

Natural Language Processing

Part-Of-Speech Tagging

LESSON 18

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

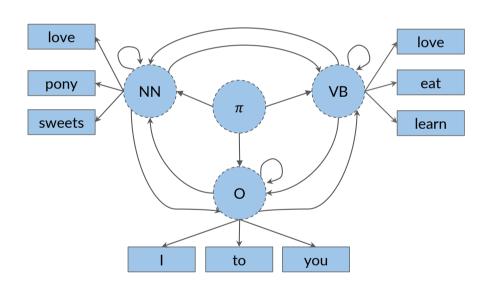
HMM for POS Tagging

The Viterbi Algorithm

HMM tagging as decoding

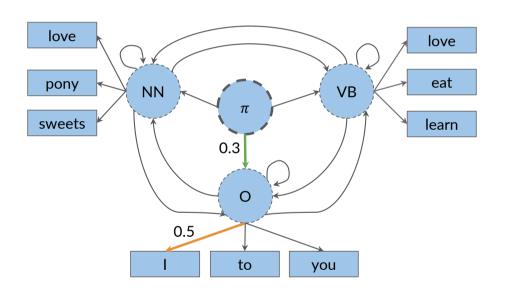
- The task of determining the sequence of the hidden variables corresponding to the sequence of observations is called decoding
- Decoding
 - Given as input an HMM with A and B matrices, and a sequence of observations $O=o_1,o_2,\ldots,o_T$, find the most probable sequence of states $Q=q_1q_2q_3\ldots q_T$
 - For POS tagging, the goal of HMM decoding is to choose the tag sequence $t_1, ..., t_n$ that is most probable given the observation sequence of n words $w_1, ..., w_n$
- The decoding algorithm for HMMs is the Viterbi algorithm

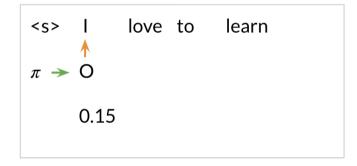
 Find the sequence of hidden states or parts of speech tags that have the highest probability for this sequence





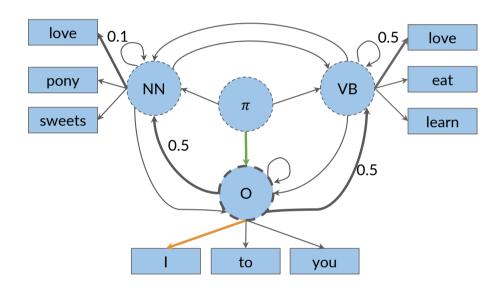
• Let's start from the initial state π , selecting the next most probable hidden state

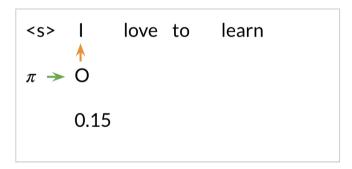


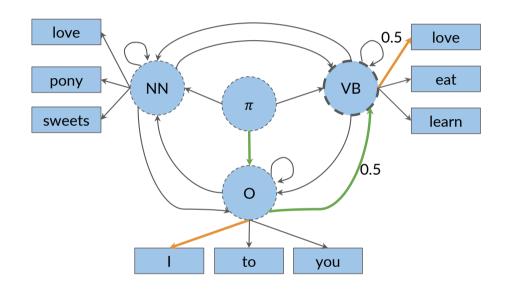


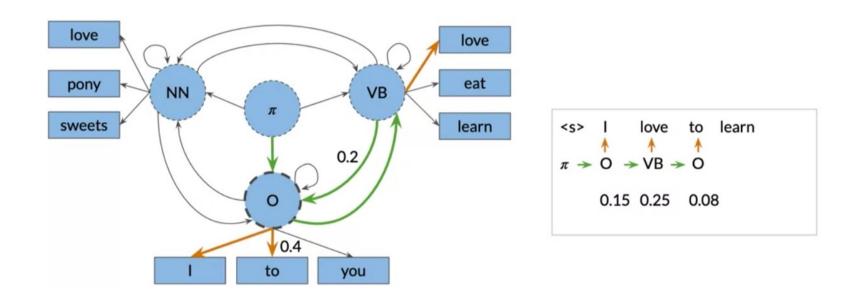
• The joint probability for observing the word I and with a transition through the O state is 0.15 (0.3 \times 0.5, i.e., transition prob \times emission prob)

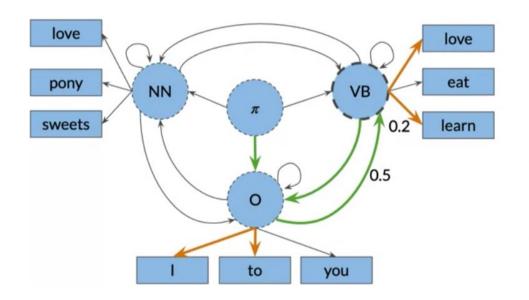
Now, two possibilities of having observed the word love

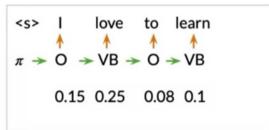




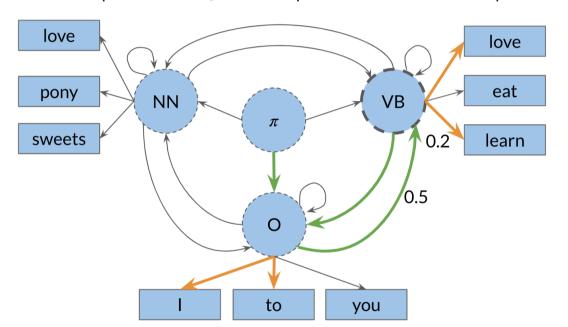


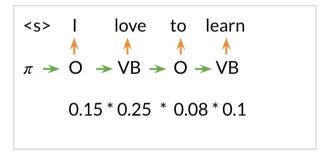






• The total probability is the product of all the probabilities for the single steps chosen





Probability for this sequence of hidden states: 0.0003

• The Viterbi algorithm computes several such paths at the same time for finding the most likely sequence of hidden states

Viterbi algorithm: Steps

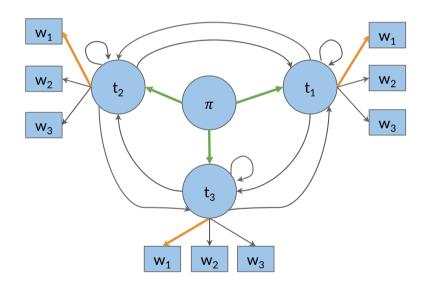
- Initialization step
- Forward pass
- Backward pass

		w ₁	W ₂	 w _K
C =	t ₁			
C =				
	t _N			

- Auxiliary matrices
 - C holds the intermediate optimal probabilities
 - D holds the indices of the visited states
 - size NxK, N = number of POS tags, K = number of words in the given sequence

Initialization step: C matrix

- The first columns of matrices C and D are populated
 - C
 - The first column represents the probability of the transitions from the start state π to the first tag_i and the word w_1

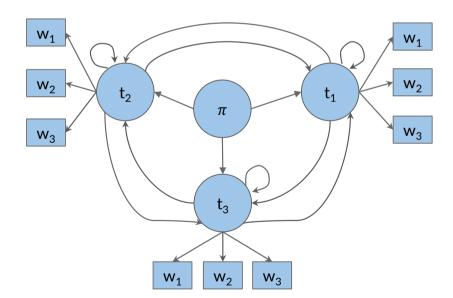


$$c_{i,1} = \pi_i * b_{i,cindex(w_1)}$$
$$= a_{1,i} * b_{i,cindex(w_1)}$$

• $cindex(w_i)$ returns the column index in the emission matrix B for a given word, w_i

Initialization step: D matrix

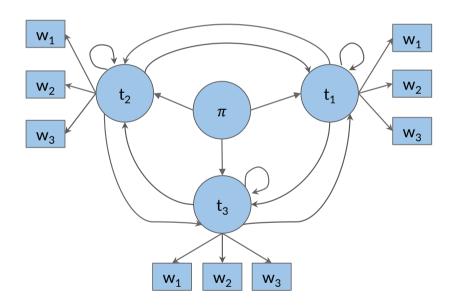
- D stores the labels that represent the different states we're traversing when finding the most likely sequence of POS tags from the given sequence of words, from w_1 to w_k
 - The first column has all 0 entries as there are no preceding POS tags traversed



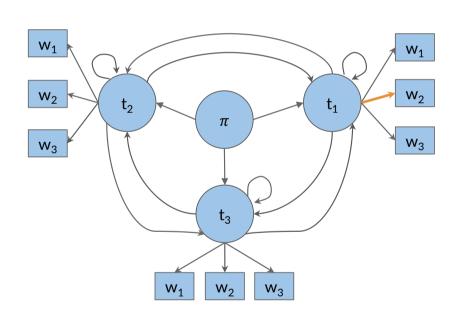
		W ₁	W ₂	 w _K
D =	t ₁	d _{1,1}		
D =				
	t _N	d _{N,1}		

$$d_{i,1} = 0$$

• C and D are populated column by column during the forward pass

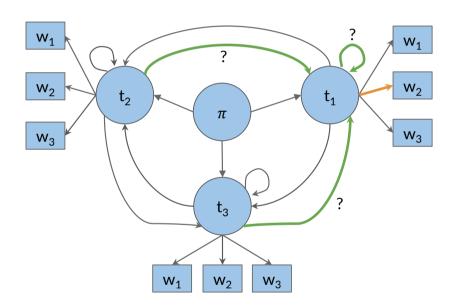


$$c_{i,j} = \max_{k} c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

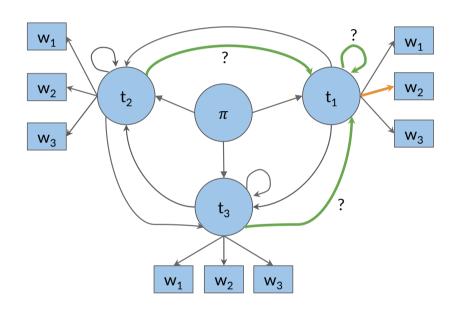


		W ₁	W ₂	 w _K
C =	t ₁	c _{1,1}	c _{1,2}	C _{1,K}
C =				
	t _N	c _{N,1}	c _{N,2}	C _{N,K}

$$c_{1,2} = \max_{k} c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$

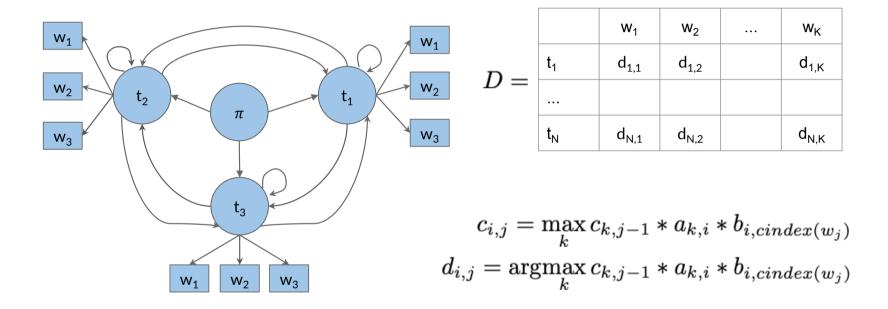


$$c_{1,2} = \max_{k} c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$



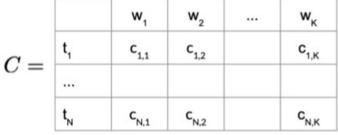
		W ₁	W ₂	 W _K
C =	t ₁	c _{1,1}	c _{1,2}	C _{1,K}
C =				
	t _N	c _{N,1}	c _{N,2}	c _{N,K}

$$c_{1,2} = \max_{k} c_{k,1} * a_{k,1} * b_{1,cindex(w_2)}$$



• In each $d_{i,j}$ the k which maximizes the entry $c_{i,j}$ is stored

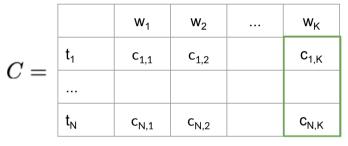
• The forward pass provided us the matrix C and D populated



 $s = \underset{i}{\operatorname{argmax}} c_{i,K}$

		W ₁	W ₂	 w _K
D =	t,	d _{1,1}	d _{1,2}	d _{1,K}
<i>D</i> –				
	t _N	d _{N,1}	d _{N,2}	d _{N,K}

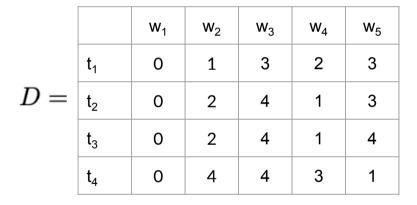
ullet First, calculate the index of the entry c_{iK} in the last column of C



$$s = \operatorname*{argmax}_{i} c_{i,K}$$

		W ₁	W ₂	 w _K
D =	t ₁	d _{1,1}	d _{1,2}	d _{1,K}
D =				
	t _N	d _{N,1}	d _{N,2}	d _{N,K}

Example



C	=
\circ	

	W ₁	W ₂	W ₃	W ₄	W ₅
t ₁	0.25	0.125	0.025	0.0125	0.01
t ₂	0.1	0.025	0.05	0.01	0.003
t ₃	0.3	0.05	0.025	0.02	0.0000
t ₄	0.2	0.1	0.000	0.0025	0.0003

 $s = \underset{i}{\operatorname{argmax}} c_{i,K} = 1$

		W ₁	W ₂	W ₃	W ₄	W ₅		
	t ₁	0	1	3	2	3	←	
D =	t ₂	0	2	4	1	3		
	t ₃	0	2	4	1	4		
	t ₄	0	4	4	3	1		
$s = \operatorname*{argmax}_{i} c_{i,K} = 1$								

<s> w1 w2 w3 w4 w5

		W_1	W_2	W_3	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t_2	0	2	4	1	3
	t ₃	0	2	4	1	4
	t ₄	0	4	4	3	1

 ~~w1 w2 w3 w4 w5
$$t_3 \leftarrow t_1$$~~

		W ₁	W ₂	W ₃	W ₄	W ₅
	t,	0	1	3	2	3
) =	t ₂	0	2	4	1 /	3
	t ₃	0	2	4	1	4
	t ₄	0	4	4	3	1

 ~~w1 w2 w3 w4 w5
$$t_1 \leftarrow t_3 \leftarrow t_1$$~~

		W ₁	W ₂	w ₃	W ₄	W ₅
	t,	0	1	3	2	3
D =	t ₂	0	2	4	1	/ 3
	t ₃	0	2	4		4
	t ₄	0	4	4	3	1

 ~~w1 w2 w3 w4 w5
$$t_1 \leftarrow t_3 \leftarrow t_1$$~~

		w ₁	W ₂	w ₃	W ₄	W ₅
	t,	0	1	3	2	3
D =	t ₂	0	2	4	1	/ 3
	t ₃	0	2	4	\checkmark	4
	t ₄	0	4	4	3	1

 ~~w1 w2 w3 w4 w5
$$t_3 \leftarrow t_1 \leftarrow t_3 \leftarrow t_1$$~~

		W ₁	W ₂	W ₃	W ₄	W ₅
	t,	0	1	3	2	3
D =	t ₂	0	2 /	4	1	/ 3
	t ₃	0	2	4	\neg	4
	t ₄	0	4	4	3	1

		W ₁	W ₂	W_3	W ₄	W ₅
	t ₁	0	1	3	2	3
D =	t ₂	0	2	4	1	3
	t ₃	0	2	4	1	4
	t ₄	0	4	4	3	1

Named Entity Recognition

Named Entities

- In its core usage, a named entity means anything that can be referred to with a proper name
- Most common 4 tags:
 - PER (Person): "Marie Curie"
 - LOC (Location): "New York City"
 - ORG (Organization): "Stanford University"
 - GPE (Geo-Political Entity): "Boulder, Colorado"
 - Often multi-word phrases
 - But the term is also extended to things that aren't entities: dates, times, prices
- The task of named entity recognition (NER)
 - find spans of text that constitute proper names
 - tag the type of the entity

NER output

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Why NER?

- Sentiment analysis
 - consumer's sentiment toward a particular company or person?
- Question Answering
 - answer questions about an entity?
- Information Extraction
 - Extracting facts about entities from text

Why NER is hard

- Segmentation
 - In POS tagging, no segmentation problem since each word gets one tag
 - In NER we must find and segment the entities!
- Type ambiguity

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law.

BIO Tagging

- How can we turn this structured problem into a sequence problem like POS tagging, with one label per word?
- [PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route

BIO Tagging

• [PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	O
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	O
the	O
Chicago	B-LOC
route	O
•	O

Now we have one tag per token!!!

BIO Tagging

- B: token that begins a span
- I: tokens inside a span
- O: tokens outside of any span
- # of tags (where n is #entity types):
 - 10 tag,
 - n B tags,
 - n l tags
- total of 2n+1

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	O
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	O
the	O
Chicago	B-LOC
route	O
•	O

BIO Tagging variants: IO and BIOES

• [PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	0	0	0
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	0	0	0
the	0	0	0
Chicago	I-LOC	B-LOC	S-LOC
route	0	0	0
•	0	0	0

Standard algorithms for NER

- Supervised Machine Learning given a human-labeled training set of text annotated with tags
 - Hidden Markov Models
 - Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
 - Neural sequence models (RNNs or Transformers)
 - Large Language Models (like BERT), finetuned