UNIVERSITA DEGLI STUDI DI NAPOLI

PARTHENOPE

Natural Language Processing

Word Embeddings

LESSON 22-23

prof. Antonino Staiano

M.Sc. In “"Machine Learning e Big Data” - University Parthenope of Naples

Basic Applications of Word Embeddings

* Given trained word embeddings, one might use them for
* Finding analogies between words and calculating the similarity of words
« Combining with a classifier
* to perform, for instance, sentiment analysis or
* To classify customer comments or reviews from user feedback surveys

village
city. town > -

gas country E* s * s G ’ ‘
pSboleu happy e -‘-
sad * " joyful ()
Semantic analogies Sentiment analysis Classification of
and similarity customer feedback

Advanced Applications of Word Embeddings

Machine translation Information extraction Question answering

What we're going to learn

* |dentify the key concepts of word representations
« Words' numerical representation for using mathematical models

* Generative word embeddings
* How a model learns word embeddings from data

* Prepare text for machine learning
* Transforming a corpus of text into a training set for a machine learning model

 Continuous bag-of-words model
* One of the ways to create word embeddings

Basic word representation

* With word vectors, one will be able to create a numerical matrix to
represent all the words in a vocabulary
* Each row vector of the matrix corresponds to one of the words

* There are several ways to represent words a numbers
* Integers

* One-hot vectors
* Word embeddings

Integers

* To assign a unigue integer to each word
+ Simple
- Ordering: little semantic sense

Word Number
a 1
able 2
about 3
hand 615
happy 621
zebra 1000

One-hot vectors

* Represent the words using a column vector where each element
corresponds to a word in the vocabulary

((a)) ((happy)) ((Zebr_a))
(1) a (0) a (0) a
0 able 0 able 0 able
0 about 0 about 0 about
: .. 1000 : .. :
0 hand rows 0 hand 0 hand
0 happy 1 happy 0 happy
0 zebra 0 zebra 1 zebra
- / - J G %

One-hot vectors

* Words can be considered categorical variables

* Simple to go from integer to one-hot vectors and back
* Mapping the words in the rows to their corresponding row number

Word Number “happy

a 1 1 (0 A a
able 2 2 0] able
about 3 3 0 about
hand 615 615 0 hand
happy 621 621 1 happy
zebra 1000 1000 L 0) zebra

One-hot vectors

* + Simple
* + No implied ordering
(0) a
~10k—1M :
* - Huge vectors ol | hapey
L 0) Zyzzyva
happy, d(paper, excited)
papet = d(paper, happy)
* - No embedded meaning = d(excited, happy)
> excited

Word Embeddings

* Meaning as vectors

* Example

* Words along one axis

* Imagine storing their positions as numbers in a single 1-length vector
* We can use any decimal value
* happy and excited most similar to each other as compared to paper

rage anger spider boring paper kitten happy excited
(-2.52) (-2.08) (-1.53) (-0.91) (0.03) (1.09) (175) (2.31)
negative -2 1 0 1 2 positive

A
Y

Meaning as vectors

* We can extend by adding a vertical number line

* The vocabulary of words is represented with a small vector of length 2

concrete
1
paper (0.03,0.79)
spider (-1.53,0.41) puppy e ¢ kitten
. (0.98,0.57) (1.09,0.57)
snake (-1.53,0.41)
negative —I2 —I1 0 1 2 pos}tive
rage (-2.52,-0.54) excited
anger (-2.08, -O.71E) * (2.31,-0.54)
. oring happy
1 °
| abstract

* We gained some meaning while losing some precision

* ltis possible for two words to be located on the same point in this 2D plot (e.g., snake and spider)

* The more coordinates you have, the more things you can capture

* Thatis an examﬁle of the word embeddini

Word embedding vectors

((happy”
: - (0.123)
* + Low dimension 1
* Practical for computations ~100—~1000 | | , co
rows _
1.891
- /

* + Embed meaning
* e.g., semantic distance
« forest =~ tree and forest # ticket
* e.g., analogies
* Paris:France = Rome:?

* Encoding the meaning of words is also the first step towards encoding the
meaning of entire sentences

* which is the foundation for more complex NLP use cases, e.g., question answering and
translation

Terminology

« All vector representations of words, including one-hot vectors and word
embedding vectors, are known as word vectors

* More commonly, the terms word vector and word embeddings are used as well to refer
to word embedding vectors

word vectors

integers one-hot vectors word embedding vectors

How to create word Embeddings

Word embeddings process

* To create a word embedding we need
® a corpus text

 The context of a word tells you what type of words tend to occur near that specific word. The
context is important as this is what will give meaning to each word embedding

* an embedding method

Hyperparameters

Word embedding size
I

Corpus Embedding method

/ N\ o Transformation Machine learning model

General- Specialized)
words Learning task Self-supervised

purpose e.g. contracts, iyl o) .

i law book . | think [22?] | am” = unsupervised
e.g. Wikipedia law DOOKs integers, vectors + supervised

Words in context Meaning

L

Word embeddings

Basic Word Embedding Methods

* Word2vec (Google, 2013)

* Uses a shallow neural network to learn word embeddings
« Continuous bag-of-words (CBOW)

» Continuous skip-gram/Skip-gram with negative sampling

* Global vectors (GloVe) (Stanford, 2014)

* Factorizes the log of the corpora word co-occurrence matrix

* fastText (Facebook, 2016)

* Considers the structure of words by representing words as an n-gram of
characters

* Supports out-of-vocabulary (OQV) words

* Word embedding vectors can be averaged together to make vector
representations of phrases and sentences

Advanced Word Embedding Methods

* Use advanced deep neural network architectures to refine the representation
of the words' meaning according to their contexts

* The words have different embedding depending on their context

* Deep Learning, contextual embeddings
* BERT (Google, 2018)
 Bidirectional Encoder Representations from Transformers
 ELMo (Allen Institute for Ai, 2018)
* Embeddings from Language Models
* GPT-2 (OpenAl, 2018)

« Generative PreTraining models

* Available off-the-shelf pretrained models

Continuous Bag-of-Words Model

* Recap, one needs
» Corpus
* ML model for the learning task
 Corpus transformation into a representation suited to the ML model

* The set of word embeddings is a byproduct of the learning task

Embedding method

“ think
Corpus Transformation > thin $ CBOW $ “therefore”

[???] 1 am”
U

Word embeddings

Center word prediction: rationale

1
Corpus Transformation> CBOW
|

* It two unique words are both frequently surrounded by similar sets of
words in various sentences, then those words are semantically related

The little ? is barking

dog

puppy
hound

terrier

* The model will end up learning the meaning of words based on their
contexts

Creating a training example

1
Corpus Transformation> CBOW
|

* Using the corpus to create training data

* | am happy because | am learning

* Given a center word, e.g., happy, define the context as the C words just
before and after the center word
* C (hyperparameter of CBOW) is the half size of the context, C = 2 in this example
* The window is the count of the center word plus the context words

center word

| am happy because || am learning

context words window

C=2 window size = 5
context half-size

From corpus to training

* To train the models, one needs a set of examples

« Context words and the center word to predict, each

Corpus

I am happy because | am learning

Embedding method
Transformation Context words Corpus
<L
Context d Center
ontext words word CBOW ‘ | am happy because I'am| learning
<L+
Predicted center word
<Lt
Word embeddings
Embedding method
Transformation Context words
Corpus L
Center
Context words o CBOW
| am happy because | am learning Emibeanca happy
am happy | am because Ny
happy because am learning I Predicted center word
[
<>
Word embeddings

Embedding method
Transformation Context words
S
Context words ey
word CBOW
| am because | happy
am happy | am because 1
Predicted center word
[
<L
Word embeddings

CBOW in a nutshell

* To the model
* context words as inputs
* center words as outputs

INPUT PROJECTION OUTPUT

w(t-2)

Source: Mikolov, T., Chen, K.,
Corrado, G.S., & Dean, J. (2013).
w(t+2) Efficient Estimation of Word
Representations in Vector Space

Cleaning and tokenization

The words of the corpus should be case insensitive

* Uppercase or lowercase

Handling of punctuations

« E.g., all interrupting punctuation marks as a single special word in the vocabulary
* One could ignore non-interrupting punctuation marks, e.g., quotation marks
+ Collapse multi-sign marks into single marks, ...

Handling of numbers
* Drop all numbers not carrying any meaning
* Keep the numbers if having special meaning for the use case

« Tag as a special token if too many, e.g., many area codes

Handling of special characters (Math, currency, ... symbols)
* Usually, dropped

Handling special words (from tweets or reviews, e.g., Emojis, hashtags)
« Depending on the goals of your task

Cleaning and Tokenization

* Cleaning and tokenization matters

® Letter Case ((The)) —— ((the)) —— ((THE)) %Iowercase/upper Case
* Punctuation IS e T 0 Lo
* Special characters VS EST ™ >0

. Special words #nlp — :happy: #nlp

Transforming words into vectors

* To feed the context words into the model and to predict and central
word, they must be suitably represented

« Center words into vectors
* First, create the vocabulary V of unique words in the corpus
* Encode each word as a one-hot vector of size |V|

Corpus | am happy because | am learning

Vocabulary am, because, happy, |, learning

One-hot am because happy | learning
vector am [1) (0) (0) (0) (0)
because 0 1 0 0 0
happy 0 0 1 0 0
| 0 0 0 1 0
learning | O _ 0) . 0 . 0 1)

Transforming context words into vectors

« Context words into vectors

 Create a single vector that represents the context from all the context words

Average of individual one-hot vectors

/ I am because I \ | am because |
am [0) (1) (0) (0) (025)
because 0 0 1 0 0.25
happy | O + 0 + 0 + 0 /4 = 0
1| 1 0 0 1 0.5
\Iearning\oj L 0 . 0 \O// . 0)

Final prepared training set

* Example
* First window

Context words Context words vector Center word Center word vector

| am because | [0.25; 0.25; 0; 0.5; 0] happy [0; O; 1; 0; O]

* Note that the vectors are actually column vectors

Towards the CBOW model

The quickest recap on neural networks

Biological neuron

* A neuron is a small
"computational” unit Cell body

* 100 in our brain

Telodendria

* Its "power” is due to links to other =.\/
neurons making a big network of ~ NueeUs_|
100 trillion connections!!!

Axon hillock) Synaptic terminals

g g ni.,.wuwxﬁ____'

e i

Golgi apparatus

Endoplasmic
reticulum

Mitochondrion \ \ Dendrite

\
/ v
/ % Dendritic branches

Artificial neuron

Output value y

Non-linear transform

Weighted sum

Weights
Input layer x; x, X;

Feedforward Neural Networks

* Can also be called multi-layer perceptrons (or MLPs)

Architecture of the CBOW model

* The CBOW model is based on a shallow dense neural network

* Hyperparameters
* N:word embedding size ... (typically 100 - 1000)

« Wby, W,, by, parameters to be learned during training
* Word embeddings are derived from weight matrices

Input layer Hidden layer Output layer
Context words O O O Center word
vector O W, O W, O vector
weights . weights .
: " : " :)
-l ol Bl o RE oo
. biases . biases .
\% : : : \
“I am happy O RelLU O softmax O
because lam V[N1O VIO
learning” ~
>V=5 X h y

Dimensions (single input)

Input layer Hidden layer Output layer
O O O
O O O

. W; NxV . W, VxN .
O b, Nx1 O b, Vx1 O
: RelLU : softmax :
O O O
O z,=Wyx+b, Nx1 O z,=W,h+b, Vx1 O
X h . y

= N 1 = V 1
Vil h = ReLU(z,) X Nyl y = softmax(z,) V x Vit

Column vectors

Z1=W1X+b1 zl=[] W1=[N x V J X = b1=[J

\/v 1

Row vectors

z, = XxW, T + b, by = 1xN] W1=[N XV J by= [1xN]

Dimensions (batch input)

* Batch processing

* Quicker learning

* the model is fed with several inputs (m) and provides several outputs at the same time

* mis called batch size (hyperparameter)

Input layer

Context words

vectors O

— matrix O

= o]~ beel| | v 2> O

> O

m O

X

{bi} - B, = Hbi} {b1D [N broadcasting Vixm
.~ m=

Hidden layer
O
O
W; NxV . W, VxN
B, Nxm O B, Vxm
RelLU : softmax
O
Z, =W X+B,Nxm \|O|/ z,=W,H+B, Vxm
H = ReLU(Z,) Nxm H Y= softmax(Z,) V xm
Xm

Output layer

O
O

<O QO e O oo

P
3

Dimensions (batch input)

* The vector from the first column of X is transformed into the vector
corresponding to the first column of ¥

* Similarly for the remaining m-1 vectors

Input layer Hidden layer Output layer
Predicted
Contﬁﬁr\i/;/(ords O O O center word
O O O matrix
: W, : W, :
X = X[- [x(m) V |:> O B1 O BZ O |:> ? = y(l) y(m) V
i RelLU softmax
(, O O O) ,
m O O O m
X H Y
Vxm N xm VXxm

Activation Functions: Hidden layer neurons

 Rectified Linear Unit (ReLU)

ReLU(x) = max(O, x)

Input layer Hidden layer
O O 2,=Wyx+ by
C.D W O h = ReLU(z,)
. 1 .
O by O
z h
O RelLU O) 1 .) .
O O 51 51
-0.3 0 <
-4.6 0
02 | 0.2 |

Activation Functions: Output neurons

« Softmax
3 e 0, 1
~probabilities
Hidden layer Output layer Zil
O Ol z=wW,h+b,
O o|
. w, . y = softmax(z) .
2 2 y4 Yy
Ol | B | |O % e
. . : Pl ez
é softmax Q % ?i happy Yi =y
: H H A
0 0 : %
vl v J v W zebra j=1
h y Probabilities of

being center word

Softmax example

e”
> e
j=1
z exp(z) y = softmax(z)
(9) (8103) (0.083) am
8 2981 0.03 because
11 exp 59874 /X > 0.612 happy < Predicted center word
10 22026 0.225 | |
(85 | (4915 S 0.05) learning
¥=97899 y=1

Training: Loss

Context
words
vector

Input |:>

~

Y Yy
Predicted Actual
CBOW center word center word
vector vector
Machine learning |:> Prediction Truth
model N
L Y
minimize
Parameters
Wb Wb Loss error
e adjust

cross-entropy loss

Cross-entropy loss

] . . Actual Predicted -
* Used in classification tasks ,- {y} {y}
* softmax activations in the output layer W W
V
J = — E Yl lOg Qk | am happy because | am learning
k=1

y y log(y) y O log(y)
(0] am (0.083) (049) e

O | because 0.03 -3.49 0

1 | happy 0.611 1049 -0.49 E> J=0.49

0 || 0.225 -1.49 0
L 0 J learning KO.OS) &_2'49J L 0)

Cross-Entropy loss

 Used in classification tasks
* softmax activations in the output layer

v
J==> yplogiy
k=1
y y log(y) y O log(y)
[0) am 4 0.96 h /_0‘04 h 4 0 h
0 because 0.01 -4.61 0
1 happy 0.01 4.61 4.61 E:> J=4.61
0 I 0.01 -4.61 0 >
L 0) learning 9 0.01 P \'4‘61) g 0 / J(correct) = 0.49

Cross-entropy loss

vV
J==> ylog i
k=1
J= -Iog Yactual
word .
Incorrect
. redigtions:
y y a ’ perfalty
(0] am (096) 3
0 because 0.01 ?,2
1 happy 001 | —>J=4.61 g correct
0 I 0.01 . \ predictions:
L 0) Iearning KO'Olj rewara
] N : Yactual word > -

* The loss rewards correct predictions and penalizes the incorrect ones

Training: Forward propagation

H = ReLU(Z,) Y = softmax(Z,)
Input layer Hidden layer Output layer
Context words O O O Predicted
matrix O O O center word
i
o W1 E W2 E matrix
B B
X = | [x@] -+ [x(m) |:> O ! O 2 O |:> ? = [y = |gm)
O RelLU O softmax Q
O O O
X H Y

Cost

* The cost is referred to as the loss computed on batch examples
* Mean of cross-entropy losses of the individual examples

v
J==> ylog i
k=1

Cost: mean of losses

mV Predicted
1 (z) (@) Actual center
_ N t d .
Jbatch = _E Z Z y] log y] cenmzrtl\’/i\;or word matrix
1=1 =1
1 m Y= ||y - [gm Y= |[[y@] - |ym
_ 1
Jbatch — _E § J()
1=1

Learning: Minimizing the cost

Jvatch = fF(W1, Wa, by, ba)

* Backpropagation
* Calculate partial derivatives of cos with respect to weights and biases

* Using the chain rule for derivatives
* starting from the output layer and working back through the layers

d Jbatch aJboztch a‘]batch 8‘]batch
OW71 ' OWo ' 0by = 0Obs

» Gradient descent
« Update weights and biases

Backpropagation and gradient descent

* To perform gradient descent

* the partial derivatives of the cost function J are calculated
* You'll learn the details in the Machine Learning course part |l

* Perform gradient descent with partial derivatives

Gradient descent

8Jbatch
OW1
OJpatch
W, =W, — q—2
aJbatch ! ! oW1
IW2 ——>
8Jbatch
Ws =Wy — a————
2 274 OWo Hyperparameter:
a‘]batch] .
0bq v Odbaten earning rate «
bl = bl a—abl
a‘]batch
Ob o . a‘]batch
2 bs ;= bo a—(?b
2

Extracting Word Embedding Vectors

* Once completed the training, one needs to get the word embeddings

+ word embeddings are not directly output by the training process, they are a by-
product of the process

* Option 1

¢ Column vectors of W,

Input layer Hidden layer Output layer
O O O
W, b, | ReLU W, b, [softmax
O O O
am
am
W, = [Wm} {W(V)B] N X = ﬁs;?;se Y,
I
< Vv > learning

Extracting Word Embedding Vectors

* Option 2

* Row vectors of W,

Input layer Hidden layer Output layer
O O O
W, b; | ReLU W, b, |softmax
O O O
(\ A A

[wil)] am am
because
W, = \ X = happy \
[
wv) :
\[] J learning |

Extracting Word Embedding Vectors

* Option 3

* Average of the representations from option 1 and option 2

(s
L - M
\w3= 0.5 (W, +W,T) = [‘w&ﬂ E/v3(vi}]|N x-{ FE@ZL;SE jv

learning
V

Evaluating Word Embeddings

* Two types of evaluation metrics, intrinsic and extrinsic evaluations
* Depending on the task

* Intrinsic evaluation

* Assesses how well the word embeddings capture the semantic (meaning) or
syntactic (grammar) relationships between words

* Analogies
Semantic analogies
“France” is to “Paris” as “Italy” is to <?>

Syntactic analogies

“seen” is to “saw” as “been” is to <?>

* Be aware of possible correct answers

Evaluating Word Embeddings

* Intrinsic evaluation

* Test relationship between words
* Analogies

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu H zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

* From the original Word2vec paper
* Word embedding created by a continuous skip-gram model

Evaluating word embeddings

* Test relationships between words
* Clustering
 To group similar word embedding vectors (thesaurus)

 Visualization
* Human judgment

k-medoids

push agitated-2
press agitated-2 fighl
agitated-2
campaign Dagttate agitated-2
1000 |- agitated-2 [m]
crusade agitated-2
hairdressing nursery nursery-1
. haircare-0
haircare ha@re-o glasshouse
500 | . nursery-1 'I I
aécare haircare-0 greenhouse nurser\{)I \4 age
>ather .
O bathers-0 O 1 C I ty tOWn
0l
chinook wﬁﬂgwh;oa:f“:)chinook-o 2 ga S cou ntl’y
natatoro cEg]OOK chinook-0 + 3 O I I ha p py
| oo fathead it 4 petroleum vl
00-
c 00 cuckoo-0 O . D 5 Sa d Joy u
swimmer
bathers-0 <> 6

H 0ZO0

Jackassbcu Lo§H5koo-0
1000 |- + —f—

zany cuakog-OOOf cuckoo-0
oSl
-1500 1 1 1 1 1 1 1
-1000 -500 0 500 1000 1500 2000

Evaluating Word Embeddings

* Extrinsic Evaluation
* Test word embeddings on external tasks, e.g., named entity recognition, part-of-
speech tagging
* Evaluates the actual usefulness of embeddings (+)
* Time-consuming (-)
« More difficult to troubleshoot (-)

¢ If performing poor, one does not know the specific part of the end-to-end process
responsible

* Example

Named Entity

Antonino Staiano works at UniParthenope

Person Organization

Some properties of word embeddings

* Small windows (C=+/- 2)

* Nearest words are syntactically similar words in the same taxonomy

« Hogwarts nearest neighbors are other fictional schools
» Sunnydale, Evernight, Blandings

* Large windows (C = +/- 5)
* Nearest words are topically related (not similar) words in the same

semantic field

* Hogwarts nearest neighbors are Harry Potter world:
« Dumbledore, half-blood, Malfoy

A window onto historical semantics

* Train embeddings on different decades of historical text to see meanings shift

~30 million books, 1850-1990, Google Books data

a daft 9ay (1900s)

sweet

flaunting
cheerful

tasteful
pleasant
frolicsome

witty Y gay (1950s)
bright

gays isexual

gay (1990s) omosexua
lesbian

spread
broadcast (1850s).. ez%vv
: SOWS
circulated scatter
broadcast (1900s)
newspapers
television
radio
hhc broadcast (1990s)

C solemn
awful (1850s)

majestic
awe

dread yensive

glo&rny

horrible

appalliwg terrible

awful (1900s) wonderful

awful (1990s)

avvfullﬁ//velld

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of Semantic

Change. Proceedings of ACL.

Embeddings reflect cultural bias

 Ask "Paris : France = Tokyo : x”
* x = Japan

» Ask “father : doctor = mother : x”
* X = nurse

* Ask “man : computer programmer = woman : x”
* x = homemaker

* Algorithms that use embeddings as part of, e.g., hiring search for
programmers, might lead to bias in hiring

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to

homemaker? debiasini word embeddinis.” In NeurlPS, ii 4349-4357. 2016.

The vector offset method

* Learned word vectors capture meaningful syntactic and semantic
regularities
* Observed as constant vectors offset between pairs of words sharing a
particular relationship
* Example

* Let's denote as w; the vector for the word i and focus on the singular/plural
relation

* Wapple = Wapples = Wear = Wears
* Weamily =~ Wramilies = Wear = Wears

Vector offset

* Syntactic and semantic tasks as analogy questions

* It is assumed that relationships are present as vector offsets

* That is, in the embedding space, all pairs of words sharing a particular
relationship are related by the same constant offset

* To answer the analogy question

« Alisto b as cisto, where di is unknown, we find the embedding vectors w,, wy,
w,, and wy (normalized to unit norm) and compute y = wy-w_+w,

* We search for the word whose embedding vector has the greatest cosine
similarity to vy
Wy
" wllly |l

*
X =argmax

Vector offsets

* Semantic: w(king) —w(man) + w (woman) = w(queen)

* Syntactic: w(kings) —w(king) + w(queen) = w(queens)

WOMAN UEENS
AUNT Q

MAN / KINGS
UNCLE

QUEEN \ QUEEN

KING KING

Gender relation Singular/plural relation

