Derivate

26 ottobre 2015

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$.

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$.

La funzione

$$g_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

è il rapporto incrementale di f relativo al punto x_0 .

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$.

La funzione

$$g_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

è il rapporto incrementale di f relativo al punto x_0 .

$$E[g_{x_0}] = \mathbf{X} - \{x_0\}.$$

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$.

La funzione

$$g_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

è il rapporto incrementale di f relativo al punto x_0 .

$$E[g_{x_0}] = \mathbf{X} - \{x_0\}.$$

Se esiste

$$\lim_{x \to x_0} g_{x_0}(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$.

La funzione

$$g_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

è il rapporto incrementale di f relativo al punto x_0 .

$$E[g_{x_0}] = \mathbf{X} - \{x_0\}.$$

Se esiste

$$\lim_{x \to x_0} g_{x_0}(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

esso si definisce derivata di f in x_0 e si indica con il simbolo $\mathrm{D}[f(x)]_{x=x_0}$.

Siano $f: \mathbf{X} \to \mathcal{R} \ e \ x_0 \in \mathbf{X}$.

La funzione

$$g_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

è il rapporto incrementale di f relativo al punto x_0 .

$$E[g_{x_0}] = \mathbf{X} - \{x_0\}.$$

Se esiste

$$\lim_{x \to x_0} g_{x_0}(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

esso si definisce derivata di f in x_0 e si indica con il simbolo

$$D[f(x)]_{x=x_0}$$

Simboli equivalenti:

$$f'(x_0),$$

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$.

La funzione

$$g_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

è il rapporto incrementale di f relativo al punto x_0 .

$$E[g_{x_0}] = \mathbf{X} - \{x_0\}.$$

Se esiste

$$\lim_{x \to x_0} g_{x_0}(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

esso si definisce derivata di f in x_0 e si indica con il simbolo

$$D[f(x)]_{x=x_0}$$

Simboli equivalenti:

$$f'(x_0), \frac{df}{dx}(x_0)$$

La derivata di f in x_0 può essere

finita;

La derivata di f in x_0 può essere

finita; La funzione è derivabile in x_0 .

La derivata di f in x_0 può essere

- finita; La funzione è **derivabile in** x_0 .
- infinita;

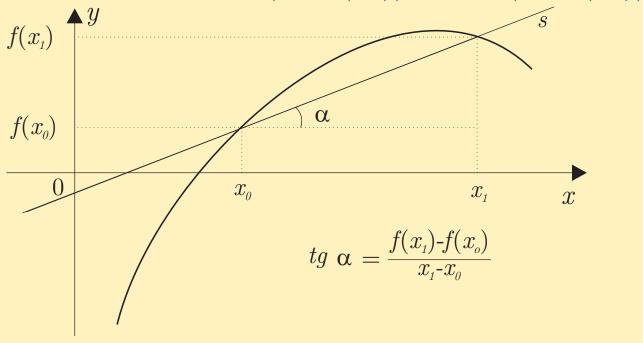
La derivata di f in x_0 può essere

- finita; La funzione è **derivabile in** x_0 .
- infinita;

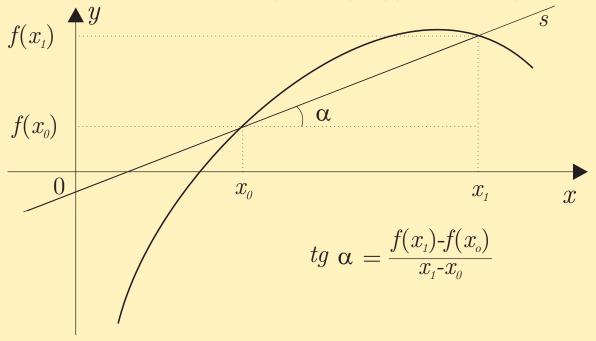
Teorema

Se f è derivabile in x_0 , allora f è ivi continua.

Sia s la retta che passa per $P_0 \equiv (x_0, f(x_0)), P_1 \equiv (x_1, f(x_1)).$

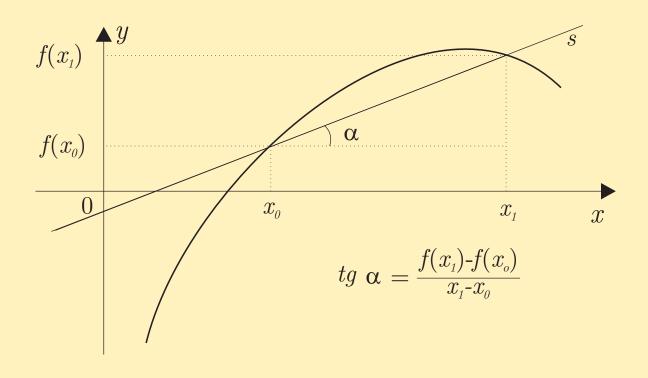


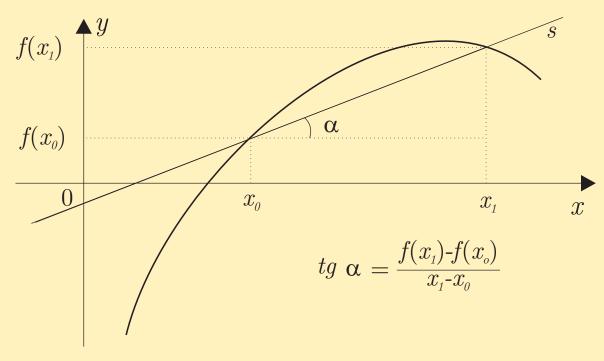
Sia s la retta che passa per $P_0 \equiv (x_0, f(x_0)), P_1 \equiv (x_1, f(x_1)).$



Essa ha equazione

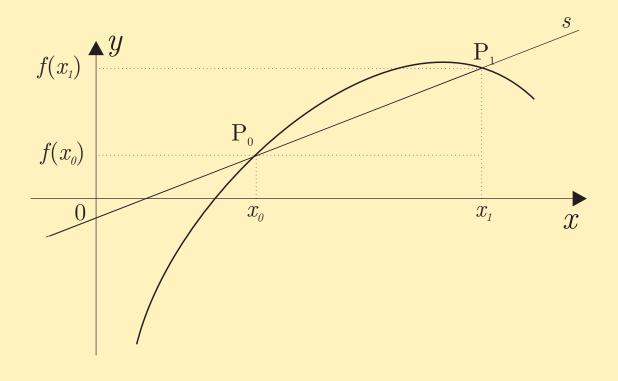
$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

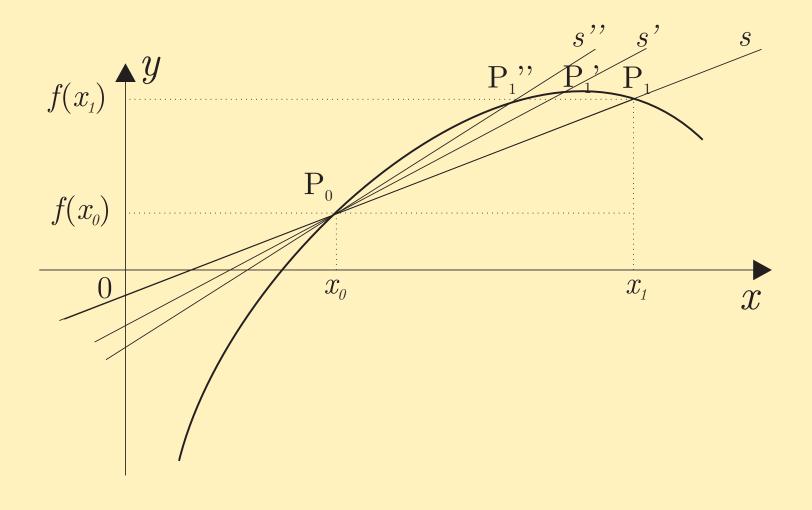


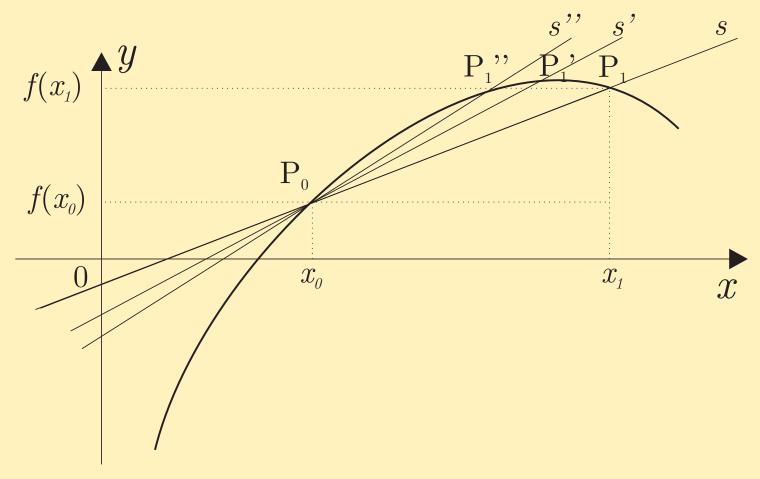


Coefficiente angolare di s:

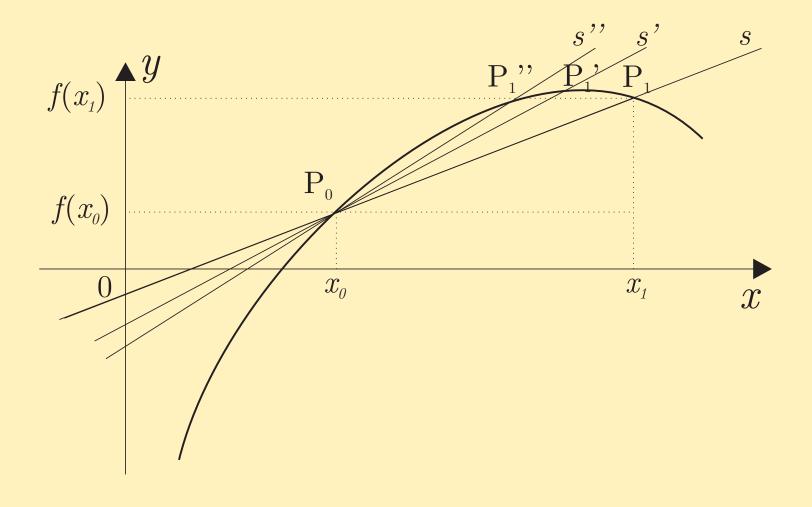
$$g_{x_0}(x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

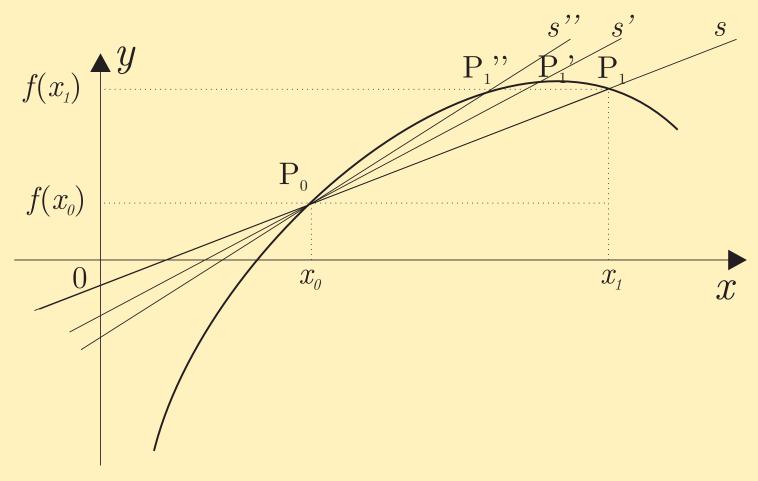






Se si sposta il punto P_1 lungo la curva y = f(x) avvicinandolo a P_0 , la retta secante ruota intorno a P_0 .





Esiste una retta "posizione limite"?

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + f(x_0).$$

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

La retta esiste se

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

La retta esiste se

$$\exists \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

La retta esiste se

$$\exists \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

 $g_{x_0}(x_1)$ è regolare in x_0

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

La retta esiste se

$$\exists \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

 $g_{x_0}(x_1)$ è regolare in $x_0 \Leftrightarrow \text{se esiste la derivata di } f$ in x_0 .

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

La retta esiste se

$$\exists \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

 $g_{x_0}(x_1)$ è regolare in $x_0 \Leftrightarrow$ se esiste la derivata di f in x_0 . Se tale retta esiste, si chiama **retta tangente** al grafico della funzione nel punto x_0 .

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + f(x_0).$$

$$D[f(x)]_{x=x_0} \in \mathcal{R}$$

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

$$D[f(x)]_{x=x_0} \in \mathcal{R} \Leftrightarrow La \text{ funzione è derivabile in } x_0$$

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + f(x_0).$$

 $D[f(x)]_{x=x_0} \in \mathcal{R} \Leftrightarrow \text{La funzione è derivabile in } x_0$ la retta tangente alla curva y=f(x) nel punto x_0 ha c. a. dato da

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

 $D[f(x)]_{x=x_0} \in \mathcal{R} \Leftrightarrow \text{La funzione è derivabile in } x_0$ la retta tangente alla curva y=f(x) nel punto x_0 ha c. a. dato da

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

 $D[f(x)]_{x=x_0} \in \mathcal{R} \Leftrightarrow \text{La funzione è derivabile in } x_0$ la retta tangente alla curva y=f(x) nel punto x_0 ha c. a. dato da

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = D[f(x)]_{x = x_0} \in \mathcal{R}$$

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

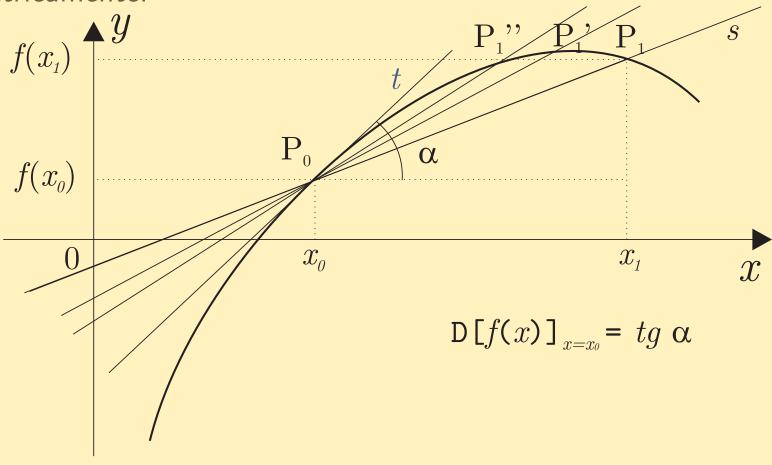
 $D[f(x)]_{x=x_0} \in \mathcal{R} \Leftrightarrow \text{La funzione è derivabile in } x_0$ la retta tangente alla curva y=f(x) nel punto x_0 ha c. a. dato da

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = D[f(x)]_{x = x_0} \in \mathcal{R}$$

L'equazione della retta tangente è

$$y = D[f(x)]_{x=x_0}(x - x_0) + f(x_0).$$

Geometricamente:



$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + f(x_0).$$

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + f(x_0).$$

$$D[f(x)]_{x=x_0} = \pm \infty$$

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

$$D[f(x)]_{x=x_0} = \pm \infty$$

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = D[f(x)]_{x = x_0} = \pm \infty$$

Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

$$D[f(x)]_{x=x_0} = \pm \infty$$

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = D[f(x)]_{x = x_0} = \pm \infty$$

La retta tangente è la retta verticale passante per P_0 .

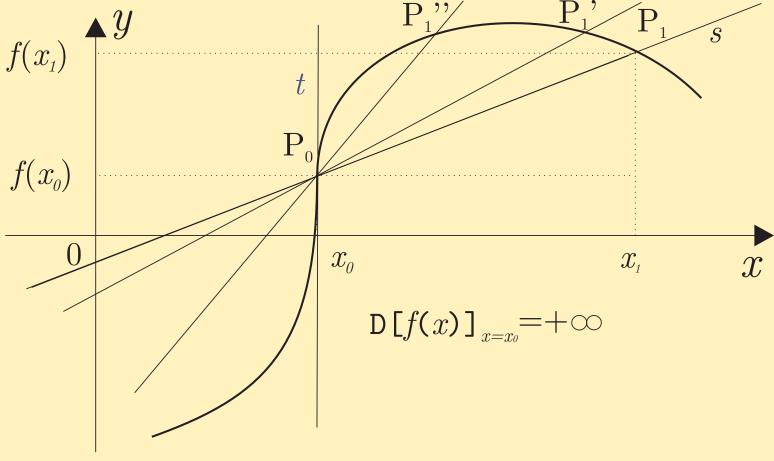
Equazione retta secante:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

$$D[f(x)]_{x=x_0} = \pm \infty$$

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = D[f(x)]_{x = x_0} = \pm \infty$$

La retta tangente è la retta verticale passante per P_0 . La sua equazione è $x=x_0$.



Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$.

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$. Se esiste

$$\lim_{x \to x_0^+} g_{x_0}(x) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$. Se esiste

$$\lim_{x \to x_0^+} g_{x_0}(x) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

esso si definisce derivata destra di f in x_0 e si indica con

$$D_d[f(x)]_{x=x_0}$$
.

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$. Se esiste

$$\lim_{x \to x_0^+} g_{x_0}(x) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

esso si definisce derivata destra di f in x_0 e si indica con

$$D_{d}[f(x)]_{x=x_0}.$$

Se esiste

$$\lim_{x \to x_0^-} g_{x_0}(x) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

Siano $f: \mathbf{X} \to \mathcal{R}$ e $x_0 \in \mathbf{X}$. Se esiste

$$\lim_{x \to x_0^+} g_{x_0}(x) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

esso si definisce derivata destra di f in x_0 e si indica con

$$D_{d}[f(x)]_{x=x_0}.$$

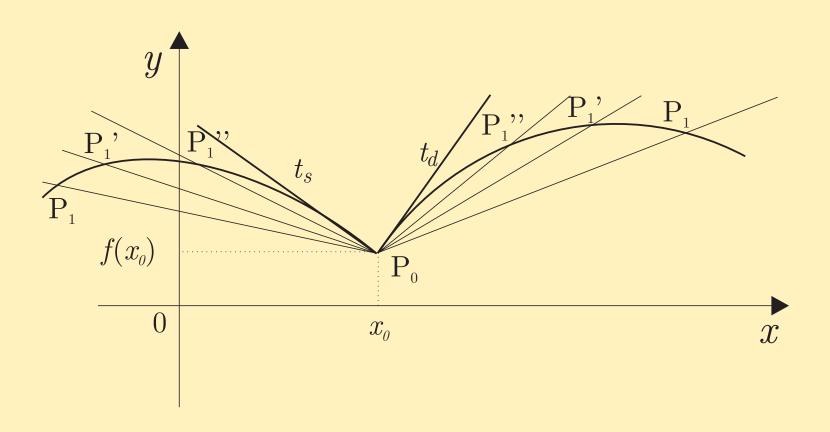
Se esiste

$$\lim_{x \to x_0^-} g_{x_0}(x) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

esso si definisce derivata sinistra di f in x_0 e si indica con

$$D_{s}[f(x)]_{x=x_0}.$$

Tangente destra e sinistra



Sia $f: X \to \mathcal{R}$.

Sia $f:X\to\mathcal{R}$. Si dice che f è **derivabile in** $\mathbf X$ se essa è derivabile in ogni punto di $\mathbf X$.

Sia $f: X \to \mathcal{R}$. Si dice che f è **derivabile in** $\mathbf X$ se essa è derivabile in ogni punto di $\mathbf X$.

Si dice derivabile in [a, b] se, oltre ad essere derivabile in [a, b]

$$D_d[f(x)]_{x=a} \in \mathcal{R}, \quad D_s[f(x)]_{x=b} \in \mathcal{R}.$$

Sia f derivabile in X.

Sia f derivabile in X. Si chiama funzione derivata di f:

Sia f derivabile in X. Si chiama **funzione derivata** di f:

$$f': x_0 \in \mathbf{X} \to f'(x_0) = \mathrm{D}[f(x)]_{x=x_0} \in \mathcal{R}$$
.

Sia f derivabile in X. Si chiama **funzione derivata** di f:

$$f': x_0 \in \mathbf{X} \to f'(x_0) = \mathrm{D}[f(x)]_{x=x_0} \in \mathcal{R}$$
.

Essa si indica con i simboli f'(x) oppure D[f(x)].

Sia f derivabile in X. Si chiama **funzione derivata** di f:

$$f': x_0 \in \mathbf{X} \to f'(x_0) = D[f(x)]_{x=x_0} \in \mathcal{R}$$
.

Essa si indica con i simboli f'(x) oppure D[f(x)]. Se f è derivabile in [a,b] si pone

Sia f derivabile in X. Si chiama **funzione derivata** di f:

$$f': x_0 \in \mathbf{X} \to f'(x_0) = D[f(x)]_{x=x_0} \in \mathcal{R}$$
.

Essa si indica con i simboli f'(x) oppure D[f(x)]. Se f è derivabile in [a,b] si pone

$$f'(a) = D_{d}[f(x)]_{x=a}$$

Sia f derivabile in X. Si chiama **funzione derivata** di f:

$$f': x_0 \in \mathbf{X} \to f'(x_0) = D[f(x)]_{x=x_0} \in \mathcal{R}$$
.

Essa si indica con i simboli f'(x) oppure D[f(x)]. Se f è derivabile in [a,b] si pone

$$f'(a) = D_{d}[f(x)]_{x=a}$$
 $f'(b) = D_{s}[f(x)]_{x=b}$

Consideriamo un'impresa che, per produrre una quantità q di merce, debba sostenere un costo C=C(q).

Consideriamo un'impresa che, per produrre una quantità q di merce, debba sostenere un costo C = C(q). Se l'impresa passa da un livello di produzione q_0 ad un livello q, il rapporto incrementale:

$$\frac{C(q) - C(q_0)}{q - q_0}$$

Consideriamo un'impresa che, per produrre una quantità q di merce, debba sostenere un costo C = C(q). Se l'impresa passa da un livello di produzione q_0 ad un livello q, il rapporto incrementale:

$$\frac{C(q) - C(q_0)}{q - q_0}$$

esprime il costo medio.

Consideriamo un'impresa che, per produrre una quantità q di merce, debba sostenere un costo C = C(q). Se l'impresa passa da un livello di produzione q_0 ad un livello q, il rapporto incrementale:

$$\frac{C(q) - C(q_0)}{q - q_0}$$

esprime il costo medio. Il valore

$$C'(q_0) = \lim_{q \to q_0} \frac{C(q) - C(q_0)}{q - q_0}$$

Consideriamo un'impresa che, per produrre una quantità q di merce, debba sostenere un costo C = C(q). Se l'impresa passa da un livello di produzione q_0 ad un livello q, il rapporto incrementale:

$$\frac{C(q) - C(q_0)}{q - q_0}$$

esprime il **costo medio**. Il valore

$$C'(q_0) = \lim_{q \to q_0} \frac{C(q) - C(q_0)}{q - q_0}$$

è il costo marginale in q_0 .

Consideriamo un'impresa che, per produrre una quantità q di merce, debba sostenere un costo C = C(q). Se l'impresa passa da un livello di produzione q_0 ad un livello q, il rapporto incrementale:

$$\frac{C(q) - C(q_0)}{q - q_0}$$

esprime il costo medio. Il valore

$$C'(q_0) = \lim_{q \to q_0} \frac{C(q) - C(q_0)}{q - q_0}$$

è il **costo marginale** in q_0 . Esso esprime la variazione di C relativa ad una variazione infinitesima di q.

Siano f > 0 una funzione, $x_0 \in E[f]$.

Siano f > 0 una funzione, $x_0 \in E[f]$. Si chiama **elasticità d'arco di f**, relativa ad un incremento $x - x_0$, la quantità:

$$\frac{f(x) - f(x_0)}{f(x_0)} \cdot \frac{x_0}{x - x_0}$$

Siano f > 0 una funzione, $x_0 \in E[f]$. Si chiama **elasticità d'arco di f**, relativa ad un incremento $x - x_0$, la quantità:

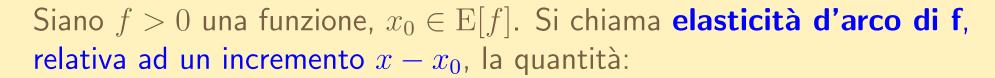
$$\frac{f(x) - f(x_0)}{f(x_0)} \cdot \frac{x_0}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \cdot \frac{x_0}{f(x_0)}$$

Siano f > 0 una funzione, $x_0 \in E[f]$. Si chiama **elasticità d'arco di f**, relativa ad un incremento $x - x_0$, la quantità:

$$\frac{f(x) - f(x_0)}{f(x_0)} \cdot \frac{x_0}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \cdot \frac{x_0}{f(x_0)}$$

Si definisce elasticità puntuale di f in x_0 la quantità:

$$E_f(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \frac{x_0}{f(x_0)}$$



$$\frac{f(x) - f(x_0)}{f(x_0)} \cdot \frac{x_0}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \cdot \frac{x_0}{f(x_0)}$$

Si definisce elasticità puntuale di f in x_0 la quantità:

$$E_f(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \frac{x_0}{f(x_0)} = f'(x_0) \cdot \frac{x_0}{f(x_0)}$$

Elasticità della domanda

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo.

Sia q=q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia $q^{\prime}<0$.

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'elasticità della domanda è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'elasticità della domanda è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

$$E_q(p) = -\frac{dq}{dp} \cdot \frac{p}{q(p)}$$

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'**elasticità della domanda** è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

$$E_q(p) = -\frac{dq}{dp} \cdot \frac{p}{q(p)} \Rightarrow \frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'elasticità della domanda è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

$$E_q(p) = -\frac{dq}{dp} \cdot \frac{p}{q(p)} \Rightarrow \frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p) = 2$.

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'**elasticità della domanda** è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

$$E_q(p) = -\frac{dq}{dp} \cdot \frac{p}{q(p)} \Rightarrow \frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=2$. Se il prezzo aumenta del 10%

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'elasticità della domanda è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

$$E_q(p) = -\frac{dq}{dp} \cdot \frac{p}{q(p)} \Rightarrow \frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=2$. Se il prezzo aumenta del $10\%\Leftrightarrow dp/p=0.1$,

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'**elasticità della domanda** è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

$$E_q(p) = -\frac{dq}{dp} \cdot \frac{p}{q(p)} \Rightarrow \frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=2$. Se il prezzo aumenta del $10\% \Leftrightarrow dp/p=0.1$, abbiamo:

$$\frac{dq}{q} = -2 \cdot 0.1$$

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'**elasticità della domanda** è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

$$E_q(p) = -\frac{dq}{dp} \cdot \frac{p}{q(p)} \Rightarrow \frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=2$. Se il prezzo aumenta del $10\% \Leftrightarrow dp/p=0.1$, abbiamo:

$$\frac{dq}{q} = -2 \cdot 0.1 = -0.2$$

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'**elasticità della domanda** è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

$$E_q(p) = -\frac{dq}{dp} \cdot \frac{p}{q(p)} \Rightarrow \frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=2$. Se il prezzo aumenta del $10\% \Leftrightarrow dp/p=0.1$, abbiamo:

$$\frac{dq}{q} = -2 \cdot 0.1 = -0.2$$

La domanda diminuisce del 20%.

Sia q = q(p) la funzione che esprime la domanda in funzione del prezzo. Si assume che sia q' < 0. L'**elasticità della domanda** è definita come:

$$E_q(p) = -q'(p) \cdot \frac{p}{q(p)}$$

$$E_q(p) = -\frac{dq}{dp} \cdot \frac{p}{q(p)} \Rightarrow \frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=2$. Se il prezzo aumenta del $10\% \Leftrightarrow dp/p=0.1$, abbiamo:

$$\frac{dq}{q} = -2 \cdot 0.1 = -0.2$$

La domanda diminuisce del 20%.

L'effetto è amplificato rispetto alla causa.

$$\frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

$$\frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p) = 0.5$.

$$\frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=0.5$. Se, come prima, dp/p=0.1, abbiamo:

$$\frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=0.5$. Se, come prima, dp/p=0.1, abbiamo:

$$\frac{dq}{q} = -0.5 \cdot 0.1$$

$$\frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=0.5$. Se, come prima, dp/p=0.1, abbiamo:

$$\frac{dq}{q} = -0.5 \cdot 0.1 = -0.05$$

$$\frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=0.5$. Se, come prima, dp/p=0.1, abbiamo:

$$\frac{dq}{q} = -0.5 \cdot 0.1 = -0.05$$

La domanda diminuisce del 5%.

$$\frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=0.5$. Se, come prima, dp/p=0.1, abbiamo:

$$\frac{dq}{q} = -0.5 \cdot 0.1 = -0.05$$

La domanda diminuisce del 5%.

L'effetto è ridotto rispetto alla causa.

$$\frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=0.5$. Se, come prima, dp/p=0.1, abbiamo:

$$\frac{dq}{q} = -0.5 \cdot 0.1 = -0.05$$

La domanda diminuisce del 5%.

L'effetto è ridotto rispetto alla causa.

Se
$$E_q(p) = 1$$

$$\frac{dq}{q} = -E_q(p) \cdot \frac{dp}{p}$$

Supponiamo che sia $E_q(p)=0.5$. Se, come prima, dp/p=0.1, abbiamo:

$$\frac{dq}{q} = -0.5 \cdot 0.1 = -0.05$$

La domanda diminuisce del 5%.

L'effetto è ridotto rispetto alla causa.

Se $E_q(p) = 1 \Rightarrow$ la causa e l'effetto sono equivalenti.

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$			

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}		

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$		•	

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$		

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	''

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$\ a^x, a>0$		10 V 50	II

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$a^x, a > 0$	${\cal R}$	10 V W	

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{r^{n-1}}}$	$]0,+\infty)$
$a^x, a > 0$	${\cal R}$	$ \begin{array}{c c} \hline n\sqrt[n]{x^{n-1}} \\ a^x \log a \end{array} $	

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$a^x, a > 0$	\mathcal{R}	$\int a^x \log a$	\mathcal{R}

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\begin{vmatrix} 1 \\ n \sqrt[n]{x^{n-1}} \\ a^x \log a \end{vmatrix}$	$]0,+\infty)$
$a^x, a > 0$	${\cal R}$	$\int a^x \log a$	\mathcal{R}
$\parallel e^{x}$		ı	'

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$\begin{vmatrix} a^x, a > 0 \\ e^x \end{vmatrix}$	${\cal R}$		\mathcal{R}
e^x	${\cal R}$		11

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$a^x, a > 0$	\mathcal{R}	$ \begin{array}{c c} \hline n \sqrt[n]{x^{n-1}} \\ a^x \log a \end{array} $	\mathcal{R}
$ e^x $	${\cal R}$	e^x	'

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$a^x, a > 0$	${\cal R}$	$\int a^x \log a$	\mathcal{R}
$\parallel e^x$	${\cal R}$	e^x	\mathcal{R}

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$ a^x,a>0$	${\cal R}$	$\int a^x \log a$	\mathcal{R}
$\parallel e^x$	${\cal R}$	e^x	\mathcal{R}
$ \log_a x, a > 0, a \neq 1 $		ı	11

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$\ a^x, a>0$	${\cal R}$	$a^x \log a$	\mathcal{R}
$\parallel e^x$	${\cal R}$	e^x	\mathcal{R}
$\log_a x, a > 0, a \neq 1$	$]0,+\infty)$		"

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$\ a^x, a>0$	${\cal R}$	$a^x \log a$	\mathcal{R}
$\parallel e^x$	${\cal R}$	e^x	\mathcal{R}
$\log_a x, a > 0, a \neq 1$	$]0,+\infty)$	$\frac{\log_a e}{x}$	

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$a^x, a > 0$	${\cal R}$	$\int a^x \log a$	\mathcal{R}
$\mid \mid e^x$	${\cal R}$	e^x	\mathcal{R}
$\log_a x, a > 0, a \neq 1$	$]0,+\infty)$	$\frac{\log_a e}{x}$	$]0,+\infty)$

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$a^x, a > 0$	\mathcal{R}	$\int a^x \log a$	\mathcal{R}
$\mid e^x \mid$	\mathcal{R}	e^x	\mathcal{R}
$\log_a x, a > 0, a \neq 1$	$]0,+\infty)$	$\frac{\log_a e}{x}$	$]0,+\infty)$
$\log x$			

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$ a^x,a>0$	\mathcal{R}	$\int a^x \log a$	\mathcal{R}
$\parallel e^x$	\mathcal{R}	e^x	\mathcal{R}
$\log_a x, a > 0, a \neq 1$	$]0,+\infty)$	$\frac{\log_a e}{x}$	$]0,+\infty)$
$\log x$	$]0,+\infty)$		

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$a^x, a > 0$	${\cal R}$	$\int a^x \log a$	\mathcal{R}
$\mid \mid e^x$	${\cal R}$	e^x	\mathcal{R}
$\log_a x, a > 0, a \neq 1$	$]0,+\infty)$	$\frac{\log_a e}{x}$	$]0,+\infty)$
$\log x$	$]0,+\infty)$	$\frac{1}{x}$	

funzione	dominio	derivata	dominio
$x^n, n \in \mathcal{N}$	\mathcal{R}	nx^{n-1}	\mathcal{R}
$\sqrt[n]{x}, n \in \mathcal{N}$	$[0,+\infty)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$]0,+\infty)$
$ a^x,a>0$	$\mathcal R$	$\int a^x \log a$	\mathcal{R}
$\parallel e^x$	${\cal R}$	e^x	\mathcal{R}
$\log_a x, a > 0, a \neq 1$	$]0,+\infty)$	$\frac{\log_a e}{1}$	$]0,+\infty)$
$\log x$	$]0,+\infty)$	$\frac{1}{x}$	$]0,+\infty)$

funzione	dominio	derivata	dominio
x^{α}			

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$		

fur	nzione dominio	derivata	a dominio
x^{α}	$[0,+\infty), \ \alpha$	≥ 1 $\alpha x^{\alpha-1}$	

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$\overline{[0,+\infty)}$

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \ge 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$

funzione	dominio	derivata	dominio
$\int x^{\alpha}$	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0,+\infty),\ 0<\alpha<1$		

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		·

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$ \begin{bmatrix} 0, +\infty) \\]0, +\infty) \\]0, +\infty) $
$\ \operatorname{sen} x \ $		'	· ·

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}		

funzione	dominio	derivata	dominio
$\int x^{\alpha}$	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0,+\infty),\ 0<\alpha<1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}	$\cos x$	

funzione	dominio	derivata	dominio
$\int x^{\alpha}$	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0,+\infty),\ 0<\alpha<1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}	$\cos x$	\mathcal{R}

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	${\cal R}$	$\cos x$	\mathcal{R}
$\ \cos x\ $			·

funzione	dominio	derivata	dominio
$\int x^{\alpha}$	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0,+\infty),\ 0<\alpha<1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}	$\cos x$	\mathcal{R}
$\ \cos x\ $	\mathcal{R}		

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0,+\infty),\ 0<\alpha<1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}	$\cos x$	\mathcal{R}
$\cos x$	\mathcal{R}	$-\sin x$	

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0,+\infty),\ 0<\alpha<1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}	$\cos x$	\mathcal{R}
$\cos x$	\mathcal{R}	$-\sin x$	\mathcal{R}

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0,+\infty),\ 0<\alpha<1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}	$\cos x$	\mathcal{R}
$\cos x$	\mathcal{R}	$-\sin x$	\mathcal{R}
$\int \int dx$		•	·

funzione	dominio	derivata	dominio
$\int x^{\alpha}$	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}	$\cos x$	\mathcal{R}
$\cos x$	\mathcal{R}	$-\sin x$	\mathcal{R}
$\int \int dx$	$\mathcal{R}-\mathbf{A}$		

funzione	dominio	derivata	dominio
$\int x^{\alpha}$	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	${\cal R}$	$\cos x$	\mathcal{R}
$\cos x$	\mathcal{R}	$-\sin x$	\mathcal{R}
$\ \operatorname{tg} x \ $	$\mathcal{R}-\mathbf{A}$	$\frac{1}{\cos^2 x} =$	

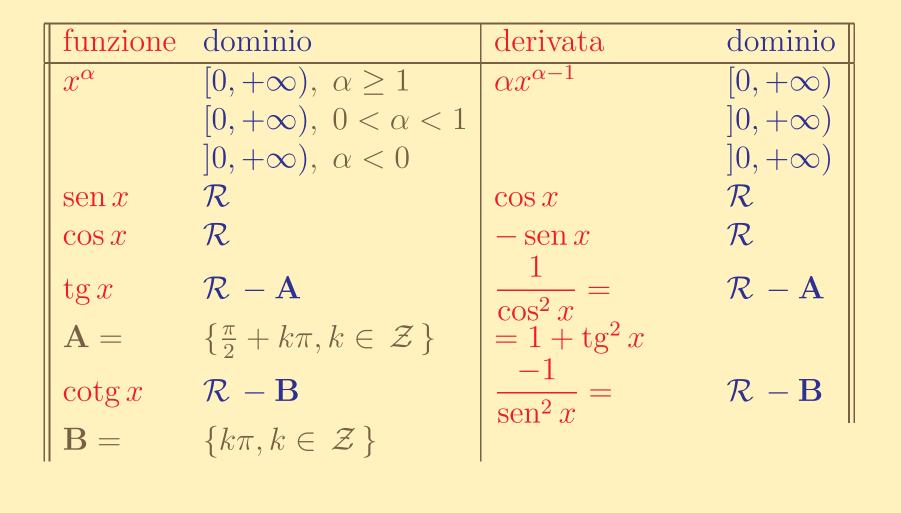
-

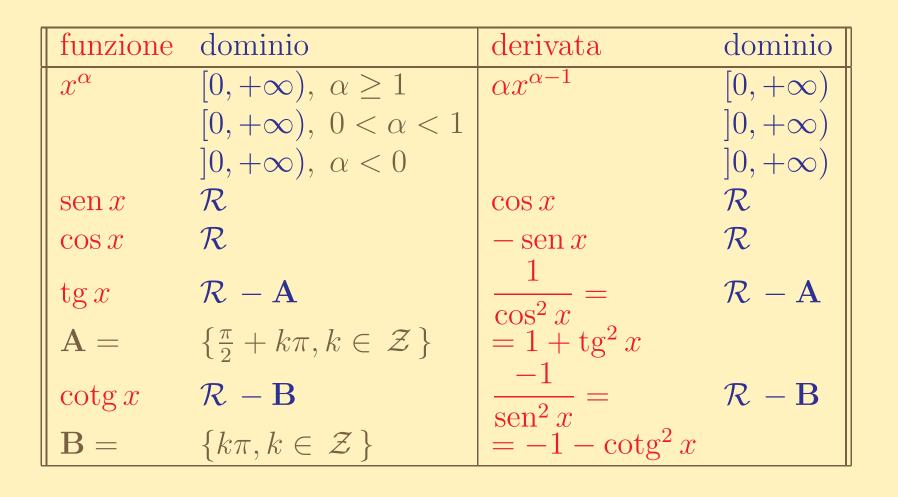
funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}	$\cos x$	\mathcal{R}
$\cos x$	\mathcal{R}	$-\sin x$	\mathcal{R}
$\int \int dx$	$\mathcal{R}-\mathbf{A}$	$\frac{1}{\cos^2 x} =$	$\mathcal{R}-\mathbf{A}$
$\mathbf{A} =$	$\left\{\frac{\pi}{2} + k\pi, k \in \mathcal{Z}\right\}$	$=1+\operatorname{tg}^2 x$	II.

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\ \operatorname{sen} x \ $	\mathcal{R}	$\cos x$	\mathcal{R}
$\cos x$	\mathcal{R}	$-\sin x$	\mathcal{R}
$\int \int dx$	$\mathcal{R}-\mathbf{A}$	$\frac{1}{\cos^2 x} =$	$\mathcal{R} - \mathbf{A}$
$\mathbf{A} =$	$\left\{\frac{\pi}{2} + k\pi, k \in \mathcal{Z}\right\}$	$= 1 + tg^2 x$	
$\cot x$			

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0,+\infty),\ 0<\alpha<1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
$\sin x$	\mathcal{R}	$\cos x$	\mathcal{R}
$\cos x$	\mathcal{R}	$-\sin x$	\mathcal{R}
$\int dx$	$\mathcal{R}-\mathbf{A}$	$\frac{1}{\cos^2 x} =$	$\mathcal{R} - \mathbf{A}$
$\mathbf{A} =$	$\left\{\frac{\pi}{2} + k\pi, k \in \mathcal{Z}\right\}$	$= 1 + tg^2 x$	
$\cot x$	$\mathcal{R}-\mathbf{B}$		

funzione	dominio	derivata	dominio
x^{α}	$[0,+\infty), \ \alpha \geq 1$	$\alpha x^{\alpha-1}$	$[0,+\infty)$
	$[0, +\infty), \ 0 < \alpha < 1$		$]0,+\infty)$
	$]0,+\infty), \ \alpha<0$		$]0,+\infty)$
sen x	\mathcal{R}	$\cos x$	\mathcal{R}
$\cos x$	\mathcal{R}	$-\sin x$	\mathcal{R}
$\int \operatorname{tg} x$	$\mathcal{R}-\mathbf{A}$	$\frac{1}{\cos^2 x} =$	$\mathcal{R}-\mathbf{A}$
$\mathbf{A} =$	$\left\{\frac{\pi}{2} + k\pi, k \in \mathcal{Z}\right\}$	$= 1 + tg^2 x$	
$\cot x$	$\mathcal{R}-\mathbf{B}$	$\frac{-1}{\operatorname{sen}^2 x} =$	





funzione	dominio	derivata	dominio
$\arcsin x$	[-1, 1]		

funzio	ne don	ninio de	erivata	dominio
arcsen	1x [-1]	[.,1]	$\frac{1}{\sqrt{1-x^2}}$	

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
$ \arccos x $			

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
arccos x	[-1, 1]		

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
arccos x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$,

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
arccos x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
$\ \arccos x \ $	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
$\ \operatorname{arctg} x \ $			

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
$\ \arccos x \ $	[-1, 1]	$\frac{-1}{\sqrt{1-x^2}}$]-1,1[
$\ \operatorname{arctg} x \ $	\mathcal{R}		

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$] - 1,1[
arccos x	[-1, 1]	$\frac{-1}{\sqrt{1-x^2}}$]-1,1[
arctg x	\mathcal{R}	$\frac{1}{1+x^2}$	

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
arccos x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
$\left \operatorname{arctg} x \right $	\mathcal{R}	$\frac{1}{1+x^2}$	\mathcal{R}

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
arccos x	[-1, 1]	$\frac{-1}{\sqrt{1-x^2}}$]-1,1[
$\left \operatorname{arctg} x \right $	\mathcal{R}	$\frac{1}{1+x^2}$	\mathcal{R}
arccotg x			

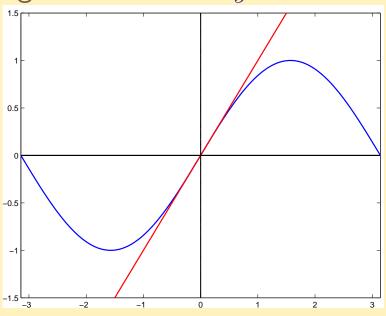
funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
$\ \arccos x \ $	[-1, 1]	$\frac{-1}{\sqrt{1-x^2}}$]-1,1[
$\ \operatorname{arctg} x \ $	\mathcal{R}	$\frac{1}{1+x^2}$	\mathcal{R}
$\ \operatorname{arccotg} x\ $	\mathcal{R}		

funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
arccos x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
arctg x	\mathcal{R}	$\begin{array}{ c c }\hline 1\\ \hline 1+x^2\\ -1 \end{array}$	\mathcal{R}
$ \operatorname{arccotg} x $	\mathcal{R}	$\frac{-1}{1+x^2}$	

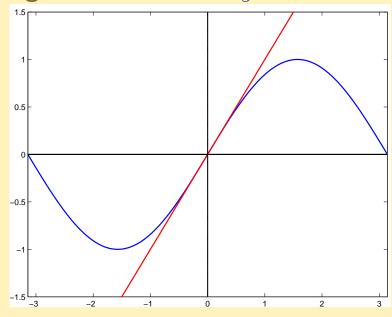
funzione	dominio	derivata	dominio
arcsen x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$]-1,1[
arccos x	[-1, 1]	$\frac{-1}{\sqrt{1-x^2}}$	1 _ 1 1[
arctg x	\mathcal{R}	$\frac{1}{1+x^2}$	\mathcal{R}
arccotg x	\mathcal{R}	$\frac{-1}{1+x^2}$	\mathcal{R}

Calcoliamo la retta tangente alla curva $y = \sin x$ nel punto x = 0.

Calcoliamo la retta tangente alla curva $y = \operatorname{sen} x$ nel punto x = 0.

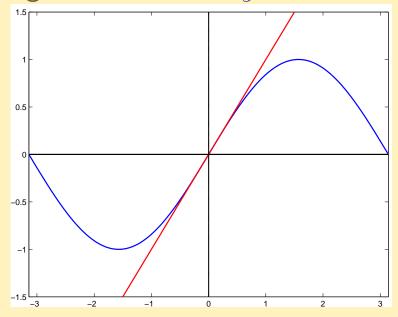


Calcoliamo la retta tangente alla curva $y = \sin x$ nel punto x = 0.



$$y = D[f(x)]_{x=x_0}(x - x_0) + f(x_0),$$

Calcoliamo la retta tangente alla curva $y = \sin x$ nel punto x = 0.



$$y = D[f(x)]_{x=x_0}(x-x_0) + f(x_0), \quad x_0 = 0, \quad f(x) = \sin x$$

La derivata della funzione $f(x) = \operatorname{sen} x$ è

La derivata della funzione $f(x) = \sin x$ è $f'(x) = \cos x$

La derivata della funzione $f(x) = \sin x$ è $f'(x) = \cos x \Rightarrow f'(0)$

La derivata della funzione
$$f(x) = \sin x$$
 è $f'(x) = \cos x \Rightarrow f'(0) = \cos 0$

La derivata della funzione $f(x) = \sin x$ è $f'(x) = \cos x \Rightarrow f'(0) = \cos 0 = 1$

La derivata della funzione $f(x) = \sin x$ è $f'(x) = \cos x \Rightarrow f'(0) = \cos 0 = 1$ la tangente ha equazione:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

La derivata della funzione $f(x) = \sin x$ è $f'(x) = \cos x \Rightarrow f'(0) = \cos 0 = 1$ la tangente ha equazione:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

$$\updownarrow$$

$$y = 1 \cdot (x - 0) + 0$$

La derivata della funzione $f(x) = \sin x$ è $f'(x) = \cos x \Rightarrow f'(0) = \cos 0 = 1$ la tangente ha equazione:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

$$\updownarrow$$

$$y = 1 \cdot (x - 0) + 0 = x$$

Siano f e g due funzioni derivabili.

Siano f e g due funzioni derivabili. Valgono le seguenti regole:

Siano f e g due funzioni derivabili.

$$D[f(x) + g(x)] = f'(x) + g'(x)$$

Siano f e g due funzioni derivabili.

$$D[f(x) + g(x)] = f'(x) + g'(x)$$

$$D[f(x) - g(x)] = f'(x) - g'(x)$$

Siano f e g due funzioni derivabili.

$$D[f(x) + g(x)] = f'(x) + g'(x)$$

$$D[f(x) - g(x)] = f'(x) - g'(x)$$

$$D[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Siano f e g due funzioni derivabili. Valgono le seguenti regole:

$$D[f(x) + g(x)] = f'(x) + g'(x)$$

$$D[f(x) - g(x)] = f'(x) - g'(x)$$

$$D[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$D[\frac{f(x)}{g(x)}], g(x) \neq 0 = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

Siano f e g due funzioni derivabili.

$$D[f(x) + g(x)] = f'(x) + g'(x)$$

$$D[f(x) - g(x)] = f'(x) - g'(x)$$

$$D[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$D[\frac{f(x)}{g(x)}], g(x) \neq 0 = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

$$D[f \circ g(x)] = f'(g(x)) \cdot g'(x)$$

Sia $f: X \to Y$ derivabile ed invertibile;

Sia $f: X \to Y$ derivabile ed invertibile; Se $f'(x) \neq 0$ allora la funzione inversa

$$f^{-1}:Y\to X$$

è derivabile

Sia $f: X \to Y$ derivabile ed invertibile; Se $f'(x) \neq 0$ allora la funzione inversa

$$f^{-1}:Y\to X$$

è derivabile e

$$D[f^{-1}(y)]$$

Sia $f: X \to Y$ derivabile ed invertibile; Se $f'(x) \neq 0$ allora la funzione inversa

$$f^{-1}:Y\to X$$

è derivabile e

$$D[f^{-1}(y)] = \frac{1}{D[f(x)]_{x=f^{-1}(y)}}.$$

$$f(x) = \cos x + \log_3 x$$

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x$$

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x \quad f_2(x) = \log_3 x$$

Calcoliamo la derivata della funzione

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x \quad f_2(x) = \log_3 x$$

Calcoliamo la derivata della funzione

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x \quad f_2(x) = \log_3 x$$

Calcoliamo la derivata della funzione

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x \quad f_2(x) = \log_3 x$$

$$f'(x) = D[\cos x]$$

Calcoliamo la derivata della funzione

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x \quad f_2(x) = \log_3 x$$

$$f'(x) = D[\cos x + \log_3 x]$$

Calcoliamo la derivata della funzione

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x \quad f_2(x) = \log_3 x$$

$$f'(x) = D[\cos x + \log_3 x] = D[\cos x]$$

Calcoliamo la derivata della funzione

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x \quad f_2(x) = \log_3 x$$

$$f'(x) = D[\cos x + \log_3 x] = D[\cos x] + D[\log_3 x]$$

Calcoliamo la derivata della funzione

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x \quad f_2(x) = \log_3 x$$

$$f'(x) = D[\cos x + \log_3 x] = D[\cos x] + D[\log_3 x] =$$
$$= -\sin x$$

Calcoliamo la derivata della funzione

$$f(x) = \cos x + \log_3 x$$

$$f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \cos x \quad f_2(x) = \log_3 x$$

$$f'(x) = D[\cos x + \log_3 x] = D[\cos x] + D[\log_3 x] =$$
$$= -\sin x + \frac{\log_3 e}{x}$$

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x}$$

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \sin x$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \sin x$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \sin x$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \sin x$$

$$f'(x) = D[\sqrt[3]{x} \cdot \operatorname{sen} x]$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \operatorname{sen} x$$

$$f'(x) = D[\sqrt[3]{x} \cdot \operatorname{sen} x] =$$
$$= D[\sqrt[3]{x}]$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \operatorname{sen} x$$

$$f'(x) = D[\sqrt[3]{x} \cdot \operatorname{sen} x] =$$

= $D[\sqrt[3]{x}] \cdot \operatorname{sen} x$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \operatorname{sen} x$$

$$f'(x) = D[\sqrt[3]{x} \cdot \operatorname{sen} x] =$$

$$= D[\sqrt[3]{x}] \cdot \operatorname{sen} x + \sqrt[3]{x}$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \operatorname{sen} x$$

$$f'(x) = D[\sqrt[3]{x} \cdot \operatorname{sen} x] =$$

$$= D[\sqrt[3]{x}] \cdot \operatorname{sen} x + \sqrt[3]{x} \cdot D[\operatorname{sen} x]$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \operatorname{sen} x$$

$$f'(x) = D[\sqrt[3]{x} \cdot \operatorname{sen} x] =$$

$$= D[\sqrt[3]{x}] \cdot \operatorname{sen} x + \sqrt[3]{x} \cdot D[\operatorname{sen} x] =$$

$$= \frac{1}{3\sqrt[3]{x^2}}$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \operatorname{sen} x$$

$$f'(x) = D[\sqrt[3]{x} \cdot \operatorname{sen} x] =$$

$$= D[\sqrt[3]{x}] \cdot \operatorname{sen} x + \sqrt[3]{x} \cdot D[\operatorname{sen} x] =$$

$$= \frac{1}{3\sqrt[3]{x^2}} \operatorname{sen} x$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \operatorname{sen} x$$

$$f'(x) = D[\sqrt[3]{x} \cdot \operatorname{sen} x] =$$

$$= D[\sqrt[3]{x}] \cdot \operatorname{sen} x + \sqrt[3]{x} \cdot D[\operatorname{sen} x] =$$

$$= \frac{1}{3\sqrt[3]{x^2}} \operatorname{sen} x + \sqrt[3]{x}$$

Calcoliamo la derivata della funzione

$$f(x) = \sqrt[3]{x} \cdot \operatorname{sen} x$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$f_1(x) = \sqrt[3]{x} \quad f_2(x) = \operatorname{sen} x$$

$$f'(x) = D[\sqrt[3]{x} \cdot \operatorname{sen} x] =$$

$$= D[\sqrt[3]{x}] \cdot \operatorname{sen} x + \sqrt[3]{x} \cdot D[\operatorname{sen} x] =$$

$$= \frac{1}{3\sqrt[3]{x^2}} \operatorname{sen} x + \sqrt[3]{x} \cos x$$

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$
 $f_2(x) = \operatorname{arctg} x$

Calcoliamo la derivata della funzione

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$
 $f_2(x) = \operatorname{arctg} x$

Calcoliamo la derivata della funzione

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$
 $f_2(x) = \operatorname{arctg} x$

Calcoliamo la derivata della funzione

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$
 $f_2(x) = \operatorname{arctg} x$

$$f'(x) = D[x^2] \operatorname{arctg} x$$

Calcoliamo la derivata della funzione

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$
 $f_2(x) = \operatorname{arctg} x$

$$f'(x) = D[x^2] \arctan x - x^2 D[\arctan x]$$

Calcoliamo la derivata della funzione

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$
 $f_2(x) = \operatorname{arctg} x$

$$f'(x) = \frac{D[x^2] \arctan x - x^2 D[\arctan x]}{\arctan x} =$$

Calcoliamo la derivata della funzione

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$
 $f_2(x) = \operatorname{arctg} x$

$$f'(x) = \frac{D[x^2] \arctan x - x^2 D[\arctan x]}{\arctan x} =$$

$$= \frac{2x \arctan x}{}$$

Calcoliamo la derivata della funzione

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$
 $f_2(x) = \operatorname{arctg} x$

$$f'(x) = \frac{D[x^2] \arctan x - x^2 D[\arctan x]}{\arctan x} =$$

$$= \frac{2x \arctan x - x^2 \frac{1}{1+x^2}}{=}$$

Calcoliamo la derivata della funzione

$$f(x) = \frac{x^2}{\arctan x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$f_1(x) = x^2$$
 $f_2(x) = \operatorname{arctg} x$

$$f'(x) = \frac{D[x^2] \arctan x - x^2 D[\arctan x]}{\arctan x} =$$

$$= \frac{2x \arctan x - x^2 \frac{1}{1+x^2}}{\arctan x}$$

$$f(x) = \sin^3 x$$

$$f(x) = \sin^3 x$$

$$f(x) = f_1(x) \circ f_2(x)$$

$$f(x) = \sin^3 x$$

$$f(x) = f_1(x) \circ f_2(x)$$

$$f_1(x): x \in \mathcal{R} \to \operatorname{sen} x \in [-1, 1]$$

$$f(x) = \sin^3 x$$

$$f(x) = f_1(x) \circ f_2(x)$$

$$f_1(x): x \in \mathcal{R} \to \operatorname{sen} x \in [-1, 1]$$

$$f_2(x): y \in [-1,1] \to y^3 \in [-1,1]$$

Calcoliamo la derivata della funzione

$$f(x) = \operatorname{sen}^{3} x$$

$$f(x) = f_{1}(x) \circ f_{2}(x)$$

$$f_{1}(x) : x \in \mathcal{R} \to \operatorname{sen} x \in [-1, 1]$$

$$f_{2}(x) : y \in [-1, 1] \to y^{3} \in [-1, 1]$$

Calcoliamo la derivata della funzione

$$f(x) = \operatorname{sen}^{3} x$$

$$f(x) = f_{1}(x) \circ f_{2}(x)$$

$$f_{1}(x) : x \in \mathcal{R} \to \operatorname{sen} x \in [-1, 1]$$

$$f_{2}(x) : y \in [-1, 1] \to y^{3} \in [-1, 1]$$

Calcoliamo la derivata della funzione

$$f(x) = \operatorname{sen}^{3} x$$

$$f(x) = f_{1}(x) \circ f_{2}(x)$$

$$f_{1}(x) : x \in \mathcal{R} \to \operatorname{sen} x \in [-1, 1]$$

$$f_{2}(x) : y \in [-1, 1] \to y^{3} \in [-1, 1]$$

$$f'(x) = f_1'(x)$$

Calcoliamo la derivata della funzione

$$f(x) = \operatorname{sen}^{3} x$$

$$f(x) = f_{1}(x) \circ f_{2}(x)$$

$$f_{1}(x) : x \in \mathcal{R} \to \operatorname{sen} x \in [-1, 1]$$

$$f_{2}(x) : y \in [-1, 1] \to y^{3} \in [-1, 1]$$

$$f'(x) = f_1'(x) \cdot f_2'(x)$$

Calcoliamo la derivata della funzione

$$f(x) = \operatorname{sen}^{3} x$$

$$f(x) = f_{1}(x) \circ f_{2}(x)$$

$$f_{1}(x) : x \in \mathcal{R} \to \operatorname{sen} x \in [-1, 1]$$

$$f_{2}(x) : y \in [-1, 1] \to y^{3} \in [-1, 1]$$

$$f'(x) = f'_1(x) \cdot f'_2(x) =$$
$$= 3 \operatorname{sen}^2 x$$

Calcoliamo la derivata della funzione

$$f(x) = \operatorname{sen}^{3} x$$

$$f(x) = f_{1}(x) \circ f_{2}(x)$$

$$f_{1}(x) : x \in \mathcal{R} \to \operatorname{sen} x \in [-1, 1]$$

$$f_{2}(x) : y \in [-1, 1] \to y^{3} \in [-1, 1]$$

$$f'(x) = f'_1(x) \cdot f'_2(x) =$$

= $3 \operatorname{sen}^2 x \cdot \operatorname{D}[\operatorname{sen} x]$

Calcoliamo la derivata della funzione

$$f(x) = \operatorname{sen}^{3} x$$

$$f(x) = f_{1}(x) \circ f_{2}(x)$$

$$f_{1}(x) : x \in \mathcal{R} \to \operatorname{sen} x \in [-1, 1]$$

$$f_{2}(x) : y \in [-1, 1] \to y^{3} \in [-1, 1]$$

$$f'(x) = f'_1(x) \cdot f'_2(x) =$$

$$= 3 \operatorname{sen}^2 x \cdot \operatorname{D}[\operatorname{sen} x] = 3 \operatorname{sen}^2 x \cos x$$