

Natural Language Processing

Information retrieval: Ranked retrieval

LESSON 12

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

Ch 6

Ranked retrieval

- Thus far, our queries have all been Boolean
 - Documents either match or don't
- Good for expert users with precise understanding of their needs and the collection
 - Also good for applications: Applications can easily consume 1000s of results
- Not good for the majority of users
 - Most users are incapable of writing Boolean queries
 - Most users don't want to wade through 1000s of results
 - This is particularly true of web search

Problem with Boolean search

- Boolean queries often result in either too few (≈0) or too many (1000s) results
 - Query 1: "standard user dlink 650" \rightarrow 200,000 hits
 - Query 2: "standard user dlink 650 no card found" \rightarrow 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits
 - AND gives too few; OR gives too many
- With a ranked list of documents, it does not matter how large the retrieved set is

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval models, the system returns an ordering over the (top) documents in the collection with respect to a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval models have normally been associated with free text queries and vice versa

Large set results not a problem in ranked retrieval

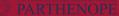
- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score, say in [0, 1], to each document
- This score measures how well the document and the query "match"

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
 - If the query term does not occur in the document
 - score should be 0
 - The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this



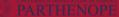
Ch. 6

Alternative 1: Jaccard coefficient

- A commonly used measure of overlap of two sets A and B is the Jaccard coefficient
- jaccard(A,B) = |A ∩ B| / |A ∪ B|
 - jaccard(A,A) = 1
 - jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size
- Always assigns a number between 0 and 1

Jaccard coefficient: Scoring example and issues

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
 - Query: ides of march
 - Document 1: caesar died in march
 - Document 2: the long march
- It doesn't consider term frequency (how many times a term occurs in a document)
 - Rare terms in a collection are more informative than frequent terms
 - Jaccard doesn't consider this information



Recall: Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

• Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Sec. 6.2

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in $\mathbb{N}^{|V|}$: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- A bag of words model
- In a sense, this is a step back: The positional index was able to distinguish these two documents

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term
 - But not 10 times more relevant
- Relevance does not increase proportionally with term frequency
 - N.B.: frequency = count in IR

Sec. 6.2

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

Score for a document-query pair: sum over terms t in both q and d

$$score = \sum_{t \in q \cap d} (1 + \log t f_{t,d})$$

• The score is 0 if none of the query terms is present in the document

Sec. 6.2.1

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
 - We want a high weight for rare terms like arachnocentric

Sec. 6.2.1

Document frequency (cont'd)

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
 - But it's not a sure indicator of relevance
- For frequent terms, we want positive weights for words like high, increase, and line
 - But lower weights than for rare terms
- We will use document frequency (df) to capture this

Sec. 6.2.1

idf weight

- df_t is the document frequency of t
 - the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t
 - We use $log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf

$$idf_t = log_{10} (N/df_t)$$

Example: N = 1 million

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term t in a collection

Effect of idf on ranking

- Question: Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one-term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences
- Document frequency is the number of documents in the collection containing the term
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

Sec 6 2 2

tf-idf weighting

• The tf-idf weight of a term is the product of its tf weight and its idf weight

$$\mathbf{w}_{t,d} = (1 + \log t \mathbf{f}_{t,d}) \times \log_{10}(N/d\mathbf{f}_t)$$

- Best known weighting scheme in information retrieval
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection
- Final ranking of documents for a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

Sec. 6.3

Binary → count → weight matrix

• Each document is now represented by a real-valued vector of tf-idf weights $\in R^{|V|}$

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5,25	3,18	0	0	0	0,35
Brutus	1,21	6,1	0	1	0	0
Caesar	8,59	2,54	0	1,51	0,25	0
Calpurnia	0	1,54	0	0	0	0
Cleopatra	2,85	0	0	0	0	0
mercy	1,51	0	1,9	0,12	5,25	0,88
worser	1,37	0	0,11	4,15	0,25	1,95

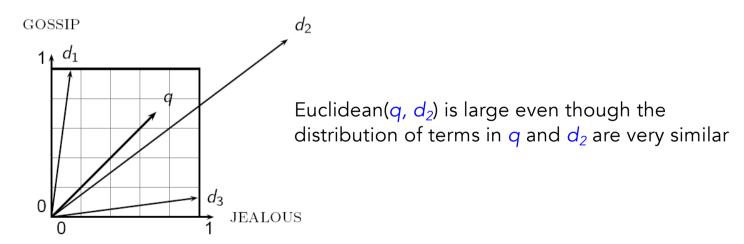
• Now we have a |V|-dimensional vector space

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the either-in-orout Boolean model
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
 - Euclidean distance is a bad idea . . .
 - . . . because Euclidean distance is large for vectors of different lengths



Cosine similarity

Key idea: Rank documents according to angle with query

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \bullet \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \bullet \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term *i* in the query
- d_i is the tf-idf weight of term *i* in the document

Example

- Novels' similarity
 - SaS: Sense and Sensibility
 - PaP: Pride and Prejudice
 - Jane Austen
 - WH: Wuthering Heights
 - Emily Bronte

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting

Example (cont'd)

Log frequency weighting

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

After length normalization

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

- $cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94$
- $cos(SaS,WH) \approx 0.79$
- $cos(PaP,WH) \approx 0.69$

Sec 6.4

tf-idf weighting has many variants

Term frequency		Document frequency		Normalization	
n (natura l)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \tfrac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$				

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Document: logarithmic tf (l as first character), no idf and cosine normalization
- Query: logarithmic tf (l in leftmost column), idf (t in second column), cosine normalization ...

Sec 6 3

Computing cosine scores

```
CosineScore(q)

1 float Scores[N] = 0

2 float Length[N]

3 for each query term t

4 do calculate w<sub>t,q</sub> and fetch postings list for t

5 for each pair(d, tf<sub>t,d</sub>) in postings list

6 do Scores[d]+ = w<sub>t,d</sub> × w<sub>t,q</sub>

7 Read the array Length

8 for each d

9 do Scores[d] = Scores[d]/Length[d]

10 return Top K components of Scores[]
```

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Evaluating an IR system

- An information need is translated into a query
- Relevance is assessed relative to the information need not the query
- E.g., <u>Information need</u>: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
- Query: wine red white heart attack effective
- You evaluate whether the doc addresses the information need, not whether it has these words

Evaluating ranked results

- Evaluation of a result set:
 - If we have
 - a benchmark document collection
 - a benchmark set of queries
 - assessor judgments of whether documents are relevant to queries

Then we can use Precision/Recall/F measure

- Evaluation of ranked results:
 - The system can return any number of results
 - By taking various numbers of the top returned documents (levels of recall), the evaluator can produce a *precision-recall curve*



IR System Evaluation

- More details on Further readings
 - Chapter 8 from Chris Manning's Book (up to paragraph 8.4 included)
 - On the elearning platform