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HMM for POS Tagging

The Viterbi Algorithm




HMM tagging as decoding

* The task of determining the sequence of the hidden variables
corresponding to the sequence of observations is called decoding

* Decoding
* Given as input an HMM with A and B matrices, and a sequence of
observations O=04,0,, ..., o7, find the most probable sequence of states
Q=3g19293...97

* For POS tagging, the goal of HMM decoding is to choose the tag
sequence ty,...,t, that is most probable given the observation sequence of

n words wy,...,w,

* The decoding algorithm for HMM s is the Viterbi algorithm



Viterbi Algorithm: The big picture

* Find the sequence of hidden states or parts of speech tags that have the
highest probability for this sequence

love love

<s> | love to learn

pony eat

sweets learn




Viterbi Algorithm: The big picture

* Let's start from the initial state m, selecting the next most probable hidden
state

love
love <s> | love to learn

pony eat > 0O

sweets learn

0.15

I to you

* The joint probability for observing the word | and with a transition through

the O state is 0.15 (0.3 x 0.5, i.e., transition Erob X emission ﬁrob)



Viterbi Algorithm: The big picture

* Now, two possibilities of having observed the word love

Tz > O

love
§b//§(j<5 love <s> | love to learn
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Viterbi Algorithm: The big picture
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Viterbi Algorithm: The big picture
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Viterbi Algorithm: The big picture
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Viterbi Algorithm: The big picture

* The total probability is the product of all the probabilities for the single steps chosen

love

pony

sweets

Q

‘,' /JVB)

love

eat

learn

<s> | love to learn
|
>0 ->VB > 0O->VB

0.15*0.25 * 0.08*0.1

Probability for this sequence of
hidden states: 0.0003

* The Viterbi algorithm computes several such paths at the same time for finding the
most likely sequence of hidden states




Viterbi algorithm: Steps

cie - . W, W, Wi
* Initialization step
t
* Forward pass =
* Backward pass £
W, W, Wi
t’l
D=

* Auxiliary matrices
* C holds the intermediate optimal probabilities
* D holds the indices of the visited states

* size NxK, N= number of POS tags, K = number of words in the given sequence



Initialization step: C matrix

* The first columns of matrices C and D are populated
- C
* The first column represents the probability of the transitions from the start state m to
the first tag_i and the word w;

Wy W, Wk
%, t, Ci1
tn CN;,1

Ci,1 =T * bi,cz’ndem(wl)

— Q1,4 * bz’,cindem(wl)
Wi | [ W2 | | W3

* cindex(w;) returns the column index in the emission matrix B for a given
word, w;



Initialization step: D matrix

* D stores the labels that represent the different states we're traversing when finding
the most likely sequence of POS tags from the given sequence of words, from w; to
Wk

* The first column has all O entries as there are no preceding POS tags traversed

Wi W,y W, W, Wy
t d
W2 W2 D — 1 1,1
‘ ’ w
di1 =0




Forward pass

* C and D are populated column by column during the forward pass

&3

W, W, Wy
C t Ci1 Ci2 Cik
tn CN,1 CN,2 Cn K

Ci,j = ml?x Ck,j—1 * Qg 4 * bz’,cindex(wj)




Forward pass

&3

W, W, Wy
%, t C11 Ci2 Cik
tn CN1 CN,2 Cn

C1,2 = m,?XCk,l * Qg1 * bl,cindem(wz)




Forward pass

Wy W, Wk
%, t, Ci1 Ci2 Cik
tn CN,1 CN2 Cn .k

C1,2 = mka'xck,l * Ak, 1* bl,cindem(wz)




Forward pass

W, W, Wy
t, C11 Ci2 Cik
C =
ty CN,1 Cn,2 Cn .k
C1,2 = ml?»XCk,l *Ak,1* bl,cz’ndem(wg)




Forward pass

Y

Wy Wy W3

W, w, Wy
Wy
t, diq dip dqk
W, D =
W3 ty du1 NP dnk

Ci,j = mkax Ck,j—1* Qg5 * bi,cz’ndem(wj)

di,j - a'rgmka‘x Ck,j—1 * Qg i * bi,cindem(wj)

* In each d,; the k which maximizes the entry ¢; ; is stored




Backward pass

* The forward pass provided us the matrix C and D populated

w, w, W, w, w, W,
C t1 cl.l c1.2 c‘l K D t‘l dl.l 12 d1 K
tN CN.1 cN 2 CN K tN dN 1 dN.2 dN K

§ = argmax ¢; i
1




Backward pass

* First, calculate the index of the entry ¢y in the last column of C

w, W, Wy W, w, Wy
C t, Ci1 Cqio Cik D t dig dip dqx
ty Cn,1 Cn,2 Cnk ty dn dn2 dnk

§ = argmaxc; g
(2




Backward pass

* Example
t, 0 1 3 2 3
<s> wl w2 w3 w4 w5
D=y 0o 2 | 4 1 3
t, 0 2 4 1 4
t, 0 4 4 3 1




Backward pass

W, w, Wy W, W5

t, 0.25 0.125 0.025 | 0.0125 0.01

C = t, 0.1 0.025 @ 0.05 0.01 0.003

ts 0.3 0.05 0.025 0.02 0.0000

ty 0.2 0.1 0.000 | 0.0025 | 0.0003

§ = argmaxc; g = 1
(




Backward pass

W, w, Wy W, W5
t, o | 1 3 0 2 | 3
t, o | 2 4 1 3
ty o | 2 4 1 4
0

4 | 4 3

§ = argmaxc; g = 1
(

<s> wl w2 w3 w4 w5




Backward pass

W, W, Wy Wy W5 <s> wl w2 w3 wé4 w5
t, 0 1 3 2 3 L
D=y 0 2 4 1 3
f3 0 2 4 1 4 <s> wl w2 w3 w4 w5
t, 0 4 4 3 1 t, <t




Backward pass

w, w, w,

t, 0| 1|3
D= t, 0 2 4
t, o 2 4

t o 4 4

A WO

<s> wl w2 w3 w4 w5




Backward pass

=
=
=
3
3

1 2 3 4 5
t1 0 1 ‘_3._ ? _3 <s> wl w2 w3 w4 w5
)= |4 0 2 4 1 3
2 tl t3 t1
t3 0 2 4 1 4
t 0 4 4 3 1




Backward pass

W1 W2 W3 w, W5
| t 0| 1 2
D=t o | 2| a4\ 1 |/3 |
't 0| 2| 4 |] 4
t o | 4| 4|3 | 1

<s> wl w2 w3 w4 w5




Backward pass

=
=
=
=
=

‘ 1 2 3 4 5
‘t1 0 1 g . __3 <s> wl w2 w3 w4 w5
D=t 0 2 4 1 3
2 A \ t3 1:1 . t3 t1
t, 0 z 4 4 4
t 0 4 4 3 1




Backward pass

W1 W2 W3 W4 W5

t, 0] 1 3 2 3
<s> wl w2 w3 w4 w5

D=y o | 2 | 4 1 3
n t, <t t t, t,

ts 0] 2 4 1 4

ty 0] 4 4 3 1




Named Entity Recognition




Named Entities

* In its core usage, a named entity means anything that can be referred to
with a proper name

* Most common 4 tags:
* PER (Person): “Marie Curie”
LOC (Location): “New York City”
ORG (Organization): “Stanford University”
GPE (Geo-Political Entity): "Boulder, Colorado”
Often multi-word phrases

* But the term is also extended to things that aren't entities: dates, times, prices

* The task of named entity recognition (NER)
* find spans of text that constitute proper names
* tag the type of the entity



NER output

Citing high fuel prices, [grg United Airlines] said [y Friday] it
has increased fares by [yjongy $6] per round trip on flights to some
cities also served by lower-cost carriers. [grg American Airlines], a
unit of [prg AMR Corp.], immediately matched the move, spokesman
[per Tim Wagner] said. [grg United], a unit of [org UAL Corp.],
said the increase took effect [Tpvjg Thursday] and applies to most
routes where it competes against discount carriers, such as [; oc Chicago]
to [1 oc Dallas] and [ o Denver] to [ oc San Francisco].




Why NER?

* Sentiment analysis

* consumer’s sentiment toward a particular company or person?
* Question Answering

* answer guestions about an entity?

* Information Extraction
* Extracting facts about entities from text




Why NER is hard

» Segmentation
* In POS tagging, no segmentation problem since each word gets one tag

* In NER we must find and segment the entities!

* Type ambiguity

[per Washington] was born into slavery on the farm of James Burroughs.

[orG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [ o Washington] for what may well be his last state visit.

In June, [gpg Washington] passed a primary seatbelt law.




BIO Tagging

* How can we turn this structured problem into a sequence problem
like POS tagging, with one label per word?

 [PER Jane Villanueva] of [ORG United], a unit of [ORG United
Airlines Holding], said the fare applies to the [LOC Chicago | route




BIO Tagging

* [PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines
Holding], said the fare applies to the [LOC Chicago | route

Words BIO Label

Jane B-PER
Villanueva I-PER
of O
United B-ORG

Airlines I-ORG
Holding I-ORG
discussed O

Now we have one tag per token!!!

the O
Chicago B-LOC
route O

O




BIO Tagging

* B: token that begins a span
* |: tokens inside a span
 O: tokens outside of any span

* # of tags (where n is #entity types):

* 1O tag,

* n B tags,

* nltags

e total of 2n+1

Words BIO Label
Jane B-PER
Villanueva I-PER
of O
United B-ORG
Airlines [-ORG
Holding [-ORG
discussed O
the O
Chicago B-LOC
route O

O




BIO Tagging variants: 1O and BIOES

* [PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines
Holding], said the fare applies to the [LOC Chicago | route

Words 10 Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United [I-ORG B-ORG B-ORG
Airlines I[-ORG I[-ORG I[-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O

O O O




Standard algorithms for NER

* Supervised Machine Learning given a human-labeled training set
of text annotated with tags
* Hidden Markov Models

 Conditional Random Fields (CRF)/ Maximum Entropy Markov Models
(MEMM)

* Neural sequence models (RNNs or Transformers)
* Large Language Models (like BERT), finetuned




