
Spelling correction

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 15

Natural Language Processing

Slides taken from DeepLearning.AI and from the slides accompanying the textbook by D. Jurafsky

What is autocorrect?

• Is a task that changes misspelled words into correct ones
• Phones
• Tablets
• Computers What is autocorrect?

վ Phones
վ Tablets
վ Computers

What is autocorrect?

վ Phones
վ Tablets
վ Computers

Autocorrect: Example

• Happy birthday deah friend!
• Happy birthday dear friend!

• Non-word spelling correction

• What if you typed deer instead of dear?
• Happy birthday deer friend!

• The word is spelled correctly, but its context is incorrect
• Real-world spelling correction

How autocorrect works

• Identify a misspelled word
• Find strings n edit distance away
• Filter candidates
• Compute word probabilities

Steps for autocorrect

• Identify a misspelled word
• Find strings n edit distance away
• Filter candidates
• Compute word probabilities

deah

Steps for autocorrect

• Identify a misspelled word
• Find strings n edit distance away
• Filter candidates
• Compute word probabilities

deah

_eah

d_ar

de_r

etc.

Steps for autocorrect

• Identify a misspelled word
• Find strings n edit distance away
• Filter candidates
• Compute word probabilities

deah

yeah

dear

dean

…

Steps for autocorrect

• Identify a misspelled word
• Find strings n edit distance away
• Filter candidates
• Compute word probabilities

deah

yeah

dear

dean

…

Steps for autocorrect

• Identify a misspelled word
• Find strings n edit distance away
• Filter candidates
• Compute word probabilities

deah

yeah

dear

dean

…

dear

Building the model

• Identify a misspelled word
• How to do that?

• If it’s spelled correctly, it can be found in the dictionary, otherwise, it’s probably a misspelled
word

Building the model

1. Identify a misspelled word

deah ?? 🤔
Building the model

1. Identify a misspelled word

deah ⩃

Building the model

1. Identify a misspelled word

deah ❌

Happy birthday deer 歷✅

Building the model

1. Identify a misspelled word

deah ❌

Happy birthday deer ! 歷✅
🎂

Building the model

• Find string n edit distance away
• Given a string find all possible strings that are n edit distance

away using
• Insert

• Delete

• Switch

• Replace

• Edit distance counts the number of these operations so that the
n edit distance tells you how many operations away one string is
from another

deah

_eah

d_ar

de_r

etc.

Edit distance

• Edit: an operation performed on a string to change it
• Insert (add a letter)

• to: top, two, …

• Delete (remove a letter)
• hat: ha, at, ht

• Switch (swap two adjacent letters)
• eta: eat, tea, …
• It does not include switching two letters that are not next to each other (e.g., ate)

• Replace (change one letter to another)
• jaw: jar, paw

• By combining these edits, you can find a list of all possible strings that’s are n
edit away
• For autocorrect, n is typically 1-3 edits

Building the model

• Filter candidates
• Many of the strings that are generated do not look like actual words

• Keep ones that are real words (correctly spelled)
• Compare it to a dictionary or vocabulary

deah

_eah

d_ar

de_r

etc.

deah

yeah

dear

dean

…

Building the model

• Compute word probabilities
• “I am happy because I am learning”Building the model

4. Calculate word probabilities

Example: “I am happy because I am learning”

Word Count

I 2

am 2

happy 1

because 1

learning 1

Total : 7

Building the model

4. Calculate word probabilities

Example: “I am happy because I am learning”

Word Count

I 2

am 2

happy 1

because 1

learning 1

Total : 7

Probability of a word

Number of times the word appears

Total size of the corpus

deah

yeah

dear

dean

…

dear

Building the model

4. Calculate word probabilities

Example: “I am happy because I am learning”

Word Count

I 2

am 2

happy 1

because 1

learning 1

Total : 7

Probability of a word

Number of times the word appears

Total size of the corpus

Building the model

4. Calculate word probabilities

Example: “I am happy because I am learning”

Word Count

I 2

am 2

happy 1

because 1

learning 1

Total : 7

Probability of a word

Number of times the word appears

Total size of the corpus

Summarizing

• Identify a misspelled word

• Find strings n edit distance away
• Insert
• Delete
• Switch
• Replace

• Filter candidates

• Calculate word probabilities

Building the model

4. Calculate word probabilities

Example: “I am happy because I am learning”

Word Count

I 2

am 2

happy 1

because 1

learning 1

Total : 7

Probability of a word

Number of times the word appears

Total size of the corpus

deah

yeah

dear

dean

…

dear

Minimum edit distance

• How to evaluate similarity between two strings?
• Minimum number of edits needed to transform one string into the other
• Several applications

• Spelling correction, document similarity, machine translation, DNA sequencing, and
more

Minimum edit distance: Example

• What is the minimum number of edits to turn play into stay?
• Remember that edits include

• Insert
• Delete
• Replace

p l a y

s t a y

Source:

Target:

p -> s : Replace l -> t : Replace

edits = 2

Edit cost:

Insert & Delete 1

Replace 2

Edit distance = 2+2=4

Minimum edit distance

• Note that as your strings get larger it gets much harder to calculate the
minimum edit distance
• We could use a brute force approach adding one edit distance at a time and

enumerating all possibilities until one string changes to the other
• Exponential computational complexity in the size of the string!!!

• Example
• “convolutionalneuralnetworks”
• CCAAGGGGTGACTCTAGTTTAATATAACTTTAAGGGGTAGTTTAT

• We need to speed up the enumeration of all possible strings and edits
• A tabular approach -> dynamic programming!!!

Minimum edit distance

• Source: play -> Target: stay

• D[]
• D[2,3] = pl -> sta
• D[2,3] = source[:2] -> target[:3]
• D[i,j] = source[:i] -> target[:j]
• D[m,n] = source -> target

Minimum edit distance
Source: play → Target: stay 0 1 2 3 4

s t a y

0 #

1 p

2 l

3 a

4 y

Minimum edit distance

• Source: play -> Target: stay

• D[]
• D[i,j] = source[:i] -> target[:j]
• D[m,n] = source -> target

Minimum edit distance
Source: play → Target: stay

D[]

D[i, j] = source[: i] → target[: j]

D[m, n] = source → target

0 1 2 3 4

s t a y

0 #

1 p

2 l

3 a

4 y

Minimum edit distance

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

0 1 2 3 4

s t a y

0 #

1 p

2 l

3 a

4 y

Minimum edit distance

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

→

0 1 2 3 4

#

0 # 0

1

2

3

4

Minimum edit distance

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

p → #
delete

0 1 2 3 4

#

0 # 0

1 p 1

2

3

4

Minimum edit distance

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

→ s
insert

0 1 2 3 4

s

0 # 0 1

1 p 1

2

3

4

Minimum edit distance algorithm

• When computing the minimum edit distance, one would start with
a source word and transform it into the target word

Minimum edit distance
Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

play → #

0 1 2 3 4

s t a y

0 # 0 1

1 p 1 2

2 l

3 a

4 y

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

play → #

0 1 2 3 4

s t a y

0 # 0 1

1 p 1 2

2 l

3 a

4 y

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

play → #

D[i, j] = D[i-1, j] + del_cost

D[4,0] = play → #
= source[:4] → target[0]

0 1 2 3 4

s t a y

0 # 0 1

1 p 1 2

2 l 2

3 a 3

4 y 4

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

play → #

D[i, j] = D[i-1, j] + del_cost

D[4,0] = play → #
= source[:4] → target[0]

0 1 2 3 4

s t a y

0 # 0 1

1 p 1 2

2 l 2

3 a 3

4 y 4

Minimum edit distance
Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

→ play

0 1 2 3 4

s t a y

0 # 0 1

1 p 1 2

2 l 2

3 a 3

4 y 4

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

→ play

0 1 2 3 4

s t a y

0 # 0 1

1 p 1 2

2 l 2

3 a 3

4 y 4

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

→ play

D[i, j] = D[i, j-1] + ins_cost

0 1 2 3 4

s t a y

0 # 0 1 2 3 4

1 p 1 2

2 l 2

3 a 3

4 y 4

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

→ play

D[i, j] = D[i, j-1] + ins_cost

0 1 2 3 4

s t a y

0 # 0 1 2 3 4

1 p 1 2

2 l 2

3 a 3

4 y 4

Minimum edit distance algorithm

• To populate the table

• At every time step one checks the three possible paths where he can come
from and select the least expensive one

Defining Min Edit Distance (Levenshtein)

• Initialization
D(i,0) = i
D(0,j) = j

• Recurrence Relation:
For each i = 1…M

For each j = 1…N
D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1
D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)
• Termination:

D(M,N) is the minimum distance

insert

delete

replace

Minimum edit distance

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

play → stay

D[m, n] = 4

0 1 2 3 4

s t a y

0 # 0 1 2 3 4

1 p 1 2 3 4 5

2 l 2 3 4 5 6

3 a 3 4 5 4 5

4 y 4 5 6 5 4

Minimum edit distance
Source: play → Target: stay
Cost: insert: 1, delete: 1, replace: 2

play → stay

D[m, n] = 4

0 1 2 3 4

s t a y

0 # 0 1 2 3 4

1 p 1 2 3 4 5

2 l 2 3 4 5 6

3 a 3 4 5 4 5

4 y 4 5 6 5 4

Computing alignment

• Edit distance isn’t sufficient
• We often need to align each character of the two strings to each other

• We do this by keeping a “backtrace”
• Every time we enter a cell, remember where we came from
• When we reach the end,
• Trace back the path from the upper right corner to read off the alignment

Adding Backtrace to Minimum Edit Distance

• Base conditions: Termination:
D(i,0) = i D(0,j) = j D(N,M) is distance

• Recurrence Relation:
For each i = 1…M

For each j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1
D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)
LEFT

ptr(i,j)= UP
DIAG

insert

delete

replace

insert

delete

replace

Computational complexity

• Time
• O(nm)

• Space
• O(nm)

• Backtrace
• O(n+m)

