

Natural Language Processing

Spelling correction

LESSON 15

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

Slides taken from DeepLearning.Al and from the slides accompanying the textbook by D. Jurafsky

What is autocorrect?

- Is a task that changes misspelled words into correct ones
 - Phones
 - Tablets

PARTHENOPE	🕘 deeplearning.ai	e 🕲 deeplearning.ai
	🔘 deeplearning.ai	(2) deeplearning.ai

Autocorrect: Example

- Happy birthday <u>deah</u> friend!
 - Happy birthday dear friend!
 - Non-word spelling correction

- What if you typed *deer* instead of *dear*?
 - Happy birthday <u>deer</u> friend!
 - The word is spelled correctly, but its context is incorrect
 - Real-world spelling correction

How autocorrect works

- Identify a misspelled word
- Find strings n edit distance away
- Filter candidates
- Compute word probabilities

- Identify a misspelled word
- Find strings n edit distance away
- Filter candidates
- Compute word probabilities

 Identify a misspelled word 	deah
 Find strings n edit distance away 	_eah
• Filter candidates	d_ar
 Compute word probabilities 	de_r
	etc.

Identify a misspelled word
Find strings n edit distance away
Filter candidates
Compute word probabilities

deah yeah dear dean

- Identify a misspelled word
- Find strings n edit distance away
- Filter candidates
- Compute word probabilities

Building the model

- Identify a misspelled word
 - How to do that?
 - If it's spelled correctly, it can be found in the dictionary, otherwise, it's probably a misspelled word

Building the model

 Find string n edit distance away 	ما م م ام
 Given a string find all possible strings that are n edit distance 	deah
away using	
• Insert	_eah
• Delete	
Switch	d_ar
Replace	
 Edit distance counts the number of these operations so that the 	de_r
n edit distance tells you how many operations away one string is	
from another	etc.

Edit distance

- Edit: an operation performed on a string to change it
 - Insert (add a letter)
 - to: top, two, ...
 - Delete (remove a letter)
 - hat: ha, at, ht
 - Switch (swap two adjacent letters)
 - eta: eat, tea, ...
 - It does not include switching two letters that are not next to each other (e.g., ate)
 - Replace (change one letter to another)
 - jaw: jar, paw
- By combining these edits, you can find a list of all possible strings that's are n edit away
 - For autocorrect, n is typically 1-3 edits

Building the model

• Filter candidates

- Many of the strings that are generated do not look like actual words
 - Keep ones that are real words (correctly spelled)
 - Compare it to a dictionary or vocabulary

deah	deah
_eah	yeah
d_ar	dear
de_r	dean
etc.	•••

Building the model

- Compute word probabilities
 - "I am happy because I am learning"

C(w)V

Summarizing

- Identify a misspelled word
- Find strings n edit distance away
 - Insert
 - Delete
 - Switch
 - Replace
- Filter candidates
- Calculate word probabilities

C(w)

V

$$P(w) = \frac{C(w)}{V}$$
 $P(am) = \frac{C(am)}{V} = \frac{2}{7}$

- How to evaluate similarity between two strings?
 - Minimum number of edits needed to transform one string into the other
 - Several applications
 - Spelling correction, document similarity, machine translation, DNA sequencing, and more

Minimum edit distance: Example

- What is the minimum number of edits to turn *play* into *stay*?
 - Remember that edits include
 - Insert
 - Delete

- Note that as your strings get larger it gets much harder to calculate the minimum edit distance
 - We could use a brute force approach adding one edit distance at a time and enumerating all possibilities until one string changes to the other
 - Exponential computational complexity in the size of the string!!!
- Example
 - "convolutionalneuralnetworks"
 - CCAAGGGGTGACTCTAGTTTAATATAACTTTAAGGGGTAGTTTAT
- We need to speed up the enumeration of all possible strings and edits
 - A tabular approach -> dynamic programming!!!

• Source: play -> Target: stay

- D[]
- D[2,3] = pl -> sta
- D[2,3] = source[:2] -> target[:3]
- D[i,j] = source[:i] -> target[:j]
- D[m,n] = source -> target

🔘 deeplearning.ai

- Source: play -> Target: stay
 - D[]
 - D[i,j] = source[:i] -> target[:j]
 - D[m,n] = source -> target

(O) deeplearning.ai

У

4

4

У

а

t

Source: play → Target: stay Cost: insert: 1, delete: 1, replace: 2

 $\# \rightarrow \#$

Source: play → Target: stay Cost: insert: 1, delete: 1, replace: 2

Source: play → Target: stay Cost: insert: 1, delete: 1, replace: 2

O deeplearning.ai

Minimum edit distance algorithm

 When computing the minimum edit distance, one would start with a source word and transform it into the target word

Source: play → Target: stay Cost: insert: 1, delete: 1, replace: 2

play \rightarrow #

0 2 3 4 1 # S t а У 0 # 0 1 1 р 1 2 2 **O** 3 а 4 У

D[i, j] = D[i-1, j] + del cost

Source: play \rightarrow Target: stay

play $\rightarrow #$

Cost: insert: 1, delete: 1, replace: 2

PARTHENOPI

🔘 deeplearning.ai

Source: play → Target: stay Cost: insert: 1, delete: 1, replace: 2

 $\# \rightarrow play$

O deeplearning.ai

Source: play \rightarrow Target: stay Cost: insert: 1, delete: 1, replace: 2

 $\# \to \mathsf{play}$

D[i, j] = D[i, j-1] + ins_cost

O deeplearning.ai

plearning.ai IENOPE

Minimum edit distance algorithm

• To populate the table

Source: play → Target: stay Cost: insert: 1, delete: 1, replace: 2

• At every time step one checks the three possible paths where he can come from and select the least expensive one

Defining Min Edit Distance (Levenshtein)

- - Termination:

D(M,N) is the minimum distance

Source: play → Target: stay Cost: insert: 1, delete: 1, replace: 2 Source: play \rightarrow Target: stay Cost: insert: 1, delete: 1, replace: 2

 $play \rightarrow stay$

D[*m*, *n*] = 4

O deeplearning.

PARTHENOPE

Computing alignment

- Edit distance isn't sufficient
 - We often need to **align** each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

Adding Backtrace to Minimum Edit Distance

Computational complexity

- Time
 - O(nm)
- Space
 - O(nm)
- Backtrace
 - O(n+m)