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Some definitions… 
From the persian mathematician al-Kharezmi (al-
Khawarizmi) from the IX century 

Algorithm: Sequence of well-defined instructions 
(univocally interpretable) that allows to reach an 
outcome in a finite number of steps 



Some definitions… 
From the persian mathematician al-Kharezmi (al-
Khawarizmi) from the IX century 

Algorithm: Sequence of well-defined instructions 
(univocally interpretable) that allows to reach an 
outcome in a finite number of steps 

 
Step 1: Gather Your Ingredients for the Sandwich.  
Step 2: Put Gloves on (optional). 
Step 3: Pull Out Two Slices of Bread and put on plate. 
Step 4: Open Peanut Butter and Jelly. 
Step 5 Pick up butter knife.  
Step 6: Spread the Peanut Butter Onto One Slice of Bread. 
Step 7: Spread the Jelly Onto the Other Slice of Bread. 
Step 8: Combine the Two Slices. 
Step 9: Say: Enjoy 



An example… 

The binary search (or half-interval search) is an algorithm that 
finds the position of a target value within a sorted array. 
It compares the target value to the middle element of the array; if 
they are not equal, the search continues on the remaining half, 
again taking the middle element etc. 



Some definitions… 
From the persian mathematician al-Kharezmi (al-
Khawarizmi) from the IX century 

Algorithm: Sequence of well-defined instructions 
(univocally interpretable) that allows to reach an 
outcome in a un risultato in a finite number of steps 

 

 

Programme: description of an algorithm in a 
specific coding language (e.g. C, fortran, python, 
perl). 



Exact algorithms vs. heuristic algorithms  

Non 
sensitive 

Slow 

Cons 

Fast 1. BLAST –Altschul 
(1990) 

2. FASTA- Pearson 
(1985) 

Heuristic 

Sensitive 1. Needlman Wunch 
(1970) 
2. Smith Waterman 
(1981) 

Exact 

Pro Type of 
algorithm 

programmes 



 Heuristic method: in computer science, it is heuristic a 
method that can generally find a good solution to a 
problem, though it is not possible to prove that the found 
solution is the correct one 

Some definitions… 



Exact algorithms: 
e.g. algorithm of Smith-Waterman 

Exact, it guarantees to find out the best alignament(s) for 
a pair of sequences.  
 
For 2 sequences: A of length n and B of length m, 
Smith-Waterman takes n*m computational steps 
   
In searching a database of sequences -  
-  In case the query sequence A is long n=200 

 nucleotides 
-  And we search for homologues sequences in the 

 EST database containing, e.g., 23*106 sequences, 
 Bi, each of length m=500.  

-  Number of computational steps:  
  23*106 * 500 * 200 ~ 1011 total steps ! 



Exact, it garantees to find out the best alignament(s) for a 
pair of sequences.  
 
For 2 sequences: A of length n and B of length m, 
Smith-Waterman takes n*m computational steps 
*106 * 500 * 200 ~ 1011 passi totali ! 

 How do we discard the irrelevant alignments? 

  

The heuristic algorithms (BLAST, FASTA) can filter most 
of the irrelevant alignments. 

 

Exact algorithms: 
e.g. algorithm of Smith-Waterman 



 
1) LLKKQW 
        LLKQW 

 
2)  LLKKQW 
        LLKQW 

 
3)  LLKKQW 
       LLKQW 
 
5)    LLKKQW 
       LLKQW 

 
4)    LLKKQW 
        LLKQW 
 
6)      LLKKQW 
        LLKQW 

 
9)        LLKKQW 
       LLKQW 

 
7)      LLKKQW 
       LLKQW  

 
8)         LLKKQW 
        LLKQW 
 
10)          LLKKQW 
         LLKQW 

2 sequences of length n and m with a ‘sliding’ algorithm 
would require n x m comparisons between positions: 
problem O(nm) ~ O(n2)* (quadratic size) 

Example 6 x 5: 

* If n and m have the same order of magnitude 



What if we allow gaps? 
In a sequence long n one can insert gaps in n-1 positions.  

Just allowing 1-res gaps “-” “n” different sequences are obtained 

 
1) LLKKQW 

 
2)  L-LKKQW 

 
3) LL-KKQW 
 
 
5) LLKK-QW 

 
4)  LLK-KQW 

 
6)  LLKKQ-W 

Example n = 6 : 



What if we allow gaps? 
In a sequence long n one can insert gaps in n-1 positions.  

Just allowing 1-res gaps “-” “n” different sequences are obtained 

 
1) LLKKQW 

 
2)  L-LKKQW 

 
3) LL-KKQW 
 
 
5) LLKK-QW 

 
4)  LLK-KQW 

 
6)  LLKKQ-W 

Example n = 6 : 

In case we allow a larger number of gaps  (besides the 1-res) 
the number  of possible sequences increases exponentially 
and so does the problem size 



Exact alignment algorithms such as the 
Needlman-Wunch and Smith-Waterman 
are examples of Dynamic Programming 

 
Breaking down the problem into simpler sub-
problems, then recursively finding the optimal 
solutions to the sub-problems 
 

 



START END 

Pots of gold game: rules 

Going from START to END without passing 
twice through the same point and without 
moving backwards, while collecting the max 
number of pots of gold 



START END 
A 

B 
C 

1 2 

3 
4 

Pots of gold game 



START END 
A 

B 
C 

1 2 

3 
4 

Choice of the best path from A to END does not 
depend on the path taking me from START to A 

Pots of gold game 
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Pots of gold game: the optimal path (solution) 

START END 
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Pots of gold game: the optimal path (solution) 



Differently from the pots of gold game, similarity 
matrices also feature negative values  

An alignment algorithm will tend to skip them by 
inserting too many insertions and deletions 
(INDELs, GAPs) 

It is necessary to associate a penalty to the 
introduction of GAPs (both opening, and extension 
ones) in the alignment 



e.g. How we align the following 
sequences: 

 
HEAGAWGHEE  

PAWHEAE 

 

? 



H E A G A W G H E E 
P -2 -1 -1 -2 -1 -4 -2 -2 -1 -1 
A -2 -1 5 0 5 -3 0 -2 -1 -1 
W -3 -3 -3 -3 -3 15 -3 -3 -3 -3 
H 10 0 -2 -2 -2 -3 -2 10 0 0 
E 0 6 -1 -3 -1 -3 -3 0 6 6 
A -2 -1 5 0 5 -3 0 -2 -1 -1 
E 0 6 -1 -3 -1 -3 -3 0 6 6 

HEAGAWGHEE vs PAWHEAE 

Step1: building the site-specific matrix (values 
from BLOSUM45) 

An example of alignment algorithms: 
cumulative matrix 



Alignment algorithm: cumulative matrix 

i,j-1 

i-1,j-1 

i,j 

i-1,j 

cell 
cell 

cell 

cell 

+ score (i,j) 
+ penalty 

+ penalty 

Maximum among 
the three values 



Step2: building the cumulative matrix, where each 
element represents the optimal score that 
can be obtained from start to that point 

Si,j = max  
Si-1,j-1 + σij 
Si-1,j + g  
Si,j-1 + g  

i,j-1 

i-1,j-1 

i,j 

i-1,j 

where g represents the 
penalty for INDELs 
(gaps) and σij is the 
score of the 
corresponding cell in 
the site-specific matrix 

+ score (i,j) + penalty 

+ penalty 

Maximum among 
the three values 



 Cumulative matrix 

GAP penalty = -8 
H E A G A W G H E E 

P -2 -1 -1 -2 -1 -4 -2 -2 -1 -1 
A -2 -1 5 0 5 -3 0 -2 -1 -1 
W -3 -3 -3 -3 -3 15 -3 -3 -3 -3 
H 10 0 -2 -2 -2 -3 -2 10 0 0 
E 0 6 -1 -3 -1 -3 -3 0 6 6 
A -2 -1 5 0 5 -3 0 -2 -1 -1 
E 0 6 -1 -3 -1 -3 -3 0 6 6 

Original site-specific 
matrix 

H E A G A W G H E E 

0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 
P -8 
A -16 
W -24 
H -32 
E -40 
A -48 
E -56 

deletions 

insertions 
-2 

S1,1 = max  
0 + (-2) 
-8 + (-8) = -16  
-8 + (-8) = -16  

= -2 



 Cumulative matrix 

GAP penalty = -8 
H E A G A W G H E E 

P -2 -1 -1 -2 -1 -4 -2 -2 -1 -1 
A -2 -1 5 0 5 -3 0 -2 -1 -1 
W -3 -3 -3 -3 -3 15 -3 -3 -3 -3 
H 10 0 -2 -2 -2 -3 -2 10 0 0 
E 0 6 -1 -3 -1 -3 -3 0 6 6 
A -2 -1 5 0 5 -3 0 -2 -1 -1 
E 0 6 -1 -3 -1 -3 -3 0 6 6 

Original site-specific 
matrix 

H E A G A W G H E E 

0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 
P -8 
A -16 
W -24 
H -32 
E -40 
A -48 
E -56 

deletions 

insertions 
-2 

-3 -10 
-9 

S2,2 = max  
-2 +(-1) 
-9 +(-8) = -17  
-10 +(-8) = -18  

= -3 



H E A G A W G H E E 
0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 

P -8 -2 -9 -17 -25 -33 -41 -49 -57 -65 -73 
A -16 -10 -3 -4 -12 -20 -28 -36 -44 -52 -60 
W -24 -18 -11 -6 -7 -15 -5 -13 -21 -29 -37 
H -32 -14 -18 -13 -8 -9 -13 -7 -3 -11 -19 
E -40 -22 -8 -15 -15 -9 -12 -15 -7 3 -5 
A -48 -30 -15 -3 -11 -10 -12 -12 -15 -5 2 
E -56 -38 -23 -11 -6 -12 -13 -15 -12 -9 1 

H E A G A W G H E E 
P -2 -1 -1 -2 -1 -4 -2 -2 -1 -1 
A -2 -1 5 0 5 -3 0 -2 -1 -1 
W -3 -3 -3 -3 -3 15 -3 -3 -3 -3 
H 10 0 -2 -2 -2 -3 -2 10 0 0 
E 0 6 -1 -3 -1 -3 -3 0 6 6 
A -2 -1 5 0 5 -3 0 -2 -1 -1 
E 0 6 -1 -3 -1 -3 -3 0 6 6 

Cumulative matrix 

Original site-specific 
matrix 



HEAGAWGHE-E 
-PA--W-HEAE 

Step3: backwards path through cells that allowed 
to obtain the best alignment scores 

maximum 
achievable 

score 

H E A G A W G H E E 
0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 

P -8 -2 -9 -17 -25 -33 -41 -49 -57 -65 -73 
A -16 -10 -3 -4 -12 -20 -28 -36 -44 -52 -60 
W -24 -18 -11 -6 -7 -15 -5 -13 -21 -29 -37 
H -32 -14 -18 -13 -8 -9 -13 -7 -3 -11 -19 
E -40 -22 -8 -15 -15 -9 -12 -15 -7 3 -5 
A -48 -30 -15 -3 -11 -10 -12 -12 -15 -5 2 
E -56 -38 -23 -11 -6 -12 -13 -15 -12 -9 1 



HEAGAWGHE-E 
-PA--W-HEAE 

H E A G A W G H E E 
0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 

P -8 -2 -9 -17 -26 -33 -44 -50 -58 -65 -73 
A -16 -10 -3 -4 -12 -15 -26 -34 -44 -53 -62 
W -24 -19 -13 -6 -7 -15 0 -11 -22 -33 -44 
H -32 -14 -19 -15 -8 -9 -11 -2 0 -8 -16 
E -40 -22 -8 -17 -18 -9 -12 -13 -2 6 4 
A -48 -32 -17 -3 -11 -12 -12 -12 -12 -3 5 
E -56 -40 -19 -12 -6 -12 -15 -15 -12 -5 3 

deletion 
insertion 



HEAGAWGHEE vs PAWHEAE 

Step1: building a site-specific matrix (values from 
a PAM or BLOSUM matrix) 

An example of alignment algorithms: 
cumulative matrices 

Step2: building a cumulative matrix, where each 
element represents the maximum score 
achievable  to go from start to that point 

Step3: backwards path through the cells which 
allowed to obtain the best scores = optimal 
alignment 



Multiple alignment 



Pair-wise sequence alignment =  
Alignment of TWO similar sequences 

Multiple sequence allignment (MSA) =   
Alignment of MANY similar sequences, 
generally coming from a search in databases 

Few definitions… 



Exact algorithms for multiple alignments 

The necessary number of computational steps is in the order 
LN, where L is the length and N the number of sequences to 
be aligned 

 

e.g. for 4 sequences 100 aa/nt long 

The number of computational steps would be 1004 = 100 
millions ! 
 

 

not viable 



We perform a pairwise alignment(s) then align 
additional sequences to it(them) 

and so on… 

Approximate solution 



ASDKL 
VSERF 
? 

AGRSGS 

Approximate solution 
A profile of the alignment can 
be built in the form of a PSSM 
(position-specific scoring 
matrix) but also by HMM 

Example of PSSM 



ASDKL 
VSERF 
? 

AGRSGS 

Approximate solution 
The easiest way to go is 
building a PSSM by performing 
an arithmetic average of the 
scores for the alignment of ress 
of the 3rd to those of the aligned 
sequences 

Example of PSSM 
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D     E       N    Q 

positively charged 



ASDKL 
VSERF 
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A classical approach: CLUSTALW 

• Programme for MSAs based on a hierarchic 
approach 

• Step1: pairwise alignment for all the input sequences 
(for N seq.: N(N-1)/2 pairwise alignments) 

• Step2: building a guide tree, i.e. a hierarchy of 
sequences in order of their similarity (cluster analysis) 

• Step3: building the multiple alignment based on the 
guide tree by first aligning the most similar pairs, then 
aligning the other sequences with those pairs until all 
have been aligned 



1 2 

2.5 

Seq1 Seq2 Seq3 Seq4 
Seq1 0 5 11 14 
Seq2 0 9 10 
Seq3 0 7 
Seq4 0 

Measured distance = % of different amino acids  

Cluster 1-2 

The measure of dissimilarity 
between sequences 
represents their evolutionary 
distance and can be 
obtained in several ways 
 
The % of different amino 
acids is one possible way 



Cls1-2 Seq3 Seq4 
Cls1-2 0 ½[d(1,3)+d(2,3)] = 10 ½[d(1,4)+d(2,4)] = 12 
Seq3 0 7 
Seq4 0 

1 2 

2.5 

3 4 

3.5 
Cluster 1-2 

Cluster 3-4 

Measured distance = % of different amino acids  



Cls1-2 Cls 3-4 
Cls1-2 0 ½[d(Cls 1-2),3] + ½[d(Cls 1-2),4] = 11 
Cls 3-4 0 

1 2 

2.5 

3 4 

5.5 

3.5 

Measured distance = % of different amino acids  



1 2

2.5

3 4

5.5

3.5

Example of guide tree 

The guide tree 
is used to 
guide the 
order of 
constructing 
the multiple 
alignment 



Another example of guide tree 

How a guide tree, built on the basis of pair-wise alignments 
between all the sequences, guides the order of constructing the 
multiple alignment 

In principle, the pair-wise alignments can also be approximate, 
for instance based on the presence of k-mers (stretches of k 
residues) in common for two sequences  



MSAs: current approaches 

• ClustalW has been retired and substituted as a web 
service by Clustal Omega 

• Clustal Omega is a new MSA tool that uses seeded 
guide trees and HMM profile-profile techniques to 
generate alignments 



 

A HMM is a machine learning method: it  learns from known 
cases, assigns probabilities to events based on observations 
and makes predictions 
 

HMMs can be designed for many tasks, in Bioinformatics and 
beyond 
 

Markov Model means that there is a statistical Markov chain, 
i.e. each state at the step n depends on the state at the step 
n-x (if x=1, the Markov chain is of first order) 

 

Hidden means that its states are not observable 

 

Hidden Markov Models 
(HMMs) 



A HMM is characterized by: 

Number of states (X), number of symbols (Y), distribution of 
transition probabilities between states (A), distribution of 
emission probabilities of symbols (B), initial state 
distribution (π). 

States can be “silent”, in case they do not emit symbols 
 

HMM structure 



Hidden Markov Models 
(HMMs) 

Hidden Markov models are made of unobservable (hidden) 
states 

Each state emits symbols from a fixed alphabet, e.g. ACGT, 
according to specific emission (or output) probabilities  

Different (hidden) states are connected by precise transition 
probabilities  

The sequence of states is a Markov chain: the choice of next 
element (state) depends on the actual one (1st order chain) 

While states are “hidden”, symbols (e.g. ACGT) are 
“observable” 

 Observations are probability functions of the “hidden” states 



Hidden Markov models are made of unobservable (hidden) 
states 

Each state emits symbols from a fixed alphabet, e.g. ACGT, 
according to specific emission (or output) probabilities  

Different (hidden) states are connected by precise transition 
probabilities  

The sequence of states is a Markov chain: the choice of next 
element (state) depends on the actual one  

While states are “hidden”, symbols (e.g. ACGT) are 
“observable” 

 We can think of a HMM as a generator of sequences with 
defined probabilities 

Hidden Markov Models 
(HMMs) 



Hidden Markov models are made of unobservable (hidden) 
states 

Each state emits symbols from a fixed alphabet, e.g. ACGT, 
according to specific emission (or output) probabilities  

Different (hidden) states are connected by precise transition 
probabilities  

The sequence of states is a Markov chain: the choice of next 
element (state) depends on the actual one  

While states are “hidden”, symbols (e.g. ACGT) are 
“observable” 

 Basically we use a sequence of observations to estimate the 
sequence of hidden states 

Hidden Markov Models 
(HMMs) 



Hidden-Markov Models (HMMs) 
In this example of HMM the hidden states are the used dices 
(regular or modified) and the outcomes of rolls are the 
symbols (observable) 

Roll  abcdefghilmnop 
Num1  64251324653255 
Num2  43516241313243 

?? Given the above sequence of symbols, 
what pair of dices have we thrown ??  

Rigged 
(modified) dice: 
Same external 
features of the 
regular dices 
pair 

Regular dices 



Roll 

a
b
c
d
e
f
g
h
i
l
m
n
o
p 

6
4
2
5
1
3
2
4
6
5
3
2
5
5

4
3
5
1
6
2
4
1
3
1
3
2
4
3 

Num1 Num2 

Dices 
choice 

1-2 
1-3 
2-3 

W e c a n c a l c u l a t e t h e 
probability that a specific 
symbol pair (Num1-Num2) 
has been generated by one of 
the 3 possible dice pairs 
(1-2,1-3,2-3)!! 



One more example of HMM 



Python representation of HMM parameters 



Another example of HMM for a sequence alignment 

The hidden states here are: deletion, insertion and amino acid 
matches. Deletions are instances of “silent states” 

The most likely 
sequences of 

observables emitted are: 
PATH 
PETH 
PETS 

etc. 

Mi stands for match (aa 
substitution at the ist position) 

Di for deletion 
Ii for insertion 



 

Given the structure of a HMM (X,Y,A,B,π) 

 

Problem 1: how we calculate the probability of a sequence 
of observations (e.g. “LASD”) O = O1O2O3…On? (forward-
backward algorithm) 

Problem 2: given a sequence of observations, how we 
choose an optimal sequence of states, which ‘explains’ the 
sequence of observations? (Viterbi algorithm). 

Problem 3: how we adjust the parameters (transition 
probabilities) of the model to maximize the probability of a 
sequence of observations? (Baum-Welch algorithm) – this 
is how a HMM MSA is built 

Basic problems for HMMs 



Another example of HMM for a sequence alignment 

With the forward-backward algorithm, we can calculate the probability 
of having a specific sequence, e.g. PETS (problem 1 - it will be the 
sum of all the paths emitting the sequence)  

With the Viterbi algorithm, we can choose the optimal sequence of 
states (most probable path), which ‘explains’ the sequence (problem 
2); this is analogous to the best-scoring aln in dynamic programming 

Given a HMM model, any 
given path through the model 
will emit a sequence with an 

associated probability 
 



HMM profiles (or profile HMMs) 

https://www.ebi.ac.uk/training/online/courses/pfam-creating-protein-families/what-are-profile-hidden-markov-models-hmms/ 



Sequence logos 
Profiles of MSAs can be represented graphically in the form of 
sequence logos, easily showing the residue preference or 
conservation at particular positions, which point to a functional 
role 
 

We have already encountered PSSMs (Position Specific Scoring 
Matrices), examples of scoring schemes of MSAs for searching 
for other similar sequences, represented as sequence logos  
 

Examples from Web Logo 



HMMs are commonly used to align a novel sequence to a HMM 
profile or to align HMM profiles one to each other 
 

A HMM profile is a HMM model containing the information 
present in a multiple alignment 
 

HMM profiles can be visualized using sequence logos to illustrate 
the emission probabilities for different residues types at each 
match state 
 

They are more sophisticated versions of a PSSM, especially 
because they can treat INDELs in a position-dependent way 
 

HMM profiles of protein families and subfamilies are reported in 
several databases (BLOCKS, Pfam etc.) 

 

HMM profiles (or profile HMMs) 



HMMs are commonly used to align a novel sequence to a HMM 
profile or to align HMM profiles one to each other 
 

A HMM profile is a HMM model containing the information 
present in a multiple alignment 
 

HMM profiles can be visualized using sequence logos to illustrate 
the emission probabilities for different residues types at each 
match state 
 

They are more sophisticated versions of a PSSM, especially 
because they can treat INDELs in a position-dependent way 
 

 

HMM profiles (or profile HMMs) 

Example of a HMM profile for the Toxin_7 family, from the Pfam database  



The alignment of two HMM profiles is actually the alignment of two 
alignments; in it the gap scoring is position-dependent 
 

In a possible approach, one multipe alignment is firstly reduced to a 
profile HMM, then a modification of the Viterbi algorithm is used to 
find the most probable set of paths which emit the other alignment 
(to get the overall probability for the alignment the probabilities for 
each sequence path must be multiplied) 
 

HHsearch aligns two profile HMMs and is designed to identify very 
remote homologs; it also uses a variant of the Viterbi algorithm to 
find the alignment with the best score 
 

Alignment of HMM profiles  

Simplified visualization of 
the alignment of two 

HMMs (from Pfam) using 
logos to illustrate the 

emission probabilities at 
each match state    



https://www.ebi.ac.uk/Tools/msa/clustalo/ 







MSAs: other approaches 

DIALIGN is a local alignment method 
 
It constructs pairwise ad multiple alignments by comparing 
whole ungapped segments several residues long 
 
The alignment is then constructed from pairs of equal-length 
gap-free segments (diagonals) 
 
Many diagonals will overlap and the program has to find a set 
of diagonals which can be combined into one consistent 
alignment 
 
DIALIGN is suitable for sequences of moderate length 



Multiple alignments 

Two sequences whisper, many homologous 
sequences talk loud 

A. Lesk 



Why are multiple alignments so important? 

 Because 

 they allow to obtain accurate alignments  

 outline positions subjected to evolutionary pressure  

 provide relevant functional/structural insight 

Provide information on the evolutionary process 



Why are multiple alignments so important? 

pairwise alignment of the catalytic domains of PI3-kinase p110α  
and a cAMP-dependent protein kinase 

their ClustalW alignment with other PI3-kinases  
 

In the multiple alignment, the functionally important residues 
(highlighted in green) are correctly aligned 



One more example: thioredoxins 

Involved in cell proliferation, blood coagulation, insulin 
degradation, enzymatic regulation etc. 

 

Fold α/β: β sheet of five strands flanked by α-helices 

Thioredoxin from E. coli 



Color code: 
Gly, Ala, Ser, Thr : small 
Cys, Val, Ile, Leu, Pro, Phe, Tyr, Met, Trp   : hydrophobic 
Asn, Gln, His : polar 
Asp, Glu : negatively charged  
Lys, Arg  : positively charged  
 

One more example: thioredoxins 



Profile 
sequence logo representation 



Active site 



Surface 
(exposed)

loops 



Surface  
β-strand 



amphiphatic 
helix 



amphiphatic 
helix 
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7 3 



1. Alignment algorithms. There are exact and heuristic 
ones. We choose one or the other depending on the 
wanted application 

2. Multiple alignments. They contain precious 
information about the evolutionary path. Non-exact 
methods are used to obtain them. HMMs can be 
applied. They are extremely informative on the 
structure and function of corresponding proteins  

Lessons 5 & 6.  
Content 


