
Information retrieval

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 11

Natural Language Processing

The slides are taken from Chris Manning NLP course

Information Retrieval

• Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers)

• These days we frequently think first of web search, but there are many
other cases
• E-mail search
• Searching your laptop
• Corporate knowledge bases
• Legal information retrieval

Unstructured (text) vs structured (DB) data

• Mid ‘90s

0

50

100

150

200

250

Data volume Market Cap

Unstructured
Structured

Unstructured (text) vs. structured (DB) data

• Today

0

50

100

150

200

250

Data volume Market Cap

Unstructured
Structured

Basic assumptions of Information Retrieval

• Collection: A set of documents
• Assume it is a static collection for the moment

• Goal: Retrieve documents with information that is relevant to the
user’s information need and helps the user complete a task

The classic search model
User task

Info need

Query

Search engine

Query
refinement Results Collection

Get r id of mice in a

Polit ical ly correct way

Info about removing mice

Without k i l l ing them

how trap mice alive Search

How good are the retrieved docs?

• Precision
• Fraction of retrieved docs that are relevant to the user’s information need

• Recall
• Fraction of relevant docs in the collection that are retrieved

Boolean retrieval model

• Which plays of Shakespeare contain the words Brutus AND Caesar but
NOT Calpurnia?

• One could grep all of Shakespeare’s plays for Brutus and Caesar, then
strip out lines containing Calpurnia?

• Why is that not the answer?
• Slow (for large corpora)
• NOT Calpurnia is non-trivial
• Other operations (e.g., find the word Romans near countrymen) not feasible
• Ranked retrieval (best documents to return)

• Next lecture

Term-document incidence matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if play contains word, 0 otherwise

Brutus AND Caesar BUT NOT Calpurnia

Incidence vectors

• We have a 0/1 vector for each term

• To answer query
• take the vectors for Brutus, Caesar and Calpurnia (complemented) -> bitwise AND

• 110100 AND

• 110111 AND
• 101111 =

• 100100

Sec. 1.1

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Answers to query

• Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,

He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

• Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i’ the

Capitol; Brutus killed me.

Sec. 1.1

Bigger collections (corpora)

• Consider N = 1 million documents
• each with about 1000 words

• Avg 6 bytes/word including spaces/punctuation
• 6GB of data in the documents

• Say there are M = 500K distinct terms among these

Sec. 1.1

Can’t build the matrix

• 500K x 1M matrix has half-a-trillion 0’s and 1’s

• But it has no more than one billion 1’s.
• matrix is extremely sparse

• What’s a better representation?
• We only record the 1s’ positions

Why?

Sec. 1.1

Inverted index

• The key data structure underlying modern IR
• For each term t, we must store a list of all documents that contain t
• Identify each doc by a docID, a document serial number

• Can we use fixed-size arrays for this?

What happens if the word Caesar is added to document 14?

Sec. 1.2Introduc)on*to*Informa)on*Retrieval* !! !!

Inverted!index!
!  For!each!term!t,!we!must!store!a!list!of!all!documents!
that!contain!t.!
!  Iden*fy!each!doc!by!a!docID,!a!document!serial!number!

!  Can!we!used!fixedGsize!arrays!for!this?!

18!

What!happens!if!the!word!Caesar!
is!added!to!document!14?!!

Sec. 1.2

Brutus1

Calpurnia1

Caesar1 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

Inverted index

• We need variable-size postings lists
• On disk, a continuous run of postings is normal, and best
• In memory, can use linked lists or variable-length arrays

• Some tradeoffs in size/ease of insertion

Sec. 1.2
Introduc)on*to*Informa)on*Retrieval* !! !!

Inverted!index!
!  We!need!variableGsize!pos*ngs!lists!

!  On!disk,!a!con*nuous!run!of!pos*ngs!is!normal!and!best!
!  In!memory,!can!use!linked!lists!or!variable!length!arrays!

!  Some!tradeoffs!in!size/ease!of!inser*on!

19!

Dictionary Postings
Sorted by docID (more later on why).

Pos)ng*

Sec. 1.2

Brutus1

Calpurnia1

Caesar1 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

Dictionary Postings
(sorted by docID)

Posting

Inverted index construction
Sec. 1.2Introduc)on*to*Informa)on*Retrieval* !! !!

Tokenizer

Token stream Friends Romans Countrymen

Inverted!index!construc*on!

Linguistic
modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend1

roman1

countryman1

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, countrymen.

Sec. 1.2

Recall: Initial stages of text processing

• Tokenization
• Cut character sequence into word tokens

• Deal with “John’s”, a state-of-the-art solution

• Normalization
• Map text and query term to same form

• You want U.S.A. and USA to match

• Stemming
• We may wish different forms of a root to match

• authorize, authorization

• Stop words
• We may omit very common words (or not)

• the, a, to, of

Indexer steps: Token sequence

• A sequence of (Modified token, Document ID) pairs

I did enact Julius
Caesar I was killed

i’ the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2

Indexer steps: Sort

• Sort by terms
• And then docID

Sec. 1.2

Indexer steps: Dictionary & Postings

• Multiple term entries in a
single document are merged

• Split into Dictionary and
Postings

• Doc. frequency information is
added

Sec. 1.2

Where do we pay in storage?

• IR system implementation
• How do we index efficiently?
• How much storage do we need?

Pointers

Terms
and

counts

Sec. 1.2

Lists of
docIDs

Query processing: AND

• Consider processing the query:
• Brutus AND Caesar

1. Locate Brutus in the dictionary
2. Retrieve its postings
3. Locate Caesar in the dictionary
4. Retrieve its postings
5. “Merge” the two postings (intersect the document sets):

Sec. 1.3
Introduc)on*to*Informa)on*Retrieval* !! !!

Query!processing:!AND!
!  Consider!processing!the!query:!

Brutus!AND!Caesar!
!  Locate!Brutus!in!the!Dic*onary;!

!  Retrieve!its!pos*ngs.!
!  Locate!Caesar!in!the!Dic*onary;!

!  Retrieve!its!pos*ngs.!
!  “Merge”!the!two!pos*ngs!(intersect!the!document!sets):!

30!

����
���

�� �� �� ��� ��� ���
�� �� �� �� �� ��� ���

��	�	��
�������

Sec. 1.3

…

The merge

• Walk through the two postings simultaneously, in time linear in the total
number of postings entries

• If the list lengths are x and y, the merge takes O(x+y) operations
• It’s crucial posting sorted by docID

!"

#$%$ " % #& !$ &"
$! ' % #! $#

()*+*,
-./,.)

Sec. 1.3

$ %

Intersecting two postings lists

Boolean queries: Exact match

• The Boolean retrieval model is being able to ask a query that is a Boolean
expression:

• Boolean Queries are queries using AND, OR and NOT to join query terms
• Views each document as a set of words
• Is precise: document matches condition or not

• Perhaps the simplest model to build an IR system on

• Primary commercial retrieval tool for three decades

• Many search systems you still use are Boolean:
• Email, library catalog, Mac OS X Spotlight

Sec. 1.3

Merging

• What about an arbitrary Boolean formula?
• (Brutus OR Caesar) AND NOT (Antony OR Cleopatra)

• Can we always merge in “linear” time?
• Linear in what?

• Can we do better?

Sec. 1.3

Query optimization

• What is the best order for query processing?
• Consider a query that is an AND of n terms
• For each of the n terms, get its postings, then AND them together

Brutus

Caesar
Calpurnia

Query: Brutus AND Calpurnia AND Caesar
!"

Sec. 1.3

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

Query optimization example

• Process in order of increasing freq:
• start with smallest set, then keep cutting further

This is why we kept
document freq. in dictionary

Execute the query as (Calpurnia AND Brutus) AND Caesar

Sec. 1.3

Brutus

Caesar
Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

More general optimization

• e.g., (madding OR crowd) AND (ignoble OR strife)

• Get doc. freq.’s for all terms

• Estimate the size of each OR by the sum of its doc. freq.’s (conservative)

• Process in increasing order of OR sizes

Sec. 1.3

Phrase queries

• We want to be able to answer queries such as “parthenope university” as a
phrase

• Thus, the sentence “I went to university at Parthenope” is not a match
• The concept of phrase queries has proven easily understood by users; one of the

few “advanced search” ideas that work
• Many more queries are implicit phrase queries

• For this, it no longer suffices to store only <term : docs> entries

Sec. 2.4

A first attempt: Biword indexes

• Index every consecutive pair of terms in the text as a phrase

• For example, the text “Friends, Romans, Countrymen” would generate the
biwords

• friends romans
• romans countrymen

• Each of these biwords is now a dictionary term

• Two-words phrase query-processing is now immediate

Sec. 2.4.1

Longer phrase queries

• Longer phrases can be processed by breaking them down
• parthenope university centro direzionale can be broken into the Boolean query

on biwords:

parthenope university AND university centro AND centro direzionale

• Without the docs, we cannot verify that the docs matching the above
Boolean query do contain the four-words phrase

Can have false positives!

Sec. 2.4.1

Issues for Biword indexes

• False positives, as noted before

• Index blowup due to bigger dictionary
• Infeasible for more than biwords, big even for them

• Biword indexes are not the standard solution (for all biwords) but can
be part of a compound strategy

Sec. 2.4.1

Solution 2: Positional indexes

• In the postings, store, for each term the position(s) in which tokens of it
appear:

<term, number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

Sec. 2.4.2

Positional index example

• For phrase queries, we use a merge algorithm recursively at the document
level

• But we now need to deal with more than just equality

<to: 993427;
1,6: 7, 18, 33, 72, 86, 231;
2,2: 3, 149;
4,5: 17, 191, 291, 430, 434;
5,2: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Sec. 2.4.2

Processing a phrase query

• Extract inverted index entries for each distinct term: to, be, or, not

• Merge their doc:position lists to enumerate all positions with “to be or not to
be”

• We look for

1. Documents that contain both terms

2. Occurrence of be with a token index higher than a position of to

3. Another occurrence for each word with token index 4 higher than the first
occurrence

• to: 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

• be: 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

Sec. 2.4.2

Positional index size

• A positional index expands postings storage substantially
• Even though indices can be compressed

• Nevertheless, a positional index is now standardly used because of the
power and usefulness of phrase and proximity queries
• … whether used explicitly or implicitly in a ranking retrieval system

Sec. 2.4.2

Positional index size

• Need an entry for each occurrence, not just once per document

• Index size depends on average document size
• Average web page has <1000 terms
• Books, even some epic poems … easily 100,000 terms

• Consider a term with frequency 0.001%

1001100,000

111000

Positional postingsPostingsDocument size

Sec. 2.4.2

Rules of thumb

• A positional index is 2–4 as large as a non-positional index

• Positional index size 35–50% of volume of original text

• Caveat: all of this holds for “English-like” languages

Sec. 2.4.2

Combination schemes

• These two approaches can be profitably combined
• For common queries (“Michael Jackson”, “Britney Spears”) it is inefficient

to keep on merging positional postings lists
• Even more so for phrases like “The Who”

• Individual words common but the desired phrase is comparatively rare
• Candidates for a phrase index

• Williams et al. (2004) evaluate a more sophisticated mixed indexing scheme
• A typical web query mixture was executed in ¼ of the time of using just a

positional index
• It required 26% more space than having a positional index alone

Sec. 2.4.3

IR vs. databases: Structured vs unstructured data

• Structured data tends to refer to information in “tables”

• Typically allows numerical range and exact match (for text) queries, e.g.,
• Salary < 60000 AND Manager = Smith

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Unstructured data

• Typically refers to free text

• Allows
• Keyword queries including operators
• More sophisticated “concept” queries e.g.,

• find all web pages dealing with drug abuse

• Classic model for searching text documents

Semi-structured data

• In fact almost no data is “unstructured”

• E.g., this slide has distinctly identified zones such as the Title and Bullets
• … to say nothing of linguistic structure

• Facilitates “semi-structured” search such as
• Title contains data AND Bullets contain search

• Or even
• Title is about Object Oriented Programming AND Author something like

stro*rup
• where * is the wild-card operator

