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Distributional Hypothesis

• The role of context is important in the similarity of words
• Words that occur in similar contexts tend to have similar meanings

• Distributional hypothesis
• The link between similarity in how words are distributed and similarity in 

what they mean
• Observation: words that are synonyms tend to occur in the same environment, with 

the amount of meaning difference between words “corresponding roughly to the 
amount of difference in their environment”



Word Similarity

• Words with similar meanings.  Not synonyms, but sharing some 
element of meaning

• car, bicycle

• cow, horse



Motivation behind vector space models

• Suppose having two questions
• Identical words except for the last ones
• Different meaning

• Consider two more questions
• Completely different words
• Same meaning

Why learn vector space models?

What is your age?

How old are you?

Where are you   heading?

Where are you   from?

Different meaning Same Meaning

Why learn vector space models?

What is your age?

How old are you?

Where are you   heading?

Where are you   from?

Different meaning Same Meaning

• Vector space models may help to
• identify whether the first or second pair of 

questions are similar in meaning even if they do 
not share the same words

• identify similarity for a question answering, and 
summarization

• Allow capturing dependencies between words



Vector space models applications

• You eat cereal from a bowl
• words cereal and bowl are related

• You buy something and someone else sells it
• The second half of the sentence is dependent on the first half

• Vectors-based models capture these and many other types of relationships 
among different sets of words

Vector space models applications

Machine Translation

• You eat cereal from a bowl

• You buy something and someone else sells it

Information Extraction Chatbots



Fundamental concept

• “You shall know a word by the company it keeps” (J.R. Firth, 1957)

• Vector space models 
• Represent words and documents as vectors
• Representation that captures relative meaning

• by identifying the context around each word in the text  -> this captures the relative meaning!

Fundamental concept
ľYo� shaѴѴ kno� a �ord b� |he compan� i| keepsĿ 

Firth, 1957 

(Firth, J. R. 1957:11)
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What does ongchoi mean?

• Suppose you see these sentences:

• Ongchoi is delicious sautéed with garlic

• Ongchoi is superb over rice

• Ongchoi leaves with salty sauces

• And you've also seen these:

• …spinach sautéed with garlic over rice

• Chard stems and leaves are delicious

• Collard greens and other salty leafy greens

• Conclusion:
• Ongchoi is a leafy green like spinach, chard, or collard greens

• We could conclude this based on words like "leaves" and "delicious" and "sauteed" 



Word by Doc and Word by Word
Vector Space Models



Co-occurrence matrix

• Vector or distributional models of meaning are generally based on a co-occurrence 
matrix

• Vectors can be constructed from the co-occurrence matrix
• A way of representing how often words co-occur
• Co-occurrence -> Vector representation

• Depending on the task at hand, several possible designs exist

• Let’s start with a word-by-document design
• Each row represents a word in the vocabulary and each column represents a document from some 

collection



Word by Document Design

• Number of times a word occurs within a certain category

• For instance, entertainment category vector is v = [500,7000]
• Categories can also be compared by doing a simple plot  

Word by Document Design
Number of times a word occurs within a certain category

Entertainment 

data

Entertainment Economy
Machine 
Learning

Economy Machine 
Learning 

500 6620 9320

Corpus

film 7000 4000 1000



Word-document matrix

• Each document is represented as a vector of words
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As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are



Vectors are the basis of information retrieval

• Vectors are similar for two comedies
• But comedies are different than the other two

• Comedies have more fools and wit and fewer battles
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Word meaning: Words can be vectors too!

• Battle is ”the kind of word that occurs in Julius Caesar and Henry V”

• Fool is “the kind of word that occurs in comedies, especially Twelfth Night”
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similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
Like It [1,114,36,20] and Twelfth Night [0,80,58,15] look a lot more like each other
(more fools and wit than battles) than they look like Julius Caesar [7,62,1,2] or
Henry V [13,89,4,3]. This is clear with the raw numbers; in the first dimension
(battle) the comedies have low numbers and the others have high numbers, and we
can see it visually in Fig. 6.4; we’ll see very shortly how to quantify this intuition
more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally in the tens of thousands, and the
number of documents can be enormous (think about all the pages on the web).

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors: document dimensions
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words. We do this
by associating each word with a word vector— a row vector rather than a columnrow vector
vector, hence with different dimensions, as shown in Fig. 6.5. The four dimensions
of the vector for fool, [36,58,1,4], correspond to the four Shakespeare plays. Word
counts in the same four dimensions are used to form the vectors for the other 3
words: wit, [20,15,2,3]; battle, [1,0,7,13]; and good [114,80,62,89].

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.5 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each word is represented as a row vector of length four.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

6.3.3 Words as vectors: word dimensions
An alternative to using the term-document matrix to represent words as vectors of
document counts, is to use the term-term matrix, also called the word-word ma-
trix or the term-context matrix, in which the columns are labeled by words ratherword-word

matrix
than documents. This matrix is thus of dimensionality |V |⇥ |V | and each cell records



Word-by-Word Design

• The co-occurrence of two different words is the number of times that they 
appear in a corpus together within a given word distance k (context)

• Assume that you are trying to construct a vector that will represent a certain 
word

• Create a matrix where each row and column corresponds to a word in the 
vocabulary

• Keep track of number of times they occur together within a certain distance k
Word by Word Design

Number of times they occur together within a certain distance k

I like simple data 

I prefer simple raw data 
data

simple

k=2

2

n

raw like I 

1 1 0



Word-Word matrix
• Two words are similar in meaning if their context vectors are similar
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Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words, by associating
each word with a vector.

The word vector is now a row vector rather than a column vector, and hence therow vector
dimensions of the vector are different. The four dimensions of the vector for fool,
[36,58,1,4], correspond to the four Shakespeare plays. The same four dimensions
are used to form the vectors for the other 3 words: wit, [20,15,2,3]; battle, [1,0,7,13];
and good [114,80,62,89]. Each entry in the vector thus represents the counts of the
word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-word-word

matrix
context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |⇥ |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word. For example here is one
example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the con-
text words around it, we get a word-word co-occurrence matrix. Fig. 6.5 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

Note in Fig. 6.5 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.6 shows a spatial visualization.
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aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25 ...

strawberry 0 ... 0 0 1 60 19 ...
digital 0 ... 1670 1683 85 5 4 ...

information 0 ... 3325 3982 378 5 13 ...
Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Note in Fig. 6.6 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.7 shows a spatial visualization.
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Figure 6.7 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary, of-
ten between 10,000 and 50,000 words (using the most frequent words in the training
corpus; keeping words after about the most frequent 50,000 or so is generally not
helpful). Since most of these numbers are zero these are sparse vector representa-
tions; there are efficient algorithms for storing and computing with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss methods for weighting cells.
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.



Vector Space

• A representation of the words data and film is taken from the rows of 
the table

• Alternatively, the representation for every category of documents could 
be taken from the columns
• 2D vector space Vector Space

Measures of “similarity:”
Angle

Distance

ML

Economy

Entertainment

data

film

1000 5000 10000

1000

5000

10000

data

Entertainment Economy ML
6620 9320

film 4000 1000

500

7000



Comparing vectors: Euclidean distance

• Corpus A: Entertainment and Corpus B: Machine-Learning

Euclidean distance

Corpus B: (9320,1000)

Corpus A: (500,7000)

ML

Entertainment

data

film

1000 5000 10000

1000

5000

10000
Euclidean distance

Corpus B: (9320,1000)

Corpus A: (500,7000)

data

film

1000 5000 10000

1000

5000

10000

ML

Entertainment



Euclidean distance for n-dimensional vectors

• Example:
• Euclidean distance between the vector v of the word ice cream and the 

vector representation w of the word the bobaEuclidean distance for n-dimensional vectors

data boba ice-cream
AI 6 0 1

drinks 0 4 6
food 0 6 8

Norm of  (    -
) 

Euclidean distance for n-dimensional vectors

data boba ice-cream
AI 6 0 1

drinks 0 4 6
food 0 6 8

Norm of  (    -
) 



Comparing vectors: Cosine similarity

• Euclidean distance is not always accurate 
• For instance, when comparing large documents to smaller ones

• Cosine similarity when corpora are of different sizes

cos 𝛽 =
&𝑣 ( )𝑤
&𝑣 )𝑤



Cosine Similarity

Cosine Similarity
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Raw Frequency is not the best representation

• The co-occurrence matrices we have seen represent each cell by 
word frequencies

• Frequency is useful
• If sugar appears a lot near apricot, that’s useful information

• But overly frequent words like the, it, or they are not very 
informative about the context

• It’s a paradox: How can we balance these two conflicting 
constraints?



Two common solutions for word weighting

• tf-idf
• tf-idf value for word t in document d:
• Words like the or it have very low idf

• PMI (Pointwise mutual information):
• PMI 𝒘𝟏, 𝒘𝟐 = 𝒍𝒐𝒈 𝒑(𝒘𝟏,𝒘𝟐)

𝒑 𝒘𝟏 𝒑(𝒘𝟐)
• See if words like good appear more often with great than we would 

expect by chance
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Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf
The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf
term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).



Term frequency

• tft,d = count(t,d)

• Instead of using raw count, we squash a bit:

• tft,d = log10(count(t,d)+1) 



Document frequency

• dft is the number of documents t occurs in.
• (note this is not collection frequency: total count across all 

documents)
• "Romeo" is very distinctive for one Shakespeare play:
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that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf algorithm, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:2

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf
tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

2 Or we can use this alternative: tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise



Inverse Document Frequency (IDF)

• N is the total number of documents in 
the collection
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Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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What is a document?

• Could be a play or a Wikipedia article
• For the purpose of the tf-idf, documents can be anything

• We often call each paragraph a document



Final tf-idf weighted value for a word

• Raw counts

• Tf-idf
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As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
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eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.
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3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
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Pointwise Mutual Information

• Pointwise mutual information
• Do events x and y co-occur more than if they were independent?

• PMI between two words:  (Church & Hanks 1989)
• Do words x and y co-occur more than if they were independent? 

PMI 𝑤𝑜𝑟𝑑', 𝑤𝑜𝑟𝑑( = log(
𝑃(𝑤𝑜𝑟𝑑', 𝑤𝑜𝑟𝑑()
𝑃 𝑤𝑜𝑟𝑑' 𝑃(𝑤𝑜𝑟𝑑()

PMI(X,Y ) = log2
P(x,y)
P(x)P(y)



Positive Pointwise Mutual Information

• PMI ranges from −∞ to +∞
• But the negative values are problematic
• Things are co-occurring less than we expect by chance
• Unreliable without enormous corpora
• Imagine w1 and w2 whose probability is each 10-6

• Hard to be sure p(w1,w2) is significantly different than 10-12

• So we just replace negative PMI values by 0
• Positive PMI (PPMI) between word1 and word2:

PPMI 𝑤𝑜𝑟𝑑(, 𝑤𝑜𝑟𝑑) = max log)
𝑃(𝑤𝑜𝑟𝑑(, 𝑤𝑜𝑟𝑑))
𝑃 𝑤𝑜𝑟𝑑( 𝑃(𝑤𝑜𝑟𝑑))

, 0



Computing PPMI on a word-word matrix

• Matrix F with W rows (words) and C columns (contexts) fij is # of 
times wi occurs in context cj
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context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

pij =
fij

fij
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i=1

W

∑
pi* =

fij
j=1

C

∑

fij
j=1

C

∑
i=1

W

∑
p* j =

fij
i=1

W

∑

fij
j=1

C

∑
i=1

W

∑

pmiij = log2
pij

pi*p* j
ppmiij =

pmiij if  pmiij > 0

0 otherwise
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Computing PPMI on a word-document matrix

•p(w=information,c=data) = 

•p(w=information) =

•p(c=data) =

= .33993982/111716

7703/11716 = .6575

5673/11716 = .4842

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi ) =
fij

j=1

C

∑

N
p(cj ) =

fij
i=1
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∑

N
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Computing PPMI on a word-document matrix

pmiij = log2
pij

pi*p* j

• PMI(information,data) = log2 ( .3399 / (.6575*.4842) ) = .0944
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Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
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computer data result pie sugar
cherry 0 0 0 4.38 3.30

strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0

information 0.02 0.09 0.28 0 0
Figure 6.12 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 6.11. Note that most of the 0 PPMI values are ones that had
a negative PMI; for example PMI(cherry,computer) = -6.7, meaning that cherry and computer
co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace
negative values by zero.

events is to slightly change the computation for P(c), using a different function Pa(c)
that raises the probability of the context word to the power of a:

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (6.21)

Pa(c) =
count(c)a

P
c count(c)a (6.22)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams described below in Eq. 6.32). This works because raising the count to a =
0.75 increases the probability assigned to rare contexts, and hence lowers their PMI
(Pa(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

6.7 Applications of the tf-idf or PPMI vector models

In summary, the vector semantics model we’ve described so far represents a target
word as a vector with dimensions corresponding either to to the documents in a large
collection (the term-document matrix) or to the counts of words in some neighboring
window (the term-term matrix). The values in each dimension are counts, weighted
by tf-idf (for term-document matrices) or PPMI (for term-term matrices), and the
vectors are sparse (since most values are zero).

The model computes the similarity between two words x and y by taking the
cosine of their tf-idf or PPMI vectors; high cosine, high similarity. This entire model
is sometimes referred to as the tf-idf model or the PPMI model, after the weighting
function.

The tf-idf model of meaning is often used for document functions like deciding
if two documents are similar. We represent a document by taking the vectors of
all the words in the document, and computing the centroid of all those vectors.centroid
The centroid is the multidimensional version of the mean; the centroid of a set of
vectors is a single vector that has the minimum sum of squared distances to each of
the vectors in the set. Given k word vectors w1,w2, ...,wk, the centroid document
vector d is:document

vector

d =
w1 +w2 + ...+wk

k
(6.23)

Resulting PPMI matrix (negatives replaced by 0) 



Weighting PMI

• PMI is biased toward infrequent events
• Very rare words have very high PMI values

• Two solutions:
• Give rare words slightly higher probabilities
• Use add-one smoothing (which has a similar effect)



PPMI: Rare context words given a higher probability

• Raise the context probabilities to 𝛼 = 0.75:

• This helps because 𝑃! 𝑐 > 𝑃 𝑐 for rare c
• Consider two events, P(a) = .99 and P(b)=.01

𝑃! 𝑎 = .##."#

.##."#$.%&."# = .97 𝑃! 𝑏 = .%&."#

.%&."#$.%&."# = .03
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p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.3 Replacing the counts in Fig. 17.2 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.4 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 17.2 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (19.8)

Pa(c) =
count(c)a

P
c count(c)a (19.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.5 Laplace (add-2) smoothing of the counts in Fig. 17.2.

19.2.1 Measuring similarity: the cosine
To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.



Manipulating Words in Vector Spaces



Manipulating word vectors

• Suppose we have a vector space with countries and their capital cities
• We know that Washington is the capital of the USA
• We don’t know the capital of Russia
• Goal: infer the capital of Russia by the known relationshipManipulating word vectors

USA Washington 
DC

Russia



Manipulating word vectors

• Word vectors can be used to extract patterns and identify certain 
structures in our text

• Example
• One can use the word vector for Russia, USA, and Washington DC to 

compute a vector that would be very similar to Moscow
• Then use the cosine similarity of the vector with all the other word vectors 

and find that the vector of Moscow is the closest



Manipulating word vectors

USA (5,6)

Russia (5,5)

Japan (4,3)

Turkey (3,1)

Washington (10,5)

Moscow (9,3)

Tokyo (8.5,2)

Ankara (8.5,0.9)

(10,4)

Washington – USA = [5 -1]

Russia + [5 -1] = [10 4]

Manipulating word vectors

[Mikolov et al, 2013, Distributed Representations of Words and Phrases and their Compositionality]

Washington  (10,5)

Moscow (9,3)

Tokyo(8.5, 
2)
Ankara(8.5, 0.9) 

Turkey (3,1)

USA (5,6)

Russia (5,5)

Japan (4,3)
(10,4)

Washington - USA = 

Russia +                    =

Moscow

2D vector space with different representations 
for different countries and capitals cities



Visualization of word vectors

Visualization of word vectors

How can you visualize if your representation 
captures these relationships? 

oil & gas

town & city

oil 0.20 … 0.10
gas 2.10 … 3.40
city 9.30 … 52.1

town 6.20 … 34.3

d > 2

• With vectors of very high dimensions PCA (or other dimensionality 
reduction techniques) can be used to plot vectors in 2D or 3D spaces



Visualization of word vectors

Visualization of word vectors

oil 0.20 … 0.10
gas 2.10 … 3.40
city 9.30 … 52.1

town 6.20 … 34.3

oil 2.30 21.2
gas 1.56 19.3
city 13.4 34.1

town 15.6 29.8

d = 2d > 2

PCA

Visualization of word vectors

oil 0.20 … 0.10
gas 2.10 … 3.40
city 9.30 … 52.1

town 6.20 … 34.3

oil 2.30 21.2
gas 1.56 19.3
city 13.4 34.1

town 15.6 29.8

d = 2d > 2

PCA
PC

A
village

town
city

countrygas
oil

petroleum
happy

joyfulsad

Visualization of word vectors

• Relationship between the words oil and gas and city
and town

• In 2D space they appear to be clustered with related 
words
• You can even find other relationships among your words that 

you didn't expect



Principal Component Analysis

• An unsupervised, deterministic algorithm used for feature 
extraction as well as visualization

• Applies a linear dimensionality reduction technique where 
the focus is on keeping the dissimilar points far apart in a lower-
dimensional space

• Transforms the original data to new data by preserving the 
variance in the data using eigenvalues



Principal component analysis (PCA)

• Here is how PCA proceeds



Principal Component Analysis

• Finds a new coordinate system such that 
few new axes captures the greatest variance

• Define lower-dimensional space for data
• Note

• Original dimensions have a natural 
interpretation
• E.g., Income, age, occupation, etc

• New dimensions more difficult to 
interpret!

• In general, there are as many principal 
components as original features



Principal Component Analysis

Principal Component Analysis
Uncorrelated 

Features

Dimensionality 
Reduction



PCA Algorithm
• Eigenvector

• Uncorrelated features of your data

• Eigenvalue
• The amount of information retained by each feature

PCA algorithm

Eigenvectors Eigenvalues

Mean Normalize 
Data

Get Covariance 
Matrix

Perform SVD 

PCA algorithm

Eigenvectors Eigenvalues

Mean Normalize 
Data

Get Covariance 
Matrix

Perform SVD 



PCA Algorithm
PCA algorithm

Eigenvectors Eigenvalues

Dot Product to 
Project Data

Percentage of 
Retained Variance



PCA Summary

• Eigenvectors give the direction of uncorrelated features

• Eigenvalues are the variance of the new features

• Dot product gives the projection on uncorrelated features



Assignment n. 2

• Prepare Jupiter notebooks for explaining Sentiment Analysis with 
Naïve Bayes and Logistic regression
• Also, consider any preprocessing step

• It would be possible to use any python library for NLP e for 
Machine Learning, Data Analysis, and numerical computation (e.g., 
scikit-learn, Pandas, and NumPy)


