UNIVERSITA DEGLI STUDI DI NAPOLI

PARTHENOPE

Natural Language Processing

Spelling correction

LESSON 15

prof. Antonino Staiano

M.Sc. In “"Machine Learning e Big Data” - University Parthenope of Naples

Slides taken from Deeplearning.Al and from the slides accompanying the textbook by D. Jurafsky

What is autocorrect?

* s a task that changes misspelled words into correct ones

* Phones
* Tablets
« Computers

m a) Happy birhday| 0

"birhday” birthday birthdays

da

birthday & [

Happy birhHay

Spelling and grammar

Change birhday to:

birthday

Recipients
Subject

happy birhday]
birthday x

Autocorrect: Example

HAPPY

* Happy birthday deah friend! i;RTHDAY
* Happy birthday dear friend! L

» Non-word spelling correction

* What if you typed deer instead of dear?
* Happy birthday deer friend!

* The word is spelled correctly, but its context is incorrect

* Real-world spelling correction

How autocorrect works

* |dentify a misspelled word

* Find strings n edit distance away
* Filter candidates

« Compute word probabilities

Steps for autocorrect

deah

* |[dentify a misspelled word

Steps for autocorrect

e Find strings n edit distance away

deah

_eah

d ar
de r

etc.

Steps for autocorrect

o deah
‘ yeah
* Filter candidates dear
. dean

Steps for autocorrect

. deah

yeah
) dear
« Compute word probabilities

dean

Steps for autocorrect

* |dentify a misspelled word

* Find strings n edit distance away
* Filter candidates

« Compute word probabilities

dear

dean

Building the model

* ldentity a misspelled word
* How to do that?

* Ifit's spelled correctly, it can be found in the dictionary, otherwise, it's probably a misspelled
word

if word not in vocab: deah ??
misspelled = True L

. . . |

if word not in vocab: Ideah: x deer ﬁ
misspelled = True ~—~~~~

Happy birthday deer ! ﬁ

Building the model

* Find string n edit distance away

« Given a string find all possible strings that are n edit distance
away using

deah

* |nsert _ed h
¢ Delete

« Switch d_a r
* Replace

de r

 Edit distance counts the number of these operations so that the —
n edit distance tells you how many operations away one string is
from another etc.

Edit distance

* Edit: an operation performed on a string to change it
* |Insert (add a letter)
* to: top, two, ...
* Delete (remove a letter)
e hat: ha, at, ht
* Switch (swap two adjacent letters)
* eta: eat, tea, ...
* It does not include switching two letters that are not next to each other (e.g., ate)
* Replace (change one letter to another)
* jaw: jar, paw
* By combining these edits, you can find a list of all possible strings that's are n
edit away

 For autocorrect, n is typically 1-3 edits

Building the model

* Filter candidates
« Many of the strings that are generated do not look like actual words

« Keep ones that are real words (correctly spelled)

« Compare it to a dictionary or vocabulary

deah deah
yeah

dear

dean

Building the model

« Compute word probabilities
* "l am happy because | am learning”

Word Count d ea h ‘ d ear
| 2 C (w)
am 2 P(w) o V ye d h
happy 1
because 1 P(w) Probability of a word d car
learning 1 O(w) Number of times the word appears d ean
Total: 7 V Total size of the corpus

Summarizing

* |dentify a misspelled word

* Find strings n edit distance away
* Insert
* Delete
* Switch
* Replace

 Filter candidates

* Calculate word probabilities

Minimum edit distance

* How to evaluate similarity between two strings?
* Minimum number of edits needed to transform one string into the other

* Several applications

* Spelling correction, document similarity, machine translation, DNA sequencing, and
more

Minimum edit distance: Example

* What is the minimum number of edits to turn play into stay?

« Remember that edits include
* |nsert
* Delete

* Replace
Edit cost:
Source: oll | |aly
Insert & Delete 1
Replace 2
Target: s|tila y l
p -> s : Replace | -> t: Replace

| Edit distance = 2+2=4

‘ edits = 2

Minimum edit distance

* Note that as your strings get larger it gets much harder to calculate the
minimum edit distance

* We could use a brute force approach adding one edit distance at a time and
enumerating all possibilities until one string changes to the other

* Exponential computational complexity in the size of the string!!!

* Example

» "convolutionalneuralnetworks"”
« CCAAGGGGTGACTCTAGTTTAATATAACTTTAAGGGGTAGTTTAT

* We need to speed up the enumeration of all possible strings and edits

* A tabular approach -> dynamic programming!!!

Minimum edit distance

*|Source: play|-> Target: stay

. D[] — : # s | t|aly
’ e
¢ 20
* Dli,j] = sourcel[:i] -> target[:]] 1]la
* D[m,n] = source -> target L

Minimum edit distance

* Source: play -> Target: stay

s t a y
0 #
* D] TP
* Dli,j] = sourcel[:i] -> target]:j] |
* D[m,n] = source -> target . s
oy

Minimum edit distance

Source: play = Target: stay 0 1 2 3 4
Cost: insert: 1, delete: 1, replace: # s |t|aly
0 #
A -
2 |
3 a
Ly

Minimum edit distance

Source: play — Target: stay 0 1 N
Cost: insert: 1, delete: 1, replace: 2 4
0
4 # B0

Minimum edit distance

Source: play = Target: stay
Cost: insert: 1, delete: 1, replace: 2

p—>#
delete

Minimum edit distance

Source: play = Target: stay
Cost: insert: 1, delete: 1, replace: 2

#—>s
insert

Minimum edit distance algorithm

* When computing the minimum edit distance, one would start with
a source word and transform it into the target word

Source: play — Target: stay o 1 2 3 4
Cost:insert: 1, delete: 1, replace: 2 s | s
p - S 0 # O 1
insert|+ delete: p = ps = s: 2 rlp | 1] 2

deletel+ insert: p > # —s: 2

p—s: 2

Minimum edit distance

Source: play = Target: stay

Cost: insert: 1, delete: 1, replace: 2
Source: play = Target: stay

Cost: insert: 1, delete: 1, replace: 2 play — #

play — # D[i,j]=D[i-1,j] + del_cost

D[4,0] = play = #

| s |t | a|y = source| :4] — target[0]
| 0 | 1
p |l 1] 2

Minimum edit distance

Source: play — Target: stay Source: play = Target: stay
Cost: insert: 1, delete: 1, replace: 2 Cost: insert: 1, delete: 1, replace: 2
— play # — play

Dli,j]=DIi,j-1]+ ins_cost

s t a y
0 1 # s t a y
p 1 2 # 0 1 2 3 4
I 2 p 1 2
a 3 I 2
y | 4 a | 3
y | 4

Minimum edit distance algorithm

* To populate the table

Source: play — Target: stay o 1 2 3 4
Cost:insert: 1, delete: 1, replace: 2 4 :‘;‘: t | aly
0
D s # o1l 2| 3| 4
rhpll 1] 2
Dli,j1 = e
2 | 2
Dli- 1,j] + del cost
min _D[i, j-1l+inscost| 3 a 3
Dli-1,j- 1] +|f rep_cost; if srcfi] # tar{j] |
0, _ifsrcfi] = tarj] | 1y | 4

* At every time step one checks the three possible paths where he can come
from and select the least expensive one

Defining Min Edit Distance (Levenshtein)

* Initialization
D(1,0) = 1
D(0,3) = 3

e Recurrence Relation:

For each 1 = 1.M
For each 7

D(i-1,7) + 1 delete
D(1,3)= min{ D(i,j-1) + 1
D(i-1,3-1) +

2; 1f X(1) #
0 —

replace{ . if X (1)

* Termination:
D(M,N) 1s the minimum distance

Minimum edit distance

Source: play = Target: stay
Source: play — Target: stay Cost: insert: 1, delete: 1, replace: 2

Cost:insert: 1, delete: 1, replace: 2

play — stay

D[m,n]=4

Computing alignment

* Edit distance isn't sufficient
* We often need to align each character of the two strings to each other

* We do this by keeping a “backtrace”
* Every time we enter a cell, remember where we came from

* When we reach the end,
* Trace back the path from the upper right corner to read off the alignment

Adding Backtrace to Minimum Edit Distance

* Base conditions: Termination:
D(1i,0) = 1i D(0,73) =] D(N,M) is distance

* Recurrence Relation:
For each 1 = 1.M
For each 73 = 1.N

~
D(i-1,9) + 1 delete
D(i,J)= min Y\ D(i,3-1) + 1
\D(l_l”zy_l) * [2; 1f X(1) # Y (J) |replace
- : 0; 1f X(1) = Y (J)
[ppp Insert
ptr(i,j)=< UP delete

DIAG | replace

Computational complexity

* Time

* O(hm)
* Space

* O(hm)
» Backtrace

e O(n+m)

