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The Viterbi Algorithm
HMM for POS Tagging



HMM tagging as decoding

• The task of determining the sequence of the hidden variables 
corresponding to the sequence of observations is called decoding

• Decoding
• Given as input an HMM with A and B matrices, and a sequence of 

observations O=o1,o2, …, oT, find the most probable sequence of states 
Q=q1q2q3…qT

• For POS tagging, the goal of HMM decoding is to choose the tag 
sequence t1,…,tn that is most probable given the observation sequence of 
n words w1,…,wn

• The decoding algorithm for HMMs is the Viterbi algorithm



Viterbi Algorithm: The big picture

• Find the sequence of hidden states or parts of speech tags that have the 
highest probability for this sequence

Viterbi algorithm – a graph algorithm
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Viterbi Algorithm: The big picture

• Let’s start from the initial state 𝜋, selecting the next most probable hidden 
state

• The joint probability for observing the word I and with a transition through 
the O state is 0.15 (0.3 x 0.5, i.e., transition prob x emission prob)

Viterbi algorithm – a graph algorithm
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Viterbi Algorithm: The big picture

• Now, two possibilities of having observed the word love
Viterbi algorithm – a graph algorithm
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Viterbi Algorithm: The big picture

Viterbi algorithm – a graph algorithm
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Viterbi Algorithm: The big picture



Viterbi Algorithm: The big picture



Viterbi Algorithm: The big picture

• The total probability is the product of all the probabilities for the single steps chosen

• The Viterbi algorithm computes several such paths at the same time for finding the 
most likely sequence of hidden states



Viterbi algorithm: Steps

• Initialization step

• Forward pass

• Backward pass

• Auxiliary matrices 
• C holds the intermediate optimal probabilities
• D holds the indices of the visited states
• size NxK, N= number of POS tags, K = number of words in the given sequence 

Viterbi algorithm – Steps

1. Initialization step
2. Forward pass
3. Backward pass

w1 w2 ... wK

t1

...

tN

w1 w2 ... wK

t1

...

tN



Initialization step: C matrix
• The first columns of matrices C and D are populated
• C

• The first column represents the probability of the transitions from the start state 𝜋 to 
the first tag_i and the word w1

• cindex(wi) returns the column index in the emission matrix B for a given 
word, wi

Initialization step
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Initialization step: D matrix

Initialization step
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• D stores the labels that represent the different states we’re traversing when finding 
the most likely sequence of POS tags from the given sequence of words, from w1 to 
wk

• The first column has all 0 entries as there are no preceding POS tags traversed



Forward pass

Initialization step
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• C and D are populated column by column during the forward pass



Forward pass
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Forward pass
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• In each di,j the k which maximizes the entry ci,j is stored



Backward pass

• The forward pass provided us the matrix C and D populated



Backward pass

• First, calculate the index of the entry ciK in the last column of C
Backward pass
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Backward pass

• ExampleBackward pass

w1 w2 w3 w4 w5

t1 0 1 3 2 3

t2 0 2 4 1 3

t3 0 2 4 1 4

t4 0 4 4 3 1

<s> w1 w2
w3 w4
w5

𝜋 t4 t4
t2 t1
t1



Backward pass
Backward pass

w1 w2 w3 w4 w5

t1 0.25 0.125 0.025 0.0125 0.01

t2 0.1 0.025 0.05 0.01 0.003

t3 0.3 0.05 0.025 0.02 0.0000

t4 0.2 0.1 0.000 0.0025 0.0003
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Named Entity Recognition



Named Entities

• In its core usage, a named entity means anything that can be referred to 
with a proper name

• Most common 4 tags:
• PER (Person): “Marie Curie”
• LOC (Location): “New York City” 
• ORG (Organization): “Stanford University”
• GPE (Geo-Political Entity): "Boulder, Colorado”
• Often multi-word phrases

• But the term is also extended to things that aren't entities: dates, times, prices

• The task of named entity recognition (NER)
• find spans of text that constitute proper names
• tag the type of the entity 



NER output

6 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

The most-frequent-tag baseline has an accuracy of about 92%1. The baseline
thus differs from the state-of-the-art and human ceiling (97%) by only 5%.

8.3 Named Entities and Named Entity Tagging

Part of speech tagging can tell us that words like Janet, Stanford University, and
Colorado are all proper nouns; being a proper noun is a grammatical property of
these words. But viewed from a semantic perspective, these proper nouns refer to
different kinds of entities: Janet is a person, Stanford University is an organization,..
and Colorado is a location.

A named entity is, roughly speaking, anything that can be referred to with anamed entity

proper name: a person, a location, an organization. The task of named entity recog-
nition (NER) is to find spans of text that constitute proper names and tag the type ofnamed entity

recognition
NER the entity. Four entity tags are most common: PER (person), LOC (location), ORG

(organization), or GPE (geo-political entity). However, the term named entity is
commonly extended to include things that aren’t entities per se, including dates,
times, and other kinds of temporal expressions, and even numerical expressions like
prices. Here’s an example of the output of an NER tagger:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money. Figure 8.5 shows typical generic
named entity types. Many applications will also need to use specific entity types like
proteins, genes, commercial products, or works of art.

Type Tag Sample Categories Example sentences
People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The IPCC warned about the cyclone.
Location LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.

Figure 8.5 A list of generic named entity types with the kinds of entities they refer to.

Named entity tagging is a useful first step in lots of natural language understand-
ing tasks. In sentiment analysis we might want to know a consumer’s sentiment
toward a particular entity. Entities are a useful first stage in question answering,
or for linking text to information in structured knowledge sources like Wikipedia.
And named entity tagging is also central to natural language understanding tasks
of building semantic representations, like extracting events and the relationship be-
tween participants.

Unlike part-of-speech tagging, where there is no segmentation problem since
each word gets one tag, the task of named entity recognition is to find and label

1 In English, on the WSJ corpus, tested on sections 22-24.



Why NER?

• Sentiment analysis
• consumer’s sentiment toward a particular company or person?

• Question Answering
• answer questions about an entity?

• Information Extraction
• Extracting facts about entities from text



Why NER is hard

• Segmentation
• In POS tagging, no segmentation problem since each word gets one tag
• In NER we must find and segment the entities!

• Type ambiguity

8.3 • NAMED ENTITIES AND NAMED ENTITY TAGGING 7

spans of text, and is difficult partly because of the ambiguity of segmentation; we
need to decide what’s an entity and what isn’t, and where the boundaries are. Indeed,
most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 8.6.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 8.6 Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[PER Jane Villanueva ] of [ORG United] , a unit of [ORG United Airlines
Holding] , said the fare applies to the [LOC Chicago ] route.

Figure 8.7 shows the same excerpt represented with BIO tagging, as well asBIO
variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled O. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n+1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label yi to each input word xi:

Words IO Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O
. O O O
Figure 8.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.



BIO Tagging

• How can we turn this structured problem into a sequence problem 
like POS tagging, with one label per word?

• [PER Jane Villanueva] of [ORG United], a unit of [ORG United 
Airlines Holding], said the fare applies to the [LOC Chicago ] route



BIO Tagging

• [PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines 
Holding], said the fare applies to the [LOC Chicago ] route

8.3 • NAMED ENTITIES AND NAMED ENTITY TAGGING 7

spans of text, and is difficult partly because of the ambiguity of segmentation; we
need to decide what’s an entity and what isn’t, and where the boundaries are. Indeed,
most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 8.6.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 8.6 Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
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Figure 8.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.

8.3 • NAMED ENTITIES AND NAMED ENTITY TAGGING 7

spans of text, and is difficult partly because of the ambiguity of segmentation; we
need to decide what’s an entity and what isn’t, and where the boundaries are. Indeed,
most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 8.6.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 8.6 Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[PER Jane Villanueva ] of [ORG United] , a unit of [ORG United Airlines
Holding] , said the fare applies to the [LOC Chicago ] route.

Figure 8.7 shows the same excerpt represented with BIO tagging, as well asBIO
variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled O. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n+1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label yi to each input word xi:

Words IO Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O
. O O O
Figure 8.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.

Now we have one tag per token!!!



BIO Tagging

• B: token that begins a span
• I: tokens inside a span
• O: tokens outside of any span

• # of tags (where n is #entity types):
• 1 O tag, 
• n B tags, 
• n I tags

• total of 2n+1
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A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.



BIO Tagging variants: IO and BIOES

• [PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines 
Holding], said the fare applies to the [LOC Chicago ] route
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spans of text, and is difficult partly because of the ambiguity of segmentation; we
need to decide what’s an entity and what isn’t, and where the boundaries are. Indeed,
most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 8.6.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 8.6 Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[PER Jane Villanueva ] of [ORG United] , a unit of [ORG United Airlines
Holding] , said the fare applies to the [LOC Chicago ] route.

Figure 8.7 shows the same excerpt represented with BIO tagging, as well asBIO
variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled O. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n+1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label yi to each input word xi:

Words IO Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O
. O O O
Figure 8.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.



Standard algorithms for NER

• Supervised Machine Learning given a human-labeled training set 
of text annotated with tags
• Hidden Markov Models
• Conditional Random Fields (CRF)/ Maximum Entropy Markov Models 

(MEMM)
• Neural sequence models (RNNs or Transformers)
• Large Language Models (like BERT), finetuned


