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Geometric optic

Meaning

Geometric optics, or ray optics, refers to a high frequency
approximation of Maxwell’s equation that in terms of rays

describes waves propagation.

In addition, the ray in geometric optics is an abstraction
useful for approximating the paths along which the
propagation of em waves takes place under certain
circumstances.
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The scalar approximation

Scalar problems

In a simple medium the vector nature of the em field does
not play any role. In fact, the components of the electric field

satisfy the scalar Helmholtz equation.

This is not always the case.
A scalar problem is always very attractive that is why,
often, approximations are made to simplify the vector
problem into a scalar one.
Inhomogeneous media are a notable example of media
for which the scalar approach cannot be obtained
rigorously but only by making approximations.
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The scalar approximation

Inhomogeneous medium

An inhomogeneous medium is such that when at least one
of its constitutive parameters is a function of spatial
coordinates, e.g.; ε← ε(r). Hereinafter, the spatial
dependence is understood but omitted for brevity.

When moving from Maxwell’s equations to the
Helmholtz equation, one needs to deal with the
following term:

∇×∇× E = ∇(∇ · E)−∇2E = ω2εµE (1)
= k2

o n2E

with n2 = ε
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The scalar approximation

According to the divergence Maxwell’s equation:

∇ · εE = 0 (2)

Invoking vector identities:

∇ · εE = ∇ε · E + ε∇ · E = 0 (3)

which means:
∇ · E =

∇ε · E
ε

(4)
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The scalar approximation

The vector Helmholtz equation in the most general
case reads as follows:

∇(∇ · E)−∇2E = k2
o n2E (5)

The vector Helmholtz equation

The behavior of this equation must be discussed in case of:

Homogeneous medium.
Inhomogeneous medium.
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The scalar approximation

A homogeneous medium is such that ε (and, therefore,
n), does not depend on the spatial coordinates.
This means that (4) vanishes since ∇ε = 0.
Hence, the vector Helmholtz equation (5) reads as
follows:

∇2E + k2
o n2E = 0 (6)

Each field component satisfies the scalar Helmholtz
equation:

∇2ψ + k2
o n2ψ = 0 (7)

The uniform plane wave solution is achieved:

ψ(r) = ψoe−jk·r (8)
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The scalar approximation

An inhomogeneous medium is such that its constitutive
parameters, e.g.; ε (and, therefore, n), depend on the
spatial coordinates.
This means that (4) does not vanish since ∇ε 6= 0.
Hence, the vector Helmholtz equation (5) reads as
follows:

∇2E + k2
o n2E + 2∇

(
∇n · E

n

)
= 0 (9)

with ∇(n2) = 2n∇n

The last term is non-zero and it describes the coupling
between the 3 field components of E and the resulting

polarization effects.
It cannot be broken down into scalar problems in an exact

way
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The scalar approximation

The scalar approximation

In case of slow varying media:

|∇n
n
| � λ. (10)

we drop the last term in eq.(9).

This is a reasonable approximation in applications
where polarization is not measurable.
Under this hypothesis, the field Cartesian components
must satisfy the scalar Helmholtz equation:

∇2ψ + k2
o n2ψ = 0 (11)

12 / 34



GO

ERSLab

F. Nunziata

The scalar
approximation
Inhomogeneous
media

Scalar Helmholtz
equation

Local plane waves

Eikonal equation

Ray path
HF approximation

Ray paths

Straight ray

Curved ray

Appendix
For Further Reading

Outline

1 The scalar approximation
Inhomogeneous media
Scalar Helmholtz equation
Local plane waves
Eikonal equation

2 Ray path
HF approximation
Ray paths
Straight ray
Curved ray

13 / 34



GO

ERSLab

F. Nunziata

The scalar
approximation
Inhomogeneous
media

Scalar Helmholtz
equation

Local plane waves

Eikonal equation

Ray path
HF approximation

Ray paths

Straight ray

Curved ray

Appendix
For Further Reading

Local plane waves

Let us suppose that any solution of eq.(11) - in an
inhomogeneous medium - can be expressed as:

ψ(r) = C(r)e−jkoS(r) (12)

ko = ω
√
µoεo is the intrinsic phase constant of free

space;
C(r) and S(r) are two real-valued functions of spatial
coordinates that are termed as amplitude and phase
functions, respectively.

Local plane waves

A a generic fixed point P = O + ro, eq.(12) looks like a
plane wave. That is why, the solutions described by eq.(12)

consist of expanding the field into locally plane waves.
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In a nutshell
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Eikonal equation

To analyze the properties of the local plane wave
solution, eq.(12) can be substituted into the scalar
Helmholtz equation (11) and invoking the vector
identity:

∇ · (fA) = f∇ · A +∇f · A (13)

one obtains (noting that ∇2ψ = ∇ · ∇ψ):

∇ψ = ∇(Ce−jkoS) = ∇Ce−jkoS − jkoC∇Se−jkoS (14)

∇ ·
(
∇Ce−jkoS

)
= e−jkoS∇2C − jko∇S · ∇C (15)

∇ ·
(
−jkoC∇Se−jkoS

)
= ∇ ·

(
∇S

(
−jkoCe−jkoS

))
=

−jkoCe−jkoS∇2S +∇
(
−jkoCe−jkoS

)
· ∇S =

−jkoCe−jkoS∇2S− jko∇Ce−jkoS ·∇S−k2
o C∇Se−jkoS ·∇S

(16)
17 / 34
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Eikonal equation

Dividing by e−jkoS 6= 0 one obtains:

∇2C−jko∇S·∇C−jkoC∇2S−jko∇C·∇S−k2
o C(∇S)2 =

∇2C − jko

(
2∇S · ∇C + C∇2S

)
− k2

o C(∇S)2 = k2
ε C
(17)

Since C and S are two real functions, the equality (17)
consists of equating to zero separately the real and the
imaginary parts.
Let us start from the real part:

(∇S)2 = −k2
ε

k2
o
+

1
k2

o

∇2C
C

(18)
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Eikonal equation

Since n =
√

εµ
εoµo

is the spatial dependent refractive
index, eq.(18) can be rewritten as follows:

(∇S)2 = n2 +
1
k2

o

∇2C
C

(19)

High frequency approximation - eikonal equation

Note that, for very high frequencies (and, thus, small
wavelengths):

|∇2C| � k2
o |C| (20)

hence, eq.(19) can be approximated as follows:

(∇S)2 = n2 (21)

This equation is known as eikonal equation
19 / 34



GO

ERSLab

F. Nunziata

The scalar
approximation
Inhomogeneous
media

Scalar Helmholtz
equation

Local plane waves

Eikonal equation

Ray path
HF approximation

Ray paths

Straight ray

Curved ray

Appendix
For Further Reading

Outline

1 The scalar approximation
Inhomogeneous media
Scalar Helmholtz equation
Local plane waves
Eikonal equation

2 Ray path
HF approximation
Ray paths
Straight ray
Curved ray

20 / 34



GO

ERSLab

F. Nunziata

The scalar
approximation
Inhomogeneous
media

Scalar Helmholtz
equation

Local plane waves

Eikonal equation

Ray path
HF approximation

Ray paths

Straight ray

Curved ray

Appendix
For Further Reading

Ray paths

High frequency approximation

Note that the inequality provided by eq.(20) is achieved
when two conditions are met:

High frequency (or, equivalently, high ko).
The relative change in the amplitude function C over
space should be small.

This is why rough features and sharp boundaries always
pose problems in geometrical optics predictions.
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Ray paths

Solving eq.(21) consists of finding the constant-phase
surfaces S(r)=const of the wave (12).
At any point R = O + r each of these waves calls for a
phase vector that is orthogonal to the constant-phase
surface that passes through R.

The lines that envelope the local phase vectors are called
ray paths

22 / 34
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Ray paths

Solving the Eikonal Equation with Rays

A ray is an intrinsically one-dimensional construct, but may
bend in an arbitrary manner through three-dimensional
space.
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Straight ray

A straight ray can be described by a vector function
r = (x(s), y(s), z(s)) whose components are the
Cartesian coordinates of points along the ray; while s is
a unit of length measured from the starting point of the
ray.
For a straight ray that starts in r(0) its position as
function of distance can be written as follows:

r(s) = r(0) + st̂ (22)

with t̂ being a unit vector that points in the direction of
ray travel.
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Curved ray

To describe a ray that curves, t̂ needs to vary with
position s along the ray.

Rays that curve

The ray is the collection of positions r that follow the
general system of equations:

dr(s)
ds

= t̂
d2r(s)

ds2 =
dt̂
ds

= ρû (23)

In addition, one can define the direction-derivative
operator along the direction of a ray and orthogonal
everywhere to the S(r) = const surface:

d
ds

= t̂ · ∇ (24)
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First derivative term

First derivative

The first derivative of r with respect to ray length must,
by definition, point along this unit vector and have
unitary length.
This means that the first derivative is allowed to change
direction as s increases but its magnitude must be
always unitary to be a natural measure of length in
space.

29 / 34



GO

ERSLab

F. Nunziata

The scalar
approximation
Inhomogeneous
media

Scalar Helmholtz
equation

Local plane waves

Eikonal equation

Ray path
HF approximation

Ray paths

Straight ray

Curved ray

Appendix
For Further Reading

Second derivative term

Second derivative

The second derivative of r with respect to ray length
must point in a direction û that is perpendicular to the
direction of ray travel t̂ .
The magnitude of this second derivative is related to
the curvature ρ of the ray at a given point
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Ray behavior wrt n

To link the ray behavior to n, let’s start from the eikonal
equation (21). If the rays are to trace waves, the
direction of ray travel t̂ must point along the gradient of
the eikonal function S:

∇S = n
dr
ds

= nt̂ (25)

By deriving both sides with respect to s:

d
ds

(
n

dr
ds

)
=

d
ds

(
nt̂
)

(26)

d
ds

nt̂ + n
d2r
ds2 =

d
ds

nt̂(
t̂ · ∇n

)
t̂ + nρû = ∇n
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Ray behavior wrt n

Eq.(27) can be rearranged as follows:

nρû = ∇n −
(

t̂ · ∇n
)

t̂ (27)

to show that:

the curvature ρ of the ray is proportional to the portion of ∇n
that projects transverse to the direction of ray travel t̂

A ray will always curve into the direction of the ∇n.
If the spatial change of n is perfectly aligned with the
direction of ray travel t̂ , then the curvature is 0 and the
ray travels in a straight line.
Maximum curvature of the ray is achieved when the
gradient of n is perpendicular to the direction of travel t̂ .
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Curvature and bending direction

The ray curvature ρ is given by:

ρ =
1
n
‖∇n −

(
t̂ · ∇n

)
t̂‖ (28)

The bending direction û is given by:

û = t̂ ×
(
∇n × t̂

)
(29)

Straight rays

The above equations show that waves are traced by straight
rays in homogeneous media.

In such media, the gradient of n is always the zero-vector.
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