X H Ŷ

W1

B1

ReLU

⋮

⋮

⋮

⋮

⋮

⋮

Z1 = W1X + B1

H = ReLU(Z1)

N x V

N x m

N x m

N x m

W2

B2

softmax

Z2 = W2H + B2

Ŷ = softmax(Z2)

V x N

V x m

V x m

V x m
V x m N x m V x m

x(1)

Context words
vectors

X = x(m)… V

m

→ matrix

b1B1 = b1… N
m

broadcastingb1 →

• Batch processing
• Quicker learning

• the model is fed with several inputs (m) and provides several outputs at the same time
• m is called batch size (hyperparameter)

Dimensions (batch input)

• The vector from the first column of X is transformed into the vector
corresponding to the first column of !𝑌
• Similarly for the remaining m-1 vectors

Dimensions (batch input)

Context words
matrix

ŷ(1)

Predicted
center word

matrix

Ŷ = ŷ(m)… V

m

x(1)X = x(m)… V

m

Input layer

⋮

⋮

⋮

⋮

Hidden layer Output layer

⋮

⋮

X H Ŷ
V x m N x m V x m

W1

B1

ReLU

W2

B2

softmax

Activation Functions: Hidden layer neurons

• Rectified Linear Unit (ReLU)Rectified Linear Unit (ReLU)
Input layer

⋮

⋮

Hidden layer

⋮

⋮

x h

W1

b1

ReLU

z1 = W1x + b1

h = ReLU(z1)

ReLU

5.1
-0.3

⋮
-4.6
0.2

z1 h

0
⋮
0

5.1

0.2

ReLU(x) = max(0, x)
Rectified Linear Unit (ReLU)
Input layer

⋮

⋮

Hidden layer

⋮

⋮

x h

W1

b1

ReLU

z1 = W1x + b1

h = ReLU(z1)

ReLU

5.1
-0.3

⋮
-4.6
0.2

z1 h

0
⋮
0

5.1

0.2

ReLU(x) = max(0, x)

Activation Functions: Output neurons

• Softmax

Softmax
Hidden layer

⋮

⋮

Output layer

⋮

⋮

h ০

W2

b2

softmax

z = W2h + b2

০ = softmax(z)

softmax

০

softmax ∈ [0, 1]K∈
ℝK

𝝨=1
~probabilities

০Ɛ
⋮
০i

⋮
০V

a
⋮
happy
⋮
zebra

Probabilities of
being center word

z
z1

⋮
zi

⋮
zVV V

Softmax
Hidden layer

⋮

⋮

Output layer

⋮

⋮

h ০

W2

b2

softmax

z = W2h + b2

০ = softmax(z)

softmax

০

softmax ∈ [0, 1]K∈
ℝK

𝝨=1
~probabilities

০Ɛ
⋮
০i

⋮
০V

a
⋮
happy
⋮
zebra

Probabilities of
being center word

z
z1

⋮
zi

⋮
zVV V

Softmax example

0.0839
8

11
10
8.5

8103
2981

59874
22026
4915

Softmax: example

z

exp

exp(z)

𝝨=97899

/ 𝝨

০ = softmax(z)

am
because
happy
I
learning

0.03
0.612
0.225
0.05

𝝨=1

← Predicted center word

Training: Loss

Loss

Machine learning
model

Parameters

Input TruthPrediction

adjust
Loss

minimize
error

CBOW

০ yx

Predicted
center word

vector

Actual
center word

vector

Context
words
vector

W1, b1, W2, b2
cross-entropy loss

Cross-entropy loss

• Used in classification tasks
• softmax activations in the output layer

Cross-entropy loss y =
y1

⋮
yV

০ =
০1

⋮
০V

Actual

0.083
0.03

0.611
0.225
0.05

০
0
0
1
0
0

y
am
because
happy
I
learning

Predicted

log

-2.49
-3.49
-0.49
-1.49
-2.49

log(০)

⊙ y

0
0

-0.49
0
0

y ⊙ log(০)

- 𝝨 J = 0.49

I am happy because I am learning

Cross-entropy loss y =
y1

⋮
yV

০ =
০1

⋮
০V

Actual

0.083
0.03

0.611
0.225
0.05

০
0
0
1
0
0

y
am
because
happy
I
learning

Predicted

log

-2.49
-3.49
-0.49
-1.49
-2.49

log(০)

⊙ y

0
0

-0.49
0
0

y ⊙ log(০)

- 𝝨 J = 0.49

I am happy because I am learning

Cross-entropy loss y =
y1

⋮
yV

০ =
০1

⋮
০V

Actual

0.083
0.03

0.611
0.225
0.05

০
0
0
1
0
0

y
am
because
happy
I
learning

Predicted

log

-2.49
-3.49
-0.49
-1.49
-2.49

log(০)

⊙ y

0
0

-0.49
0
0

y ⊙ log(০)

- 𝝨 J = 0.49

I am happy because I am learning

Cross-entropy loss y =
y1

⋮
yV

০ =
০1

⋮
০V

Actual

0.083
0.03

0.611
0.225
0.05

০
0
0
1
0
0

y
am
because
happy
I
learning

Predicted

log

-2.49
-3.49
-0.49
-1.49
-2.49

log(০)

⊙ y

0
0

-0.49
0
0

y ⊙ log(০)

- 𝝨 J = 0.49

I am happy because I am learning

Cross-entropy loss y =
y1

⋮
yV

০ =
০1

⋮
০V

Actual

0.083
0.03

0.611
0.225
0.05

০
0
0
1
0
0

y
am
because
happy
I
learning

Predicted

log

-2.49
-3.49
-0.49
-1.49
-2.49

log(০)

⊙ y

0
0

-0.49
0
0

y ⊙ log(০)

- 𝝨 J = 0.49

I am happy because I am learning

Cross-Entropy loss

• Used in classification tasks
• softmax activations in the output layer

Cross-entropy loss

০
0
0
1
0
0

y
am

because
happy

I
learning

log

-0.04
-4.61
-4.61
-4.61
-4.61

log(০)

⊙ y

0
0

-4.61
0
0

y ⊙ log(০)

- 𝝨 J = 4.61

0.96
0.01
0.01
0.01
0.01

>
J(correct) = 0.49

Cross-entropy loss

• The loss rewards correct predictions and penalizes the incorrect ones

Cross-entropy loss

J = -log ŷactual
word

০
0
0
1
0
0

y
am

because
happy

I
learning

0.96
0.01
0.01
0.01
0.01

→ J = 4.61 correct
predictions:

reward

incorrect
predictions:

penalty

Training: Forward propagation

ŷ(1)x(1)

Forward propagation

Context words
matrix

Predicted
center word

matrix

Ŷ = ŷ(m)…X = x(m)…

Input layer

⋮

⋮

⋮

⋮

Hidden layer Output layer

⋮

⋮

X H Ŷ

W1

B1

ReLU

W2

B2

softmax

Z1 = W1X + B1

H = ReLU(Z1)

Z2 = W2H + B2

Ŷ = softmax(Z2)

ŷ(1)x(1)

Forward propagation

Context words
matrix

Predicted
center word

matrix

Ŷ = ŷ(m)…X = x(m)…

Input layer

⋮

⋮

⋮

⋮

Hidden layer Output layer

⋮

⋮

X H Ŷ

W1

B1

ReLU

W2

B2

softmax

Z1 = W1X + B1

H = ReLU(Z1)

Z2 = W2H + B2

Ŷ = softmax(Z2)

ŷ(1)x(1)

Forward propagation

Context words
matrix

Predicted
center word

matrix

Ŷ = ŷ(m)…X = x(m)…

Input layer

⋮

⋮

⋮

⋮

Hidden layer Output layer

⋮

⋮

X H Ŷ

W1

B1

ReLU

W2

B2

softmax

Z1 = W1X + B1

H = ReLU(Z1)

Z2 = W2H + B2

Ŷ = softmax(Z2)

ŷ(1)x(1)

Forward propagation

Context words
matrix

Predicted
center word

matrix

Ŷ = ŷ(m)…X = x(m)…

Input layer

⋮

⋮

⋮

⋮

Hidden layer Output layer

⋮

⋮

X H Ŷ

W1

B1

ReLU

W2

B2

softmax

Z1 = W1X + B1

H = ReLU(Z1)

Z2 = W2H + B2

Ŷ = softmax(Z2)

Cost

• The cost is referred to as the loss computed on batch examples
• Mean of cross-entropy losses of the individual examples

Cost

Predicted
center word

matrix

Actual center
word matrix

Cost: mean of losses

ŷ(1) ŷ(m)…Ŷ= y(1) y(m)…Y=

Cost

Predicted
center word

matrix

Actual center
word matrix

Cost: mean of losses

ŷ(1) ŷ(m)…Ŷ= y(1) y(m)…Y=

Learning: Minimizing the cost

• Backpropagation
• Calculate partial derivatives of cos with respect to weights and biases
• Using the chain rule for derivatives

• starting from the output layer and working back through the layers

• Gradient descent
• Update weights and biases

Minimizing the cost

վ Backpropagation: calculate partial derivatives of cost with respect to
weights and biases

Minimizing the cost

վ Backpropagation: calculate partial derivatives of cost with respect to
weights and biases

Backpropagation and gradient descent

• To perform gradient descent
• the partial derivatives of the cost function J are calculated

• You’ll learn the details in the Machine Learning course part II

• Perform gradient descent with partial derivatives

𝝨

Backpropagation

1m= 1, …, 1

m

import numpy as np
code to initialize matrix a omitted
np.sum(a, axis=1, keepdims=True)

A.1m
T =

1
⋮
1

=

Gradient descent
Hyperparameter: learning rate ⍺
Gradient descent

Hyperparameter:

Learning rate 𝛼

Extracting Word Embedding Vectors

• Once completed the training, one needs to get the word embeddings
• word embeddings are not directly output by the training process, they are a by-

product of the process

• Option 1
• Column vectors of W1

w(1)

Extracting word embedding vectors: option 1
Input layer

⋮

Hidden layer Output layer

W1 b1 ReLU ⋮ W2 b2 softmax ⋮

W1 = w(V)… N

V

x =

am
because
happy
I
learning

am

V

Extracting Word Embedding Vectors

• Option 2
• Row vectors of W2

w(1)

Extracting word embedding vectors: option 2
Input layer

⋮

Hidden layer Output layer

W1 b1 ReLU ⋮ W2 b2 softmax ⋮

W2 =

w(V)

…

N

x =

am
because
happy
I
learning

am

VV

Extracting Word Embedding Vectors

• Option 3
• Average of the representations from option 1 and option 2

Extracting word embedding vectors: option 3

w1
(1) w1

(V)…

w2
(1)

w2
(V)

…

w3
(1) w3

(V)… N

V

W3= 0.5 (W1+W2
T) =

W2 = W1 =

x =

am
because
happy
I
learning

V

Evaluating Word Embeddings

• Two types of evaluation metrics, intrinsic and extrinsic evaluations
• Depending on the task

• Intrinsic evaluation
• Assesses how well the word embeddings capture the semantic (meaning) or

syntactic (grammar) relationships between words
• Analogies

• Be aware of possible correct answers

Intrinsic evaluation

Test relationships between words
● Analogies

“France” is to “Paris” as “Italy” is to <?>

“seen” is to “saw” as “been” is to <?>

Semantic analogies

Syntactic analogies

“wolf” is to “pack” as “bee” is to <?> → swarm? colony?
⚡ Ambiguity

Intrinsic evaluation

Test relationships between words
● Analogies

“France” is to “Paris” as “Italy” is to <?>

“seen” is to “saw” as “been” is to <?>

Semantic analogies

Syntactic analogies

“wolf” is to “pack” as “bee” is to <?> → swarm? colony?
⚡ Ambiguity

Evaluating Word Embeddings

• Intrinsic evaluation
• Test relationship between words

• Analogies

• From the original Word2vec paper
• Word embedding created by a continuous skip-gram model

Intrinsic evaluation

Test relationships between words
վ Analogies

Evaluating word embeddings
• Test relationships between words

• Clustering
• To group similar word embedding vectors (thesaurus)

• Visualization
• Human judgmentIntrinsic evaluation

Test relationships between words

վ Analogies

վ Clustering

Source: Michael Zhai, Johnny Tan, and Jinho
D. Choi. 2016. Intrinsic and extrinsic
evaluations of word embeddings

Intrinsic evaluation

Test relationships between words

վ Analogies

վ Clustering

վ Visualization

village
towncity

countrygas
oil

petroleum happy
joyfulsad

Evaluating Word Embeddings

• Extrinsic Evaluation
• Test word embeddings on external tasks, e.g., named entity recognition, part-of-

speech tagging
• Evaluates the actual usefulness of embeddings (+)
• Time-consuming (-)
• More difficult to troubleshoot (-)

• If performing poor, one does not know the specific part of the end-to-end process
responsible

• Example
Named Entity

Antonino Staiano works at UniParthenope

Person Organization

Some properties of word embeddings

• Small windows (C=+/- 2)
• Nearest words are syntactically similar words in the same taxonomy

• Hogwarts nearest neighbors are other fictional schools
• Sunnydale, Evernight, Blandings

• Large windows (C = +/- 5)
• Nearest words are topically related (not similar) words in the same

semantic field
• Hogwarts nearest neighbors are Harry Potter world:

• Dumbledore, half-blood, Malfoy

~30 million books, 1850-1990, Google Books data

A window onto historical semantics

• Train embeddings on different decades of historical text to see meanings shift

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of Semantic
Change. Proceedings of ACL.

Embeddings reflect cultural bias

• Ask “Paris : France = Tokyo : x”
• x = Japan

• Ask “father : doctor = mother : x”
• x = nurse

• Ask “man : computer programmer = woman : x”
• x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to
homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

• Algorithms that use embeddings as part of, e.g., hiring search for
programmers, might lead to bias in hiring

The vector offset method

• Learned word vectors capture meaningful syntactic and semantic
regularities
• Observed as constant vectors offset between pairs of words sharing a

particular relationship

• Example
• Let’s denote as wi the vector for the word i and focus on the singular/plural

relation
• wapple - wapples ≈ wcar - wcars

• wfamily - wfamilies ≈ wcar - wcars

Vector offset

• Syntactic and semantic tasks as analogy questions

• It is assumed that relationships are present as vector offsets
• That is, in the embedding space, all pairs of words sharing a particular

relationship are related by the same constant offset

• To answer the analogy question
• A is to b as c is to , where di is unknown, we find the embedding vectors wa, wb,

wc, and wd (normalized to unit norm) and compute y = wb-wa+wc

• We search for the word whose embedding vector has the greatest cosine
similarity to y

𝑥 ∗= 𝑎𝑟𝑔𝑚𝑎𝑥𝑥
𝑤!𝑦
𝑤! 𝑦

Vector offsets

• Semantic: w(king) – w(man) + w (woman) ≈ w(queen)
• Syntactic: w(kings) – w(king) + w(queen) ≈ w(queens)

Gender relation Singular/plural relation

