Natural Language Processing

Machine Translation

LESSON 13

Machine Translation

- Manipulating vectors enable you to translate one word from one language to another language
- Word vectors are used to learn to align words in two different languages
- For instance, if we have a set of English word vectors and a set of equivalent French word vectors
- The aim is to learn a mapping from an English vector to the French vector

Overview of translation

- English to French translation
- Generate an extensive list of English words and their associated French words

1. Compute the word embeddings associated with English and word embeddings associated with French
2. Retrieve the English word embedding of a given English word
3. Find a way to transform English word embedding into the same meaning French word embedding

- By learning a transformation matrix

4. Search for word vectors in the French word vector space that are most similar to the transformed English word embedding

- The most similar words are candidates words for your translation

Overview of translation

- Translating the English word cat in French

Transforming vectors

- How do we define the transformation matrix R to transform English vectors X into corresponding French vector Y ?
- Formally, XR=Y
- Let's start by a random matrix R
- We first need to get a subset of English words and their French equivalents
- Get their respective word vectors and stack the word vectors in the respective matrices, X and Y
- It's mandatory to align the word vectors

Finding a good \mathbf{R}

- Define a loss function to measure the "quality" of the translation (transformation) w.r.t. the actual French words (vectors)
- Starting with a random R, we can iterate for the optimal R using the gradient descent

Initialize R

Loop

$$
\begin{aligned}
& \text { Loss }=\|X R-Y\|_{F}^{2} \\
& g=\frac{d}{d R} \text { Loss } \\
& R=R-\alpha g
\end{aligned}
$$

Frobenius norm

- Measures the magnitude of a matrix
- $\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}$

$$
\|\mathbf{X R}-\mathbf{Y}\|_{F}^{2}
$$

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \\
& \left\|\mathbf{A}_{F}\right\|=\sqrt{2^{2}+2^{2}+2^{2}+2^{2}} \\
& \left\|\mathbf{A}_{F}\right\|=4
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \\
& \|\mathbf{A}\|_{F}^{2}=\left(\sqrt{2^{2}+2^{2}+2^{2}+2^{2}}\right)^{2} \\
& \|\mathbf{A}\|_{F}^{2}=16
\end{aligned}
$$

Optimizing \mathbf{R}

Initialize R
Loop

$$
\begin{aligned}
& \text { Loss }=\|X R-Y\|_{F}^{2} \\
& g=\frac{d}{d R} \text { Loss }=\frac{2}{m}\left(\boldsymbol{X}^{T}(\boldsymbol{X R}-\boldsymbol{Y})\right) \\
& R=R-\alpha g
\end{aligned}
$$

K-nearest neighbors

Finding the translation

- A way to find a matching word after the transformation is trough k-nearest neighbors
- After a transformation through the matrix R, a vector v is in the French word vector space
- v is not necessarily identical to any word vector in the French vector space
- One needs to search through the actual French word vectors to find a similar word

Nearest Neighbors intuition

Friend | Location | Nearest | |
| :---: | :---: | :---: |
| San Francisco | Bangalore | 3 |
| Los Angeles | 1 | |

Nearest Neighbors intuition

Hash Tables

- Suppose we have several data items and we want to group them into buckets by some kind of similarity
- One bucket can hold more than one item, and each item is always assigned to the same bucket

Hash function

- Think about how we'd like to do this with word vectors
- Assume that the word vectors have just one dimension, so each word is represented by a single number, such as 100, 14, 17, 10, and 97
- A function that assigns a hash value is called a hash function
- Example: Hash table which is a set of buckets, the hash table has 10 buckets

Hash function

Hash function

0	1	2	3	4	5	6	7	8	9
100			14						
					17				

- Ideally, you want to have a hash function that puts similar word vectors in the same buckets
- Locality sensitive hashing
- A hashing method that assigns items based on where they're located in vector space

0	1	2	3	4	5	6	7	8	9
14									100
10									97

Locality Sensitive Hashing

- First divide the space using these dashed lines, which I'll call planes
- The blue plane divides the space with blue vectors above it
- The grey vectors are above the gray plane
- The plane helps us put the vectors into subsets based on their location

Planes

- A plane is the magenta dashed line
- It represents all the possible vectors lying on that plane (e.g., the blue or orange vectors)
- We can define a plane with the normal vector (e.g., magenta) to that plane
- It is perpendicular to any vectors that lie on the plane

Finding the side of the plane

- How do we find the side of the plane where a vector lie, mathematically?

Side of the Plane

- Let's focus on vector V_{1}
- Consider the dot product

$$
\mathbf{P} \mathbf{V}_{1}^{T}=3
$$

Side of the Plane

- Now, consider the vectors V_{2} and V_{3}

$\mathbf{P V}_{2}^{T}=0$

$$
\mathbf{P V}_{3}^{T}=-3
$$

Side of the Plane

$$
\begin{gathered}
\mathbf{P V}_{1}^{T}=3 \\
\mathbf{P V}_{2}^{T}=0 \\
\mathbf{P V}_{3}^{T}=-3
\end{gathered}
$$

Notice the signs?

- When the dot product is positive, the vector is on one side of the plane
- If the dot product is negative, the vector is on the opposite side of the plane
- If the dot product is zero, the vector is on the plane

Visualizing a dot product

- Consider the plane represented by vector P
- The dot product between P and V_{1} is a positive number
- It's the length of the projection of V_{1} onto P

Visualizing a dot product

- The green vector projected onto P, points on the parallel and opposite direction of P
- The dot product is a negative number

Visualizing a dot product

- The sign of the dot product indicates the direction of the projection with respect to the normal vector
- If it is positive or negative tells us whether the vectors \bigvee_{1} or V_{2} are on one side of the plane or the other
- The sign indicates the direction

Multiple planes

- How do we get a single hash value from multiple planes?
- i.e., identify where a data point is given several planes
- We aim at dividing the vector space into manageable regions
- Goal: determining a single hash value identifying a particular region within the vector space

Multiple planes, single hash value

$$
=3
$$

$$
\begin{aligned}
& \hline \mathbf{P}_{1} \mathbf{v}^{T}=3, \text { sign }_{1}=+1, h_{1}=1 \\
& \hline \hline \mathbf{P}_{2} \mathbf{v}^{T}=5, \text { sign }_{2}=+1, h_{2}=1 \\
& \hline \hline \mathbf{P}_{3} \mathbf{v}^{T}=-2, \text { sign }_{3}=-1, h_{3}=0 \\
& \text { hash }=2^{0} \times h_{1}+2^{1} \times h_{2}+2^{2} \times h_{3} \\
& =1 \times 1+2 \times 1+4 \times 0
\end{aligned}
$$

Multiple planes, single hash value

- Generalizing
- $\mathrm{H}=$ number of planes

$$
\begin{aligned}
& \operatorname{sign}_{i} \geq 0, \rightarrow h_{i}=1 \\
& \operatorname{sign}_{i}<0, \rightarrow h_{i}=0 \\
& \text { hash }=\sum_{i}^{H} 2^{i} \times h_{i}
\end{aligned}
$$

Approximate K-NN

- Multiple sets of planes for approximate NN
- Random planes

- Idea: Create multiple sets of random planes
- Multiple independent sets of hash tables

Multiple sets of random planes

Approximate nearest neighbors

Searching documents

Document representation

- For document search, the first task is how to represent documents as vectors instead of words as vectors

	I love learning!	[?, ?, ?]
	I	[1, 0, 1]
	love	$\begin{gathered} + \\ {[-1,0,1]} \end{gathered}$
		+
	learning	[1, 0, 1]
	I love learning!	$\begin{gathered} \overline{=} \\ {[1,0,3]} \end{gathered}$
Document search - K-NN		

Summarizing

- Transform vector
- K nearest neighbors
- Hash tables
- Divide vector space into regions
- Locality sensitive hashing
- Approximated nearest neighbors

