1. Alignment algorithms
2. Multiple alignments

Alignment

1) Score for the correspondence of $a a / b a s e s$
2) Penalty of insertions/deletions
3) Algorithm performing the alignment
4) Measure of the alignment significance

Alignment

1) Score for the correspondence of aa/bases
2) Penalty of insertions/deletions
3) Algorithm performing the alignment
4) Measure of the alignment significance

LAMIAPRIMASEQCREATA----------
-MIAALTR-------ASEQDAALLINEARE

LAMIAPRIMASEQ--------CREATA

--MIAAL---TRASEQDAALLINEARE

Some definitions...

From the persian mathematician al-Kharezmi (alKhawarizmi) from the IX century

Algorithm: Sequence of well-defined instructions (univocally interpretable) that allows to reach an outcome in a finite number of steps

Some definitions...

From the persian mathematician al-Kharezmi (alKhawarizmi) from the IX century

Algorithm: Sequence of well-defined instructions (univocally interpretable) that allows to reach an outcome in a finite number of steps

Step 1: Gather Your Ingredients for the Sandwich.
Step 2: Put Gloves on (optional).
Step 3: Pull Out Two Slices of Bread and put on plate. Step 4: Open Peanut Butter and Jelly.
Step 5 Pick up butter knife.
Step 6: Spread the Peanut Butter Onto One Slice of Bread.
Step 7: Spread the Jelly Onto the Other Slice of Bread.
Step 8: Combine the Two Slices.
Step 9: Say: Enjoy

An example...

Sorted array
Search 25

Iteration 1: ($25>14$)
Take right half

Iteration 2: ($25>24$)
Take right half

Iteration 3 : ($25=25$)
return the index 9

0	1	2	3	4	5	6	7	8	9	10	
2	5	6	9	11	14	17	21	24	25	27	
S	M										

0	1	2	3	4	5	6	7	8	9	10
2	5	6	9	11	14	17	21	24	25	27

The binary search (or half-interval search) is an algorithm that finds the position of a target value within a sorted array. It compares the target value to the middle element of the array; if they are not equal, the search continues on the remaining half, again taking the middle element etc.

Some definitions...

From the persian mathematician al-Kharezmi (alKhawarizmi) from the IX century

Algorithm: Sequence of well-defined instructions (univocally interpretable) that allows to reach an outcome in a un risultato in a finite number of steps

Programme: description of an algorithm in a specific coding language (e.g. C, fortran, python, perl).

Exact algorithms vs. heuristic algorithms

Type of algorithm	programmes	Pro	Cons
Exact	1. Needlman Wunch (1970) 2. Smith Waterman (1981)	Sensitive	Slow
Heuristic	1. BLAST -Altschul (1990) 2. FASTA- Pearson (1985)	Fast	Non sensitive

Some definitions...

Heuristic method: in computer science, it is heuristic a method that can generally find a good solution to a problem, though it is not possible to prove that the found solution is the correct one

Exact algorithms: e.g. algorithm of Smith-Waterman

Exact, it guarantees to find out the best alignament(s) for a pair of sequences.

For 2 sequences: A of length n and B of length m, Smith-Waterman takes n*m computational steps

In searching a database of sequences -

- In case the query sequence A is long n=200 nucleotides
- And we search for homologues sequences in the EST database containing, e.g., $23^{*} 10^{6}$ sequences, B_{i}, each of length $m=500$.
- Number of computational steps:
$23^{*} 10^{6}$ * 500 * $200 \sim 10^{11}$ total steps !

Exact algorithms: e.g. algorithm of Smith-Waterman

Exact, it garantees to find out the best alignament(s) for a pair of sequences.

For 2 sequences: A of length n and B of length m, Smith-Waterman takes n*m computational steps *10 ${ }^{6}$ * 500 * $200 \sim 10^{11}$ passi totali !

How do we discard the irrelevant alignments?

The heuristic algorithms (BLAST, FASTA) can filter most of the irrelevant alignments.

2 sequences of length n and m with a 'sliding' algorithm would require $n \times m$ comparisons between positions: problem $\mathbf{O}(n m) \sim \mathbf{O}\left(n^{2}\right)^{*}$ (quadratic size)

Example 6×5 :

1) LLKKQW \rightarrow
2) LLKKQW
3) LLKKQW
4) LLKKQW

LLKQW

LLKQW

LLKQW

4) | LLKKQW |
| :---: |
| LLKQW |
5) LLKKQW

LLKKQW
LLKQW
8) LLKKQW

LLKQW

LLKQW
2) LLKKQW \rightarrow

LLKQW

LLKQW

LKOW
10)

LLKKQW
LLKQW

* If n and m have the same order of magnitude

What if we allow gaps?

In a sequence long \boldsymbol{n} one can insert gaps in $\boldsymbol{n}-1$ positions.
Just allowing 1-res gaps "-" " n " different sequences are obtained
Example $\boldsymbol{n}=6$:

1) LLKKQW
2) LL-KKQW
3) LLK-KQW
4) LLKK-QW

What if we allow gaps?

In a sequence long \boldsymbol{n} one can insert gaps in $\boldsymbol{n}-1$ positions.
Just allowing 1-res gaps "-" " n " different sequences are obtained

Example $\boldsymbol{n}=6$:

1) LLKKQW
2) LL-KKQW
3) LLK-KQW
4) LLKK-QW
5) LLKKQ-W

In case we allow a larger number of gaps (besides the 1-res) the number of possible sequences increases exponentially and so does the problem size

Exact alignment algorithms such as the NeedIman-Wunch and Smith-Waterman are examples of Dynamic Programming

Breaking down the problem into simpler subproblems, then recursively finding the optimal solutions to the sub-problems

Pots of gold game: rules

Going from START to END without passing twice through the same point and without moving backwards, while collecting the max number of pots of gold

Pots of gold game

Pots of gold game

Choice of the best path from A to END does not depend on the path taking me from START to A

Pots of gold game: the optimal path (solution)

Pots of gold game: the optimal path (solution)

Differently from the pots of gold game, similarity matrices also feature negative values

An alignment algorithm will tend to skip them by inserting too many insertions and deletions (INDELs, GAPs)

It is necessary to associate a penalty to the introduction of GAPs (both opening, and extension ones) in the alignment

e.g. How we align the following sequences:

HEAGAWGHEE

PAWHEAE
?

An example of alignment algorithms: cumulative matrix

HEAGAWGHEE vs PAWHEAE

Step1: building the site-specific matrix (values from BLOSUM45)

	H	E	A	G	A	W	G	H	E	E
	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
A	-2	-1	5	0	5	-3	0	-2	-1	-1
W	-3	-3	-3	-3	-3	15	-3	-3	-3	-3
H	10	0	-2	-2	-2	-3	-2	10	0	0
E	0	6	-1	-3	-1	-3	-3	0	6	6
A	-2	-1	5	0	5	-3	0	-2	-1	-1
E	0	6	-1	-3	-1	-3	-3	0	6	6

Alignment algorithm: cumulative matrix

Step2: building the cumulative matrix, where each element represents the optimal score that can be obtained from start to that point
where g represents the

$$
S_{i, j}=\max \left[\begin{array}{c}
S_{i-1, j-1}+\sigma_{i j} \\
S_{i-1, j}+g \\
S_{i, j-1}+g
\end{array}\right]
$$

penalty for INDELs
(gaps) and σ_{ij} is the score of the corresponding cell in the site-specific matrix

Cumulative matrix

deletions

Cumulative matrix

deletions

	\downarrow	H E	A	G	A	W	G	H	
insertions \rightarrow	0	-8-16	-2	4 -3	-40	-48	-56		
P	-8	-2 - 9							
A	-16	-10 -3							
W	-24								
H	-32								
E	-40								
A	-48								
E	-56								

Cumulative matrix

	H						E	A	G	A	W
C	G	H	E	E							
	0	-8	-16	-24	-32	-40	-48	-56	-64	-72	-80
P	-8	-2	-9	-17	-25	-33	-41	-49	-57	-65	-73
A	-16	-10	-3	-4	-12	-20	-28	-36	-44	-52	-60
W	-24	-18	-11	-6	-7	-15	-5	-13	-21	-29	-37
H	-32	-14	-18	-13	-8	-9	-13	-7	-3	-11	-19
E	-40	-22	-8	-15	-15	-9	-12	-15	-7	3	-5
A	-48	-30	-15	-3	-11	-10	-12	-12	-15	-5	2
E	-56	-38	-23	-11	-6	-12	-13	-15	-12	-9	1

		H	E	A	G	A	W	G	H	E	E
	0	-8	-16	-24	-32	-40	-48	-56	-64	-72	-80
P	-8	-2	-9	-17	-25	-33	-41	-49	-57	-65	-73
A	-16	-10	-3	-4	-12	-20	-28	-36	-44	-52	-60
W	-24	-18	-11	-6	-7	-15	-5	-13	-21	-29	-37
H	-32	-14	-18	-13	-8	-9	-13	-7	-3	-11	-19
E	-40	-22	-8	-15	-15	-9	-12	-15	-7	3	-5
A	-48	-30	-15	-3	-11	-10	-12	-12	-15	-5	2
E	-56	-38	-23	-11	-6	-12	-13	-15	-12	-9	1

$$
\begin{aligned}
& \text { HEAGAWGHE-E } \\
& \text {-PA--W-HEAE }
\end{aligned}
$$

maximum achievable score

Step3: backwards path through cells that allowed to obtain the best alignment scores

	H				E	A	G	A	W	G	H
	0	-8	-16	-24	-32	-40	-48	-56	-64	-72	-80
P	-8	-2	-9	-17	-26	-33	-44	-50	-58	-65	-73
A	-16	-10	-3	-4	-12	-15	-26	-34	-44	-53	-62
W	-24	-19	-13	-6	-7	-15	$\mathbf{0}$	-11	-22	-33	-44
H	-32	-14	-19	-15	-8	-9	-11	-2	-0	-8	-16
E	-40	-22	-8	-17	-18	-9	-12	-13	-2	$\mathbf{6}$	4
A	-48	-32	-17	-3	-11	-12	-12	-12	-12	-3	5
E	-56	-40	-19	-12	-6	-12	-15	-15	-12	-5	$\mathbf{3}$

HEAGAWGHE-E
-PA--W-HEAE
deletion
insertion

An example of alignment algorithms: cumulative matrices

HEAGAWGHEE vs PAWHEAE

Step1: building a site-specific matrix (values from a PAM or BLOSUM matrix)

Step2: building a cumulative matrix, where each element represents the maximum score achievable to go from start to that point

Step3: backwards path through the cells which allowed to obtain the best scores = optimal alignment

Multiple alignment

Few definitions...

Pair-wise sequence alignment = Alignment of TWO similar sequences

Multiple sequence allignment $(M S A)=$ Alignment of MANY similar sequences, generally coming from a search in databases

Exact algorithms for multiple alignments

The necessary number of computational steps is in the order L^{N}, where L is the length and N the number of sequences to be aligned

e.g. for 4 sequences $100 \mathrm{aa} / \mathrm{nt}$ long

The number of computational steps would be $100^{4}=100$ millions !

not viable

Approximate solution

We perform a pairwise alignment(s) then align additional sequences to it(them)

Approximate solution

ASDKL A profile of the alignment can
 be built in the form of a PSSM (position-specific scoring matrix) but also by HMM

	A	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~F} \end{aligned}$
A	$1 / 2($ PAM (AA) $)$ PAM (AV) $)=1 / 2(2+0)$	1/2($1+1$)	1/2(0+0)	1/2(-1-2)	1/2(-2-4)
G	1/2(1-1)	1/2(1+1)	1/2($1+0$)	1/2(-2-3)	1/2(-4-5)
R	1/2(-2-2)	1/2(0+0)	1/2(-1-1)	1/2(3+6)	1/2(-3-4)
S	1/2(1+0)	1/2(3+3)	1/2(0+0)	1/2(0+0)	1/2(-3-3)
G	1/2(1-1)	1/2($1+1$)	1/2($1+0$)	1/2(-2-3)	1/2(-4-5)
S	1/2(1+0)	1/2(3+3)	1/2(0+0)	1/2(0+0)	1/2(-3-3)

Example of PSSM

Approximate solution

ASDKL The easiest way to go is
 building a PSSM by performing an arithmetic average of the scores for the alignment of ress of the $3^{\text {rd }}$ to those of the aligned sequences

	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~F} \end{aligned}$
A	$1 / 2(\operatorname{PAMAA})+\mathrm{PAM}(2 \mathrm{~V}))^{1} / 2(2+0)$	1/2($1+1$)	1/2(0+0)	1/2(-1-2)	1/2(-2-4)
G	1/2(1-1)	1/2($1+1$)	1/2(1+0)	1/2(-2-3)	1/2(-4-5)
R	1/2(-2-2)	1/2(0+0)	1/2(-1-1)	1/2(3+6)	1/2(-3-4)
S	1/2(1+0)	1/2(3+3)	1/2(0+0)	1/2(0+0)	1/2(-3-3)
G	1/2(1-1)	1/2(1+1)	1/2(1+0)	1/2(-2-3)	1/2(-4-5)
S	1/2(1+0)	1/2(3+3)	112(0+0)	112(0+0)	1/2(-3-3)

Example of PSSM

Alanina (Ala) A

alina (Val) V

Leucina (Leu) L
Isoleucina (Ile) I
AMINOACIDI CON CATENE LATERALI CONTENENTI ZOLFO O GRUPPI OSSIDRILICI

AMINOACIDI AROMATICI

Fenilalanina (Phe) F

AMINOACIDO CICLICO

Tirosina (Tyr) Y

Triptofano (Trp) W

AMINOACIDI ACIDI E LORO AMIDI

Acido aspartico (Asp) D Acido glutammico (Glu) E

Asparagina (Asn) N

positively charged

	A	S	D	K	L		$\begin{aligned} & \mathbf{A} \\ & \mathbf{V} \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathbf{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{R} \end{aligned}$	$\begin{aligned} & \mathbf{L} \\ & \mathbf{F} \end{aligned}$
A	2	1	0	-1	-2	A	1	1	0	-1.5	-3
G	1	1	1	-2	-4	G	0	1	0.5	-2.5	-4.5
R	-2	0	-1		-3	R	-2	0	-1	4.5	-3.5
S	1	3	0	0	-3	S	0.5	3	0	0	-3
G	1	1	1	-2	-4	G	0	1	0.5	-2.5	-4.5
S	1	3	0	0	-3	S	0.5	3	0	0	-3

ASDKL
VSERF
A-GRSGS

A classical approach: CLUSTALW

- Programme for MSAs based on a hierarchic approach
- Step1: pairwise alignment for all the input sequences (for N seq.: $\mathrm{N}(\mathrm{N}-1) / 2$ pairwise alignments)
- Step2: building a guide tree, i.e. a hierarchy of sequences in order of their similarity (cluster analysis)
- Step3: building the multiple alignment based on the guide tree by first aligning the most similar pairs, then aligning the other sequences with those pairs until all have been aligned

Measured distance $=\%$ of different amino acids

	Seq1	Seq2	Seq3	Seq4
Seq1	0	5	11	14
Seq2		0	9	10
Seq3			0	7
Seq4				0

The measure of dissimilarity between sequences represents their evolutionary distance and can be obtained in several ways

The \% of different amino acids is one possible way

Cluster 1-2

Measured distance $=\%$ of different amino acids

Measured distance $=\%$ of different amino acids

	Cls1-2	Cls 3-4
Cls1-2	0	$1 / 2[\mathrm{~d}($ Cls 1-2),3] $+1 / 2[\mathrm{~d}($ Cls 1-2),4] $=11$
Cls 3-4		0

Example of guide tree

The guide tree is used to guide the order of constructing the multiple alignment

Another example of guide tree

How a guide tree, built on the basis of pair-wise alignments between all the sequences, guides the order of constructing the multiple alignment

In principle, the pair-wise alignments can also be approximate, for instance based on the presence of k-mers (stretches of k residues) in common for two sequences

MSAs: current approaches

- ClustalW has been retired and substituted as a web service by Clustal Omega
- Clustal Omega is a new MSA tool that uses seeded guide trees and HMM profile-profile techniques to generate alignments

Hidden Markov Models (HMMs)

A HMM is a machine learning method: it learns from known cases, assigns probabilities to events based on observations and makes predictions

HMMs can be designed for many tasks, in Bioinformatics and beyond

Markov Model means that there is a statistical Markov chain, i.e. each state at the step n depends on the state at the step n - x (if $x=1$, the Markov chain is of first order)

Hidden means that its states are not observable

HMM structure

A HMM is characterized by:
Number of states (X), number of symbols (Y), distribution of transition probabilities between states (A), distribution of emission probabilities of symbols (B), initial state distribution (π).

States can be "silent", in case they do not emit symbols

Hidden Markov Models (HMMs)

Hidden Markov models are made of unobservable (hidden) states

Each state emits symbols from a fixed alphabet, e.g. ACGT, according to specific emission (or output) probabilities

Different (hidden) states are connected by precise transition probabilities

The sequence of states is a Markov chain: the choice of next element (state) depends on the actual one ($1^{\text {st }}$ order chain) While states are "hidden", symbols (e.g. ACGT) are "observable"

Observations are probability functions of the "hidden" states

Hidden Markov Models (HMMs)

Hidden Markov models are made of unobservable (hidden) states

Each state emits symbols from a fixed alphabet, e.g. ACGT, according to specific emission (or output) probabilities

Different (hidden) states are connected by precise transition probabilities

The sequence of states is a Markov chain: the choice of next element (state) depends on the actual one

While states are "hidden", symbols (e.g. ACGT) are "observable"

We can think of a HMM as a generator of sequences with defined probabilities

Hidden Markov Models (HMMs)

Hidden Markov models are made of unobservable (hidden) states

Each state emits symbols from a fixed alphabet, e.g. ACGT, according to specific emission (or output) probabilities

Different (hidden) states are connected by precise transition probabilities

The sequence of states is a Markov chain: the choice of next element (state) depends on the actual one

While states are "hidden", symbols (e.g. ACGT) are "observable"

Basically we use a sequence of observations to estimate the sequence of hidden states

Hidden-Markov Models (HMMs)

In this example of HMM the hidden states are the used dices (regular or modified) and the outcomes of rolls are the symbols (observable)

Rigged (modified) dice: Same external features of the regular dices pair

Roll	abcdefghilmnop
Num1	64251324653255
Num2	43516241313243

?? Given the above sequence of symbols, what pair of dices have we thrown ??

Dices

choice

Roll	2-an N	Num1	Num2
a	\cdots..a)	- 6	4
b	2-3	4	3
c		2	5
d		5	1
e	\checkmark	1	6
f		3	2
g	We can calculate the	2	4
h	probability that a specific	4	1
i	symbol pair (Num1-Num2)	6	3
1	has been generated by one of	5	1
m	the 3 possible dice pairs	3	3
n	(1-2,1-3,2-3)!!	2	2
\bigcirc		5	4
p		5	3

One more example of HMM

Python representation of HMM parameters

```
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
    'Rainy': {'Rainy': 0.7, 'Sunny': 0.3},
    'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6}
    }
emission_probability = {
    'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
    'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
    }
```


Another example of HMM for a sequence alignment

The hidden states here are: deletion, insertion and amino acid matches. Deletions are instances of "silent states"

Basic problems for HMMs

Given the structure of a HMM (X,Y,A,B, $)$

Problem 1: how we calculate the probability of a sequence of observations (e.g. "LASD") $\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \ldots \mathrm{O}_{\mathrm{n}}$? (forwardbackward algorithm)

Problem 2: given a sequence of observations, how we choose an optimal sequence of states, which 'explains' the sequence of observations? (Viterbi algorithm).

Problem 3: how we adjust the parameters (transition probabilities) of the model to maximize the probability of a sequence of observations? (Baum-Welch algorithm) - this is how a HMM MSA is built

Another example of HMM for a sequence alignment

(B)

Given a HMM model, any given path through the model will emit a sequence with an associated probability

With the forward-backward algorithm, we can calculate the probability of having a specific sequence, e.g. PETS (problem 1 - it will be the sum of all the paths emitting the sequence)

With the Viterbi algorithm, we can choose the optimal sequence of states (most probable path), which 'explains' the sequence (problem 2); this is analogous to the best-scoring aln in dynamic programming

HMM profiles (or profile HMMs)

Sequence logos

Profiles of MSAs can be represented graphically in the form of sequence logos, easily showing the residue preference or conservation at particular positions, which point to a functional role

We have already encountered PSSMs (Position Specific Scoring Matrices), examples of scoring schemes of MSAs for searching for other similar sequences, represented as sequence logos

Examples from Web Logo

HMM profiles (or profile HMMs)

HMMs are commonly used to align a novel sequence to a HMM profile or to align HMM profiles one to each other

A HMM profile is a HMM model containing the information present in a multiple alignment

HMM profiles can be visualized using sequence logos to illustrate the emission probabilities for different residues types at each match state

They are more sophisticated versions of a PSSM, especially because they can treat INDELs in a position-dependent way

HMM profiles of protein families and subfamilies are reported in several databases (BLOCKS, Pfam etc.)

HMM profiles (or profile HMMs)

HMMs are commonly used to align a novel sequence to a HMM profile or to align HMM profiles one to each other

A HMM profile is a HMM model containing the information present in a multiple alignment

HMM profiles can be visualized using sequence logos to illustrate the emission probabilities for different residues types at each match state

They are more sophisticated versions of a PSSM, especially because they can treat INDELs in a position-dependent way

Alignment of HMM profiles

The alignment of two HMM profiles is actually the alignment of two alignments; in it the gap scoring is position-dependent

In a possible approach, one multipe alignment is firstly reduced to a profile HMM, then a modification of the Viterbi algorithm is used to find the most probable set of paths which emit the other alignment (to get the overall probability for the alignment the probabilities for each sequence path must be multiplied)

HHsearch aligns two profile HMMs and is designed to identify very remote homologs; it also uses a variant of the Viterbi algorithm to find the alignment with the best score

Simplified visualization of the alignment of two HMMs (from Pfam) using logos to illustrate the emission probabilities at each match state

Clustal Omega

Tools > Multiple Sequence Alignment > Clustal Omega

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between three or more sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB .
STEP 1 - Enter your input sequences
Enter or paste a set of
PROTEIN
sequences in any supported format:
\square

https://www.ebi.ac.uk/Tools/msa/clustalo/

gi
186910296 ref |NP 001119574.1
gi|4826762|ref|NP_005134.1|
gi|21264363|ref|NP_006601.2|
|21264357|ref|NP 001870.3|
|21264359|ref|NP_624302.1|
4502495|ref|NP_001725.1|
|66347875|ref|NP_001724.3|
|289547636|ref|NP_057630.2|
4758502|ref|NP_004123.1|
|295054188|ref| \bar{N} P_001171131.1|
| 4504383 |ref|NP_001519.1|
14702169|ref|NP_127509.1|
4505861 |ref |NP_000921.1|
4505863 |ref|NP_002649.1
222537759 |ref|NP_001138503.1|
|119392081|ref|NP_000195.2|
4503635 |ref|NP_000497.1|
4506115|ref|NP_000303.1|
| 10518503 |ref|NP_062562.1|
4503645 |ref|NP_000122.1|
| 4503625 |ref \mid NP_000495.1|
4503649|ref|NP_000124.1|
$32698940 \mid$ ref|NP_872365.1|
$148231605 \mid$ ref $\mid N \bar{P}$ _937828.2|
$300244530|r e f| N P _003610.2 \mid$
205360943 |ref|NP_005647.3|
$227499990 \mid$ ref $\left|N P^{-} 001128571.1\right|$
13173471|ref|NP_076927.1|
|33667063|ref|NP_892018.1|
|4505881|ref|NP_000292.1|
116292750|ref|NP_005568.2|
| $58331209 \mid$ ref|NP_001962.3|
|62526043|ref|NP_009203.2|
15559207|ref|NP_254275.1
i $|58331211|$ ref $\left|\mathrm{NP}_{-}^{-} 056933.2\right|$
|110815798|ref|NP_899234.2|
i|4503137|ref|NP_001898.1|
gi|118498341|ref|NP_001897.4|

Clustal Omega

Input form
Tools > Multiple Sequence Alignment > Clustal Omega

Results for job clustalo-l20220829-154434-0539-1190104-p2m

Alignments Result Summary Guide Tree Phylogenetic Tree Results Viewers Submission Details

Download Guide Tree Data

Phylogram
Branch length: Cladogram Real

MSAs: other approaches

DIALIGN is a local alignment method
It constructs pairwise ad multiple alignments by comparing whole ungapped segments several residues long

The alignment is then constructed from pairs of equal-length gap-free segments (diagonals)

Many diagonals will overlap and the program has to find a set of diagonals which can be combined into one consistent alignment

DIALIGN is suitable for sequences of moderate length

Multiple alignments

LumTuYYGupur	gattilfc		ACuPT					
Louruyiguruta	Eattilfa	ayprt		mulumut mi	Mus	mied	IISLu	Weresi
LuTHUYYEupum	gattlife	2		FOLEXUTEKFMmb	MuE	MHEI	I ISLm	Wrest
	Eattifea	3 Y	UWat Aacuptapap	WuLEmuTEY	un	Mim：	IISLu	Hersi
LuJTuYyeupury		38	rumat iacuptipir	HLUMGUTEAF	puse	M ${ }^{\text {Pri }}$	$118 L \mathrm{~m}$	Wrost
	attilfa	3 y	Nrostanacupt	EWLEMUTEXF	MuL	Maxt	IISLu	TeqSL
LITHTUYYGupubl	artilfa	2 Sz	WWisthacupt	Holl grutexr	mu：	M ${ }^{\text {a }}$	I IsLm	
LTuTUYYGuputh	Eattilea	axpr	W6artacupt	Wry Emut mizand	us	MnEx	118L㖇	Tresi
Linduyzeupude	a ${ }^{\text {a PTLFCa }}$	a	What iacupt	LSLGMUTESFMW	n5	MHED	U18	
Louruyiguruta	Eattilea	SYeter	IWathacupt	I2L EMUT EXFMETO	MV：	H	118	Werest
Linduyseupuma	Eartilfa	P	IWzTHaCuP	IEMENUTEAIMM以	40		II	
LTuTUYYGUP IW．	Eattilfas	3 S	IWathacurt	ILL EMUT ExFrath	us	H2	115Lu	Werest
LUJTUYYGUPUTH	EmTTLFC3		IWathacupt	Im，	Mu	4H	I IaLm	meest
LUTUYYGUPUT	3 PuLfC3		Ither ancuptap	motiphoresfi				
guturyeipat	＊3SIPLFCAT		TJET I Clapomir	IILM－UTE AF Am		30		
cruturygupab	As IPLECAT		TuGt I CLP	IPL ${ }^{\text {a }}$－UTEAF ${ }^{\text {a }}$	IT	21		
Yuturyeipato	＊3S IPLFCAT			TTLX－UTEAF				ETSI晨
curvereupur	Ass IPLECAT			ITL年－UTEAF				
Futuryeipat	AASIPLFCAT		TTEGIICLP	ITLM－UTE AF Ant		30	Whore	20rsimp
corurygupam	dat IPLTCAT		Ithett CLP					
yuturyeipan	katuplicatt		TTEGU CLP DAG	－ 17				I
Qwiturygupum	Mssularcutp		LTattacip	TEUPL	PLU2	3e		Fegri
LYOTUFYEIPUT	TU a FCMTR		watter ${ }^{\text {a }}$	UPL－IT				

Two sequences whisper，many homologous sequences talk loud

A．Lesk

Why are multiple alignments so important?

Because

they allow to obtain accurate alignments
outline positions subjected to evolutionary pressure
provide relevant functional/structural insight

Provide information on the evolutionary process

Why are multiple alignments so important?

(A) $\mathrm{p} 110 \alpha$ TFILGIGDRHNSNIMVKDDG-QLFHIDFGHFLDHKKKKFGYKRERVPFVLT--QDFLIVI 142 CAMP-kinase QIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWXLCGTPEYLAPE 179
pairwise alignment of the catalytic domains of PI3-kinase p110 α and a cAMP-dependent protein kinase

their ClustalW alignment with other PI3-kinases

In the multiple alignment, the functionally important residues (highlighted in green) are correctly aligned

One more example: thioredoxins

Involved in cell proliferation, blood coagulation, insulin degradation, enzymatic regulation etc.

Fold α / β : β sheet of five strands flanked by α-helices

(a)

One more example: țhioredoxins

Pactarictia $002 t$ 7hinhacinar farmoad duy 5 troptachovr e2avoligarw Cpasidf cact yaos man rol an them
Kheath monkoy
Rabbit
Cuirkse
 rarantila malavogartar Cascctabdytir ang gati lajagr omenaris Varcapara crami
pactarictan con2a grptyra parpara
 Straptgacer e Cganidy dmetyaos mirdas
teate
chearti monkoy
5abep
Chickos
pict gartadian dincadfam det jor tali an dincaddez Dramontian mal asogartar
 Varcapora crama

Color code:

Gly, Ala, Ser, Thr : small
Cys, Val, Ile, Leu, Pro, Phe, Tyr, Met, Trp : hydrophobic
Asn, Gln, His : polar
Asp, Glu : negatively charged
Lys, Arg : positively charged
pactarictia 0024 ThPhyrainiparan farroand dur
 Cpazide cactyoos zormas
Rhernt monky
Eneeth
Eathit
Rathe
Rablit
Dict gartaid = dincadfaz bramontila malavoquatar Candtindutir angavar Riedsar orenatia
Mastcapara crami

Yastarictila con 21 Parghya parparm Stroptgeonr e2avidgarm Cgasidy chetyoos an rolas
Rhantin monkoy
Shen
Dist jar tali a discadfaz rarcotiza malavogartar Casartabdy tir ang gas. Ricisur orematir

60
70
BI
110

Profile

sequence logo representation

Factarictia con 14
 Stroptacyosir ciavaingary Crazide cactyoos zaralas
Whan
Rhearn monky
Ryeatir
Katep
Rakhit
Rablit
Dict jartadi $=$ dymaddaz pramath13 zalasocautar Candtindutir angavar Fiedsar oremetir

Yastarictia con 24 Parphra parparna triptgevonr elavidgarm

5heen
 roarcotia malavogantar Caerdtabdy tir all gave Ricisur orematir

Active site
phetaridetia 0024
Parghys parparan

Wiman
Rhearin monkyy
Eheen
Dist jarta2t a diacadfan rancotiz zalavogantar
caevanilat aingati Riciant orematir

Nactarictia 0024
ThEGyra parparan

Cpazide cactyoos zormas
Rhernt monky
Keep
Rathit
Catitit
Dist jartadi a dincaddea Drarghtila malavgautar Casdrtabditir ang gavir Ricisar orensir
Vasrapara crama

	rvanlexaghembliamia
	VIGAvpasthasthuryia
	I Vgardzantizdojvpr
	VIdavdraiticiluryt
	-pecariourtuatiret
	Peanir Hr
	pegarr -
	pegani Hr Hina
	pecanr hrtukilxitv
	PECA3E 3I Lus
VEVDIDEVATHDIGRHIREVPTVYPYVKGAXV	PEDAME-AtLh3TLinami
IYEVRSMPTVVPLRDHRKLA	Pagade returumarlva
VIVDERADLCSEYDVEMAPTVIFJKAGDAIE,	Legcve intagrvienva
	VVGAER - ELACDIAEMA

\qquad

Surface (exposed) loops

Nactarictia 0024 prpayra parparan
 Cpazide cactyoos zormas
Rternt monky
Ryeatir
Katep
Rakhit
Rablit
Dict gartaid = dymaddaz prarcot 12 a milavoquatar Casurtabditir angavar Ricisar owentir
Marcapara crama

Yastarictia con 24 Parshyra parparan Stroptgeonr elavidgarm

5hesp

 roarcotila zalavogantar Caerdtabdy tir all gave Ricisur orematir

0 p
P 110
110

 8 F
-60

BI

acsenacaac

Surface

β-strand
pactarictia 0024
phiphearifixif farroand duvi
Stroptacyosir ciavaingary
Cpariducactyoss zaralas
Rhesurn monkoy

Rteath
Sheep

Rathit
Cuitions
Dict jartald $=$ dymaddaz prarcotila zal avoquatar Casurtabditir angartar Risigar orensir
Vasrapara crama

Yastarictila con 21 Parphra parparna streptacour e2avidgarm

5heen
 roarcotia anlavogantar Caerdtabdy tir all gave Ricisar oremazir

60
0 D
210

amphiphatic helix

N

pactarictia 0024

 Cpazide cactyoos zormas Whaza
Rherus monkoy
Rathit
Chition
Dict jarta2d a diacadfan Drarcot 12a zai avogastar Casurtabditir angartar Risigar orensir
Vasrapara crama

Yastarictia con 24 Parphra parparna Stroptacour e2avidgarm

5heen
 romontall diacasina Candrtibdutir ang gave Riciant owantir
Vampampara erama

60
70
BI
210

	CVCALSxCOLXEFLDAMLA
VR19	VICAvDxsithatharyis
	TV¢ALExagtiabtisot
	Ivgarpanatilapojvpr
VQVMTDEMpMLRTPYGIREITHLALDEXGQRVI	VIdavdesitimiluryt.
	pegarr -urthatiuilv
	pecanr hrtantimetv
	pecaur -urtuatiunti
	PEcans HxLuatimett
	pecair Hrtanizatv
	PACADE HELTMMMAELVX
	Hogcve intiogvimbva
	ขvgarr - ELDCJiaruma
	のadv H3toxaknixion
9	Qa 14

(2)
 hydrophobic

amphiphatic helix

N

1. Alignment algorithms. There are exact and heuristic ones. We choose one or the other depending on the wanted application
2. Multiple alignments. They contain precious information about the evolutionary path. Non-exact methods are used to obtain them. HMMs can be applied. They are extremely informative on the structure and function of corresponding proteins
