
Information retrieval: Ranked retrieval

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 12

Natural Language Processing

Ranked retrieval

• Thus far, our queries have all been Boolean
• Documents either match or don’t

• Good for expert users with precise understanding of their needs
and the collection
• Also good for applications: Applications can easily consume 1000s of

results

• Not good for the majority of users
• Most users are incapable of writing Boolean queries
• Most users don’t want to wade through 1000s of results

• This is particularly true of web search

Ch. 6

Problem with Boolean search

• Boolean queries often result in either too few (≈0) or too many (1000s)
results
• Query 1: “standard user dlink 650” → 200,000 hits
• Query 2: “standard user dlink 650 no card found” → 0 hits

• It takes a lot of skill to come up with a query that produces a
manageable number of hits
• AND gives too few; OR gives too many

• With a ranked list of documents, it does not matter how large the
retrieved set is

Ch. 6

Ranked retrieval models

• Rather than a set of documents satisfying a query expression, in ranked
retrieval models, the system returns an ordering over the (top)
documents in the collection with respect to a query

• Free text queries: Rather than a query language of operators and
expressions, the user’s query is just one or more words in a human
language

• In principle, there are two separate choices here, but in practice,
ranked retrieval models have normally been associated with free text
queries and vice versa

4

Large set results not a problem in ranked retrieval

• When a system produces a ranked result set, large result sets are not
an issue
• Indeed, the size of the result set is not an issue
• We just show the top k (≈ 10) results
• We don’t overwhelm the user

Ch. 6

Scoring as the basis of ranked retrieval

• We wish to return in order the documents most likely to be useful to
the searcher

• How can we rank-order the documents in the collection with respect to
a query?

• Assign a score, say in [0, 1], to each document

• This score measures how well the document and the query “match”

Ch. 6

Query-document matching scores

• We need a way of assigning a score to a query/document pair

• Let’s start with a one-term query
• If the query term does not occur in the document

• score should be 0

• The more frequent the query term in the document, the higher the score (should
be)

• We will look at a number of alternatives for this

Ch. 6

Alternative 1: Jaccard coefficient

• A commonly used measure of overlap of two sets A and B is the
Jaccard coefficient

• jaccard(A,B) = |A ∩ B| / |A ∪ B|
• jaccard(A,A) = 1
• jaccard(A,B) = 0 if A ∩ B = 0

• A and B don’t have to be the same size

• Always assigns a number between 0 and 1

Ch. 6

Jaccard coefficient: Scoring example and issues

• What is the query-document match score that the Jaccard coefficient
computes for each of the two documents below?
• Query: ides of march
• Document 1: caesar died in march
• Document 2: the long march

• It doesn’t consider term frequency (how many times a term occurs in a
document)
• Rare terms in a collection are more informative than frequent terms
• Jaccard doesn’t consider this information

Ch. 6

Recall: Binary term-document incidence matrix
Sec. 6.2

• Each document is represented by a binary vector ∈ {0,1}|V|

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Term-document count matrices

• Consider the number of occurrences of a term in a document:
• Each document is a count vector in ℕ|V|: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

Bag of words model

• Vector representation doesn’t consider the ordering of words in a document

• John is quicker than Mary and Mary is quicker than John have the same
vectors

• A bag of words model

• In a sense, this is a step back: The positional index was able to distinguish
these two documents

Term frequency tf

• The term frequency tft,d of term t in document d is defined as the number of
times that t occurs in d

• We want to use tf when computing query-document match scores. But how?

• Raw term frequency is not what we want:
• A document with 10 occurrences of the term is more relevant than a

document with 1 occurrence of the term
• But not 10 times more relevant

• Relevance does not increase proportionally with term frequency
• N.B.: frequency = count in IR

Log-frequency weighting

• The log frequency weight of term t in d is

• Score for a document-query pair: sum over terms t in both q and d

score

• The score is 0 if none of the query terms is present in the document

î
í
ì >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

å ÇÎ
+=

dqt dt) tflog (1 ,

Sec. 6.2

Document frequency

• Rare terms are more informative than frequent terms
• Recall stop words

• Consider a term in the query that is rare in the collection (e.g., arachnocentric)

• A document containing this term is very likely to be relevant to the query
arachnocentric
• We want a high weight for rare terms like arachnocentric

Sec. 6.2.1

Document frequency (cont’d)

• Frequent terms are less informative than rare terms

• Consider a query term that is frequent in the collection (e.g., high, increase,
line)

• A document containing such a term is more likely to be relevant than a
document that doesn’t
• But it’s not a sure indicator of relevance

• For frequent terms, we want positive weights for words like high, increase,
and line
• But lower weights than for rare terms

• We will use document frequency (df) to capture this

Sec. 6.2.1

idf weight

• dft is the document frequency of t
• the number of documents that contain t

• dft is an inverse measure of the informativeness of t
• dft £ N

• We define the idf (inverse document frequency) of t
• We use log (N/dft) instead of N/dft to “dampen” the effect of idf

)/df(log idf 10 tt N=

Sec. 6.2.1

Example: N = 1 million

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection

Sec. 6.2.1

)/df(log idf 10 tt N=

Effect of idf on ranking

• Question: Does idf have an effect on ranking for one-term queries, like
• iPhone

• idf has no effect on ranking one-term queries
• idf affects the ranking of documents for queries with at least two terms
• For the query capricious person, idf weighting makes occurrences of

capricious count for much more in the final document ranking than
occurrences of person

Collection vs. Document frequency

• The collection frequency of t is the number of occurrences of t in the
collection, counting multiple occurrences

• Document frequency is the number of documents in the collection containing
the term

• Example:

• Which word is a better search term (and should get a higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1

tf-idf weighting

• The tf-idf weight of a term is the product of its tf weight and its idf weight

• Best known weighting scheme in information retrieval

• Increases with the number of occurrences within a document

• Increases with the rarity of the term in the collection

• Final ranking of documents for a query

)df/(log)tflog1(w 10,, tdt N
dt

´+=

Sec. 6.2.2

€

Score(q,d) = tf.idft,dt∈q∩d∑

Binary → count → weight matrix

• Each document is now represented by a real-valued vector of tf-idf
weights ∈ R|V|

• Now we have a |V|-dimensional vector space

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5,25 3,18 0 0 0 0,35
Brutus 1,21 6,1 0 1 0 0
Caesar 8,59 2,54 0 1,51 0,25 0
Calpurnia 0 1,54 0 0 0 0
Cleopatra 2,85 0 0 0 0 0
mercy 1,51 0 1,9 0,12 5,25 0,88

worser 1,37 0 0,11 4,15 0,25 1,95

Sec. 6.3

Queries as vectors

• Key idea 1: Do the same for queries: represent them as vectors in the
space

• Key idea 2: Rank documents according to their proximity to the query in
this space

• proximity = similarity of vectors

• proximity ≈ inverse of distance

• Recall: We do this because we want to get away from the either-in-or-
out Boolean model

• Instead: rank more relevant documents higher than less relevant
documents

Sec. 6.3

Formalizing vector space proximity

• First cut: distance between two points
• (= distance between the end points of the two vectors)

• Euclidean distance?
• Euclidean distance is a bad idea . . .
• . . . because Euclidean distance is large for vectors of different lengths

Sec. 6.3

Euclidean(q, d2) is large even though the
distribution of terms in q and d2 are very similar

Cosine similarity

• Key idea: Rank documents according to angle with query

• qi is the tf-idf weight of term i in the query

• di is the tf-idf weight of term i in the document

åå
å

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(!

!

!

!

!!

!!!!

Example

• Novels’ similarity
• SaS: Sense and Sensibility
• PaP: Pride and Prejudice

• Jane Austen

• WH: Wuthering Heights
• Emily Bronte

• Note: To simplify this example, we don’t do idf weighting

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

Term frequencies (counts)

Example (cont’d)

• cos(SaS,PaP) ≈ 0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 ≈ 0.94

• cos(SaS,WH) ≈ 0.79

• cos(PaP,WH) ≈ 0.69

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

Log frequency weighting After length normalization

tf-idf weighting has many variants
Sec. 6.4

Weighting may differ in queries vs documents

• Many search engines allow for different weightings for queries vs.
documents

• SMART Notation: denotes the combination in use in an engine,
with the notation ddd.qqq, using the acronyms from the previous
table

• A very standard weighting scheme is: lnc.ltc

• Document: logarithmic tf (l as first character), no idf and cosine
normalization

• Query: logarithmic tf (l in leftmost column), idf (t in second
column), cosine normalization …

A bad idea?

Sec. 6.4

Computing cosine scores
Sec. 6.3

Summary – vector space ranking

• Represent the query as a weighted tf-idf vector

• Represent each document as a weighted tf-idf vector

• Compute the cosine similarity score for the query vector and each
document vector

• Rank documents with respect to the query by score

• Return the top K (e.g., K = 10) to the user

Evaluating an IR system

• An information need is translated into a query

• Relevance is assessed relative to the information need not the
query

• E.g., Information need: I’m looking for information on whether
drinking red wine is more effective at reducing your risk of heart
attacks than white wine.

• Query: wine red white heart attack effective

• You evaluate whether the doc addresses the information need,
not whether it has these words

Sec. 8.1

Evaluating ranked results

• Evaluation of a result set:
• If we have

• a benchmark document collection
• a benchmark set of queries
• assessor judgments of whether documents are relevant to queries

Then we can use Precision/Recall/F measure

• Evaluation of ranked results:
• The system can return any number of results
• By taking various numbers of the top returned documents (levels of

recall), the evaluator can produce a precision-recall curve

Sec. 8.4

IR System Evaluation

• More details on Further readings
• Chapter 8 from Chris Manning’s Book (up to paragraph 8.4 included)
• On the elearning platform

