
Language Models: N-gram

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 20

Natural Language Processing

What’s (Probabilistic) Language Modeling
• Goal

• compute the probability of a sentence or sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: the probability of an upcoming word:

P(w5|w1,w2,w3,w4)

• A model that computes either of these:

P(W) or P(wn|w1,w2…wn-1) is called a language model

• Also called the grammar, but language model or LM is standard

Overview

• Create language model (LM) from text corpus to
• Estimate probability of word sequences
• Estimate probability of a word following a sequence of words

• Apply this concept to autocomplete a sentence with most likely
suggestions○ Estimate probability of word sequences

○ Estimate probability of a word following a sequence of words

What you’ll be able to do!

● Create language model (LM) from text corpus to

“Lyn is eating … “
“chocolate“
“eggs“

“toast“

Language
model

Text
corpus

● Apply this concept to autocomplete a sentence with most likely suggestions

Other Applications

• Speech recognition
• P(I saw a van) > P(eyes awe of an)

• Spelling correction
• “He entered the ship to buy some groceries” – “ship” a dictionary word

• P(entered a shop to buy)>P(entered the ship to buy)

• Augmentative communication
• Predict most likely word from menu for people unable to physically talk or

sign

What we’ll be learning

• Process text corpus to N-gram language model
• Handle out-of-vocabulary words
• Smoothing for previously unseen N-grams
• Language model evaluation

N-grams and Probabilities

• What are N-grams?
• N-grams and conditional probabilities from corpus

N-gram

• An N-gram is a sequence of N words
• Corpus: I am happy because I am learning

• Note that when processing a corpus, the punctuation is treated like words

N-gram

Corpus: I am happy because I am learning

An N-gram is a sequence of N words

Bigrams: { I am , am happy , happy because … }

Unigrams: { I , am , happy , because , learning }

Trigrams: { I am happy , am happy because, … }

I happy

Sequence notation
Sequence notation

Corpus: This is great … teacher drinks tea.

Unigram probability

• Corpus: I am happy because I am learning
• Corpus size m=7
• P(I) = 2/7, P(happy) = 1/7

• Probability of unigram
• P(w) = C(w)/m

Bigram probability

• Corpus: I am happy because I am learningBigram probability
Corpus: I am happy because I am learning

I happy

Probability of a bigram:

Trigram probability

• Corpus: I am happy because I am learningTrigram Probability
Corpus: I am happy because I am learning

Probability of a trigram:

N-gram probability

• Probability of N-gram: N-gram probability

Probability of N-gram:

Example

• Corpus: “In every place of great resort the monster was the fashion. They
sang of it in the cafes, ridiculed it in the papers, and represented it on the
stage. ” (Jules Verne, Twenty Thousand Leagues under the Sea)

• In the context of our corpus, what is the probability of word “papers”
following the phrase “it in the”?
• P(papers | it in the) = 1/2
• P(papers | it in the) = 2/3
• P(papers | it in the) = 1
• P(papers | it in the) = 0

Sequence probabilities

• Given a sentence, what is its probability?
• P(the teacher drinks tea) = ?

• Remind that (conditional probability and chain rule)

Probability of a sequence

վ Conditional probability and chain rule reminder

վ Given a sentence, what is its probability?

?

The Chain Rule for words

• Example

• P(the teacher drinks tea) =
P(the)P(teacher|the)P(drinks|the teacher)P(tea|the teacher drinks)

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

Sentence not in corpus

• A corpus almost never contains the exact sentence we’re
interested in or even its longer subsequences!

• Example: The teacher drinks tea (input)

Sentence not in corpus

● Problem: Corpus almost never contains the exact sentence we’re
interested in or even its longer subsequences!

Input: the teacher drinks tea

Both
likely
0

Approximation of sequence probability

• What if instead of looking for all the words before tea, one just
considers the previous word (drinks in this case)

the teacher drinks tea

Approximation of sequence probability

Approximation of sequence probability

• Markov assumption: Only the last N words matter

• Bigram
• N-gram

• Entire sequence modeled with bigram

Approximation of sequence probability

վ Markov assumption: only last N words matter

վ Bigram

վ N-gram

վ Entire sentence modeled with bigram

Approximation of sequence probability

վ Markov assumption: only last N words matter

վ Bigram

վ N-gram

վ Entire sentence modeled with bigram

Approximation of sequence probability

վ Markov assumption: only last N words matter

վ Bigram

վ N-gram

վ Entire sentence modeled with bigram

unigram probability of the first word in the sentence

Example

• Given these conditional probabilities:
• P(Mary)=0.1
• P(likes)=0.2
• P(cats)=0.3
• P(Mary | likes) =0.2
• P(likes | Mary) =0.3
• P(cats | likes)=0.1
• P(likes | cats)=0.4

• Approximate the probability of the following sentence with bigrams: “Mary likes cats”
• P(Mary likes cats) = 0
• P(Mary likes cats) =1
• P(Mary likes cats) = 0.003
• P(Mary likes cats) = 0.008

Starting of sentence token <s>

Start of sentence token <s>

the teacher drinks tea

<s> the teacher drinks tea

• How do we handle the beginning and the end of a sentence?
• We don’t have a context for the previous word

Start of sentence token <s> for N-grams

• In general, a similar principles applies to N-grams

վ N-gram model: add N-1 start tokens <s>

Start of sentence token <s> for N-grams
վ Trigram:

the teacher drinks tea => <s> <s> the teacher drinks tea

End of sentence token </s> - motivation

• What about the end of sentences?

• Recall that

End of sentence token </s> - motivation

Corpus:
<s> Lyn drinks chocolate
<s> John drinks

End of sentence token </s> - motivation

• There's another issue with your N-gram probabilities

End of sentence token </s> - motivation
Corpus
<s> yes no
<s> yes yes
<s> no no

Sentences of length 2:
<s> yes yes
<s> yes no
<s> no no
<s> no yes

End of sentence token </s> - motivation

End of sentence token </s> - motivation
Corpus
<s> yes no
<s> yes yes
<s> no no

Sentences of length 2:
<s> yes yes
<s> yes no
<s> no no
<s> no yes

End of sentence token </s> - motivation

• Now, look at all the possible three-words sentences

End of sentence token </s> - motivation
Corpus
<s> yes no
<s> yes yes
<s> no no

Sentences of length 3:
<s> yes yes yes
<s> yes yes no
Ļ
<s> no no no

End of sentence token </s> - motivation

• However, you really want the sum of the probabilities for all sentences of any length
to be equal to 1
• To compare the probabilities of two sentences of different lengths

• That is, the probabilities of all 2-word sentences plus the probabilities of all 3-word
sentences, plus the probabilities of all other sentences of arbitrary lengths, should
be equal to 1 End of sentence token </s> - motivation

Corpus
<s> yes no
<s> yes yes
<s> no no

End of sentence token </s> - solution

• There’s a simple solution
• Add a special symbol, </s>, for the end of a sentence

• Example
• Bigrams

<s> the teacher drinks tea => <s> the teacher drinks tea </s>

End of sentence token </s> - solution

վ Bigram

Corpus:
<s> Lyn drinks chocolate </s>
<s> John drinks </s>

End of sentence token </s> for N-grams

• N-gram => just one </s>

• Example
• Trigram

• The teacher drinks tea => <s> <s> the teacher drinks tea </s>

Example: Bigram
• Bigram probabilities

• Note that the result is 1/6, which is lower than the value of 1/3 you might expect
when calculating the probability of one of the three sentences in the training corpus
• This also applies to the other two sentences in the corpus

Corpus
<s> Lyn drinks chocolate </s>
<s> John drinks tea </s>
<s> Lyn eats chocolate </s>

Example - bigram

Corpus
<s> Lyn drinks chocolate </s>
<s> John drinks tea </s>
<s> Lyn eats chocolate </s>

Example - bigram

Example

• Given these conditional probabilities:
• P(Mary)=0.1

• P(likes)=0.2
• P(cats)=0.3

• P(Mary | <s>)=0.2

• P(</s> | cats)=0.6
• P(likes | Mary) =0.3

• P(cats | likes)=0.1

• Approximate the probability of the following sentence with bigrams: “<s> Mary likes cats </s>”
• P(<s> Mary likes cats </s>) =0.0036

• P(<s> Mary likes cats </s>) = 1
• P(<s> Mary likes cats </s>) = 0.003

• P(<s> Mary likes cats </s>) = 0

The N-gram Language Model

• Count matrix
• Probability matrix
• Language model
• Log probability to avoid underflow
• Generative language model

Count matrix

• Count matrix
• Captures the numerator for all N-grams appearing in the corpus

Count matrix

Corpus: <s>I study I learn</s>

● Rows: unique corpus (N-1)-grams
● Columns: unique corpus words

● Bigram
count matrix

“study I” bigram

<s> </s> I study learn
<s> 0 0 1 0 0
</s> 0 0 0 0 0

I 0 0 0 1 1
study 0 0 1 0 0
learn 0 1 0 0 0“study I” bigram

Count matrix

Corpus: <s>I study I learn</s>

● Rows: unique corpus (N-1)-grams
● Columns: unique corpus words

● Bigram
count matrix

“study I” bigram

<s> </s> I study learn
<s> 0 0 1 0 0
</s> 0 0 0 0 0

I 0 0 0 1 1
study 0 0 1 0 0
learn 0 1 0 0 0

• Bigram count matrix
• The corpus I study I learn, the rows represent the first word of the bigram

and the columns represent the second word of the bigram

Probability matrix

• Divide each cell by its row sum

• Corpus: <s>I study I learn</s>

Probability matrix
• Divide each cell by its row sum

Corpus: <s>I study I learn</s>
Count matrix (bigram) Probability matrix

<s> </s> I study learn sum
<s> 0 0 1 0 0 1
</s> 0 0 0 0 0 0

I 0 0 0 1 1 2
study 0 0 1 0 0 1
learn 0 1 0 0 0 1

<s> </s> I study learn
<s> 0 0 1 0 0
</s> 0 0 0 0 0

I 0 0 0 0.5 0.5
study 0 0 1 0 0
learn 0 1 0 0 0

Probability matrix
• Divide each cell by its row sum

Corpus: <s>I study I learn</s>
Count matrix (bigram) Probability matrix

<s> </s> I study learn sum
<s> 0 0 1 0 0 1
</s> 0 0 0 0 0 0

I 0 0 0 1 1 2
study 0 0 1 0 0 1
learn 0 1 0 0 0 1

<s> </s> I study learn
<s> 0 0 1 0 0
</s> 0 0 0 0 0

I 0 0 0 0.5 0.5
study 0 0 1 0 0
learn 0 1 0 0 0

Probability matrix
• Divide each cell by its row sum

Corpus: <s>I study I learn</s>
Count matrix (bigram) Probability matrix

<s> </s> I study learn sum
<s> 0 0 1 0 0 1
</s> 0 0 0 0 0 0

I 0 0 0 1 1 2
study 0 0 1 0 0 1
learn 0 1 0 0 0 1

<s> </s> I study learn
<s> 0 0 1 0 0
</s> 0 0 0 0 0

I 0 0 0 0.5 0.5
study 0 0 1 0 0
learn 0 1 0 0 0

Language model

• Probability matrix => language model
• Sentence probability
• Next word prediction

Language model

վ probability matrix => language model
ǫ Sentence probability
ǫ Next word prediction

Sentence probability:
<s> I learn </s>

<s> </s> I study learn
<s> 0 0 1 0 0
</s> 0 0 0 0 0

I 0 0 0 0.5 0.5
study 0 0 1 0 0
learn 0 1 0 0 0

Log probability

• All probabilities <=1 and multiplying them brings the risk of
underflow

• Use log of the probabilities in probability matrix and calculations

• To convert back from log

Log probability

վ Logarithm properties reminder

վ All probabilities in calculation <=1 and multiplying them brings risk
of underflow

վ Use log of the probabilities in Probability matrix and calculations

վ Converts back from log

Log probability

վ Logarithm properties reminder

վ All probabilities in calculation <=1 and multiplying them brings risk
of underflow

վ Use log of the probabilities in Probability matrix and calculations

վ Converts back from log

Log probability

վ Logarithm properties reminder

վ All probabilities in calculation <=1 and multiplying them brings risk
of underflow

վ Use log of the probabilities in Probability matrix and calculations

վ Converts back from log

Generative language model

• One interesting application of language models is text generation from
scratch or using a small hint

• Algorithm
1. It chooses among all bigrams, starting with <s>, based on the bigram probability

• That means the bigrams with higher values in the probability matrix are more likely to be chosen

2. It chooses a new bigram at random from the bigrams beginning with the previously chosen word

3. Then, this bigram is added to the sentence
4. The algorithm continues like this until the end sentence token, </s> is chosen

• This is done by randomly choosing a bigram that starts with the previous word and ends with </s>

Generative Language model

Algorithm:

Corpus:
<s> Lyn drinks chocolate </s>
<s> John drinks tea </s>
<s> Lyn eats chocolate </s>

1. (<s>, Lyn) or (<s>, John)?
2. (Lyn,eats) or (Lyn,drinks) ?
3. (drinks,tea) or (drinks,chocolate)?
4. (tea,</s>) - always

1. Choose sentence start
2. Choose next bigram starting with previous word
3. Continue until </s> is picked

Language model evaluation

• Train/Validation/Test split
• Small corpora

• 80% Train
• 10% Validation
• 10% Test

• Large corpora
• 98% Train
• 1% Validation
• 1% Test

• Perplexity

Test data: Split method

Test data - split method

վ Random short sequencesվ Continuous text

Corpus

Training

V
alidation

Test

Continuous text Random short sequences

Test data - split method

վ Random short sequencesվ Continuous text

Corpus

Training

V
alidation

Test

• In NLP there are two main methods for splitting
• split the corpus by choosing longer continuous segments like Wikipedia

articles
• randomly choose short sequences of words such as those in the

sentences

A measure of quality of LMs

• Given a sentence, W=w1,w2,…,wm, its probability is P(W)=P(w1,w2,…,wm)
• The higher the probability of W, the more accurate (or even realistic) the sentence W is

• Given a language model, we do not use directly the probability of a test sentence to
evaluate the LM effectiveness, rather we use a measure called perplexity, defined as

PP(W) = P(w1,w2,…,wm)-1/m =! !
P(w1,w2,…,wm)

= " ∏"#!
$!

P(wi |w1,w2,…,wi−1)

• If we use a bigram LM, then the perplexity become

!

"
"#!

$
1

P(wi |wi−1)

Perplexity

• The LM can be evaluated on test sets using the perplexity metric

PP(W) = P(s1,s2,…,sN)-1/m

• W-> test set containing N sentences sj, j=1,…,N
• sj -> j-th sentence in the test set, each ending with </s>
• m -> number of all words in the entire test set W including </s>

but not including <s>
• If the length of sj=nj, j=1,…, N then m = ∑!"#$ 𝑛𝑗

Perplexity: Example

• m=100

• Smaller perplexity = better model
• Character level models PP < word-based models PP

Perplexity

վ Smaller perplexity = better model

վ Character level models PP < word-based models PP

E.g. m=100

Perplexity for bigrams models

• Concatenate all sentences in W

Perplexity for bigram models

● concatenate all sentences in W

→ i-th word in test set

→ j-th word in i-th sentence

Log perplexity

• For ease of computation, the log perplexity is often used
Log perplexity

Example: Wall Street Journal Corpus

• Training 38 million words, test 1.5 million words
• Perplexity Unigram: 962 Bigram: 170 Trigram: 109 Examples

[Figure from Speech and Language Processing by Dan Jurafsky et. al]

Training 38 million words, test 1.5 million words, WSJ corpus
Perplexity Unigram: 962 Bigram: 170 Trigram: 109

Example: Wall Street Journal Corpus

• To better fix the perplexity changes in unigram, bigram, and trigram LM
• Let’s recall that the N of an N-gram language model defines the context used in

each conditional probability
• Consider the following sentences

• Gorillas always like to groom their friends

• The computer that’s on the 3rd floor of our office building crashed

• The red words depend on each other
• If N is too small

• the context cannot be captured, and those sentences get a very low probability, while
sentences that fail basic linguistic rules get higher probabilities

• If N is too big, however, it is hard getting good estimates of the parameters from
our corpus, because of data sparsity

What about (possibly) missing training words?

• When using LM in real tasks, it happens to deal with words that did
not occur in the training set
• Need to handle words missing from a training corpus

• Unknown words

• We need to
• Update corpus with <UNK>
• Choose a vocabulary

Out of vocabulary words

• Closed vs Open vocabulary
• In some tasks, one will encounter and generate only words from a fixed set of

words
• The fixed set of words is called closed vocabulary
• The test set can only contain words from that lexicon (no unknown words)

• In other cases, we deal with words we haven’t seen before
• An open vocabulary contains potentially unknown words

• Unknown word = Out of vocabulary word (OOV)
• Special tag <UNK> in corpus and in input

Using <UNK> in Corpus

• Two ways to train the LM for unknown words
• Turn the problem back into a closed vocabulary one by choosing a fixed

vocabulary in advance
• Choose a vocabulary (word list) that is fixed in advance
• Convert in the training set any OOV to the token <UNK>
• Estimate the probability for <UNK> from its count like any other regular word in the

training set

• Create a vocabulary implicitly (we don’t have a prior vocabulary in
advance)
• E.g., we can replace by <UNK> the words based on their frequency

Example

• Training corpus where (we decided) a vocabulary word appears at least twice (min
frequency = 2)
• Replace all words with freq < 2 with <UNK>

• Any words in the query outside the vocabulary also replaced with <UNK>

Input query
<s>Adam drinks chocolate</s>

Example
Corpus
<s> Lyn drinks chocolate </s>
<s> John drinks tea </s>
<s> Lyn eats chocolate </s>

Min frequency f=2

Vocabulary
Lyn, drinks, chocolate <s><UNK> drinks chocolate</s>

Corpus
<s> Lyn drinks chocolate </s>
<s> <UNK> drinks <UNK> </s>
<s> Lyn <UNK> chocolate </s>

How to create vocabulary V

• Criteria
• Min word frequency f
• Max |V|, include words by frequency

• Use <UNK> sparingly
• If we have a lot of <UNK>, the model will generate a sequence of >UNK>

with a high probability

• Perplexity
• Only compare LMs with the same V

Example

• Given the training corpus and minimum word frequency=2, how would the
vocabulary for corpus preprocessed with <UNK> look like?

• “<s> I am happy I am learning </s> <s> I am happy I can study </s>”
• V = (I,am,happy,I,am)
• V = (I,am,happy,learning,can,study,<UNK>)
• V = (I,am,happy)
• V = (I,am,happy,learning,can,study)

Smoothing

• It may happen that words are in a vocabulary but appear in a test
set in an unseen context
• E.g., they appear after a word they never appeared after, in training
• The LM would assign zero probs to these unseen events

• Missing N-grams in the corpus
• Smoothing
• Backoff and interpolation

Missing N-grams in training corpus

• Problem: N-grams made of known words still might be missing in
the training corpus
• “John”, “eats” in corpus, and “John eats” not in the corpus

• Their counts cannot be used for probability estimation

Missing N-grams in training corpus

● Problem: N-grams made of known words still might be missing in
the training corpus

Can be 0

● Their counts cannot be used for probability estimation

“John” , “eats” in corpus “John eats”

Smoothing

• Add-one smoothing (Laplacian smoothing)
• Only work when real counts are large enough to outweigh the +1

• The probability of missing words would be too high

• Add-k smoothing (for larger corpora)
• k < 1, e.g., 0.5, 0.05, 0.01

• Makes the probabilities smoother

Smoothing

վ Add-one smoothing (Laplacian smoothing)

վ Add-k smoothing

վ Advanced methods:
Kneser-Ney smoothing
Good-Turing smoothing

Smoothing

վ Add-one smoothing (Laplacian smoothing)

վ Add-k smoothing

վ Advanced methods:
Kneser-Ney smoothing
Good-Turing smoothing

Smoothing as a discounting

• Smoothing can be viewed as discounting (lowering) some non-zero
counts in order to get the probability mass that will be assigned to zero
counts

• However, there are alternative approaches
• If we’re trying to compute P(wn | wn-2, wn-1) with no examples of a particular

trigram wn-2wn-1wn, we can estimate its probability by using the bigram probability
P(wn | wn-1)
• Similarly, if P(wn | wn-1) = 0 we can look to P(wn)

Backoff

• With backoff if N-gram information is missing, you use N-1 gram
• If that's also missing, you would use N-2 gram and so on until you find a non-zero probability

• It distorts the probability distribution, especially for smaller corpora
• Some probability needs to be discounted from higher-level N-grams to use it for lower-level N-

grams
• The Katz backoff method uses discounting

• “Stupid” backoff (large corpora)
• The lower order N-gram probability is multiplied by a constant (e.g., 0.4)

Backoff

● If N-gram missing => use (N-1)-gram, …
○ Probability discounting e.g. Katz backoff
○ “Stupid” backoff

Corpus
<s> Lyn drinks chocolate </s>
<s> John drinks tea </s>
<s> Lyn eats chocolate </s>

“Stupid” backoff

Interpolation

• An alternative approach to backoff is to use the linear interpolation of all orders of N-
grams
• That is, you would always combine the weighted probability of the N-gram, N-1 gram down to 1-grams

• Example
• Trigrams

• The lambdas are learned from the validation part of the corpus

Interpolation

