

Natural Language Processing

Text Classification: Sentiment Analysis

LESSON 9

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

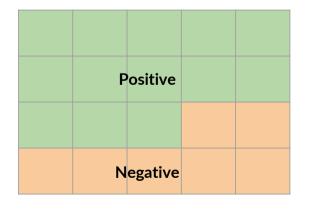
Sentiment Analysis

A probabilistic formulation: Towards Naïve Bayes

A probabilistic formulation of Sentiment Analysis

- Now, we turn to a probabilistic formulation of Sentiment Analysis
 - Based on Bayes' rule
- Suppose an extensive corpus of tweets that can be categorized as either positive or negative sentiment, but not both

Corpus of tweets



Tweets containing the word "happy"

Probabilities

- Define the event A as a tweet being labeled positive
 - the probability of event A is calculated as the ratio between the counts of positive tweets in the corpus divided by the total number of tweets in the corpus

Corpus of tweets

 $A \rightarrow Positive tweet$

$$P(A) = N_{pos} / N = 13 / 20 = 0.65$$

Let's define Event B in a similar way by counting tweets containing the word happy

Tweets containing the word



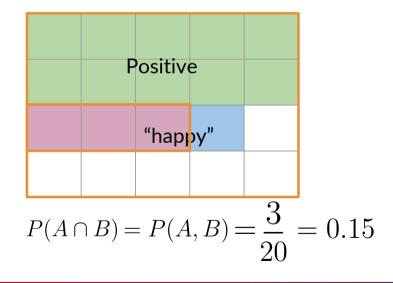
 $B \rightarrow tweet contains "happy"$

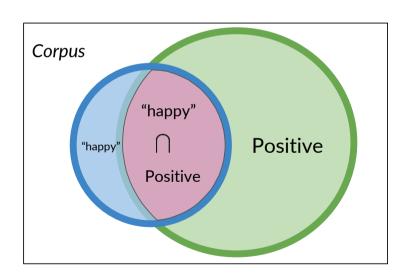
$$P(B) = P(happy) = N_{happy} / N$$

$$P(B) = 4 / 20 = 0.2$$

Probability of the intersection

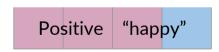
• The probability that a tweet is labeled positive and contains the word happy is the ratio of the area of the intersection divided by the area of the entire corpus





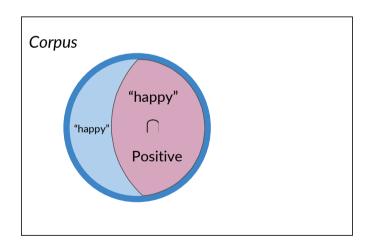
Conditional probabilities

- Consider only tweets that contain the word happy
- the probability that a tweet is positive, given that it contains the word happy, is
 - the number of tweets that are positive and also contain the word happy, divided by the number that contain the word happy



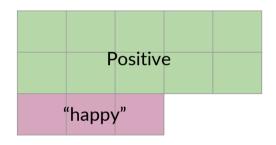
P(A | B) = P(Positive | "happy")

$$P(A \mid B) = 3 / 4 = 0.75$$

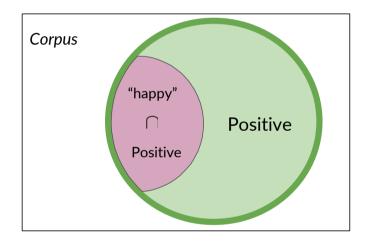


Conditional probabilities

• The same case for positive tweets

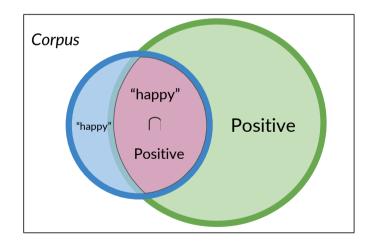


$$P(B \mid A) = 3 / 13 = 0.231$$



Conditional probabilities

- Conditional probabilities help reduce the sample search space
- For example, given a specific event already happened, i.e., we know the word
 is happy, one would only search in the blue circle below



$$P(\text{Positive}|\text{"happy"}) =$$

$$\frac{P(\text{Positive} \cap \text{"happy"})}{P(\text{"happy"})}$$

Bayes' Rule

$$P(Positive | "happy") = \frac{P(Positive \cap "happy")}{P("happy")}$$

$$P("happy"|Positive) = \frac{P("happy" \cap Positive)}{P(Positive)}$$

$$P(Positive|"happy") = P("happy"|Positive) \times \frac{P(Positive)}{P("happy")}$$

• Let's recall the general Bayes rule

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

Naïve Bayes classifier

•
$$\hat{c}$$
=argmax $P(c|d)$ = argmax $\frac{P(d|c)P(c)}{P(d)}$ = argmax $\frac{P(d|c)P(c)}{C}$

- Generative model
 - Defines how a document is generated
 - Sample a class with probability P(c), then
 - Words generated by sampling from P(d|c)
- In general, we represent a document as a set of features
 - \hat{c} =argmax $P(f_1, f_2, ..., f_n | c) P(c)$

Naïve Bayes Assumptions

- Naïve Bayes makes the independence assumption between features associated with each class
- Example 1
 - "It is sunny and hot in the Sahara desert"
 - the words sunny and hot tend to depend on each other and are correlated to a certain extent with the word desert
- Example 2
 - "It's always cold and snowy in ____"
 - if you were to fill in the sentence above, the model will assign equal weight to the words spring, summer, fall, winter

spring?? summer? fall? winter??

Naïve Bayes Assumptions formally

- Naïve Bayes assumption
 - $P(f_1, f_2, ..., f_n | c) = P(f_1 | c) P(f_2 | c) ... P(f_n | c)$
- Naïve Bayes classifier
 - $C_{NB} = arg \max_{c \in C} P(c) \prod_{f} P(f|c)$
- To apply NB to text, word positions need to be considered
 - Positions <- all word positions in the test document
 - $C_{NB} = arg \max_{c \in C} P(c) \prod_{i \in positions} P(w_i|c)$

Learning the Bayes Model

- Maximum likelihood estimates
 - Simply use the frequencies in the data

$$\widehat{P}(c_j) = \frac{N_{c_j}}{N_{total}}$$

$$\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

 $\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum count(w, c_i)}$ fraction of times word w_i appears among all words in documents of class c_j

Naïve Bayes for Sentiment Analysis

 Determine the word counts for each occurrence of a word in the positive and negative corpora

Positive tweets

I am happy because I am learning NLP

I am happy

I am sad, I am not learning NLP

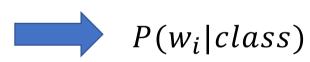
I am sad

word	Pos	Neg
I	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N_{class}	13	13

Naïve Bayes for Sentiment Analysis

Compute the conditional probabilities of each word given the class

word	Pos	Neg
I	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N_{class}	13	13



word	Pos	Neg
I	0.24	0.24
am	0.24	0.24
happy	0.15	0.08
because	0.08	0
learning	0.08	0.08
NLP	0.08	0.08
sad	0.08	0.15
not	0.08	0.15

Naïve Bayes

- Once obtained the probabilities, the likelihood score can be computed
 - A score greater than 1 indicates that the class is positive, otherwise negative
 - Let's suppose to have a new tweet:

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(wi|Pos)}{P(wi|Neg)} = \frac{0.15}{0.08} = 1.875 > 1$$

$$\frac{0.24}{0.24} \times \frac{0.24}{0.24} \times \frac{0.15}{0.08} \times \frac{0.24}{0.24} \times \frac{0.24}{0.24} \times \frac{0.08}{0.08}$$

Naïve Bayes condition rule for binary classification

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

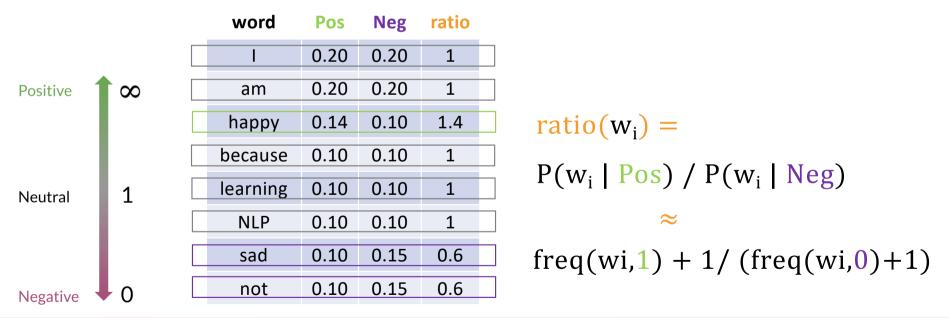
word	Pos	Neg	
I	0.24	0.24	
am	0.24	0.24	
happy	0.15	0.08	
because	0.08	0	
learning	0.08	0.08	
NLP	0.08	0.08	
sad	0.08	0.15	
not	0.08	0.15	

Laplacian Smoothing

- We usually compute the probability of a word given a class as follows
 - $P(w_i | class) = freq(w_i, class) / N_{class} class \in \{ Positive, Negative \}$
- However, if a word does not appear in the training, then it automatically gets a probability of 0. To fix this, we add smoothing as follows
 - $P(w_i|class) = freq(w_i, class) + 1/(N_{class} + V)$
- N_{class}: frequency of all words in class
- V: number of unique words in vocabulary

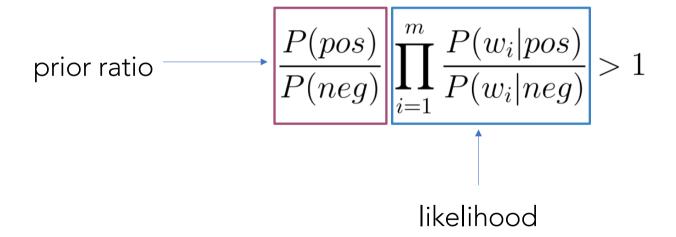
Ratio of probabilities

- · Words can have many shades of emotional meaning
- For sentiment classification, they're simplified into three categories: neutral, positive, and negative
- All can be identified by using their conditional probabilities



Naïve Bayes' inference

- Naïve Bayes formula for binary classification
 - Class ∈ { Positive, Negative }
 - w_i , i=1,...,m words in a tweet



Log Likelihood

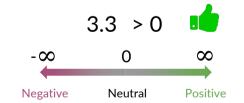
- Sentiments probability calculation requires multiplication of many numbers with values between 0 and 1
 - risk of numerical underflow (values to small)
- Trick: use a log of the score instead of the raw score

$$log(\frac{P(pos)}{P(neg)}\prod_{i=1}^{n}\frac{P(w_{i}|pos)}{P(w_{i}|neg)}) \implies log\frac{P(pos)}{P(neg)} + \sum_{i=1}^{n}log\frac{P(w_{i}|pos)}{P(w_{i}|neg)} \qquad \lambda(w) = log\frac{P(w|pos)}{P(w|neg)}$$

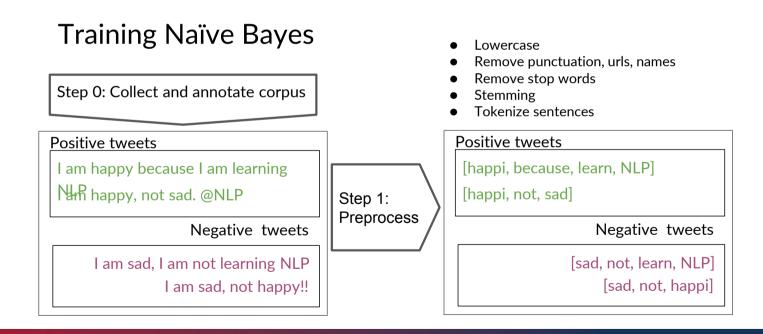
log prior + log likelihood

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$
lambda score

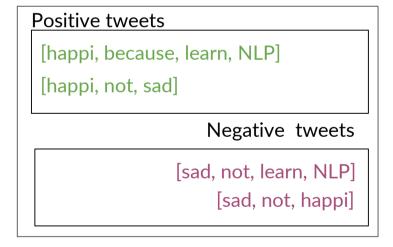
$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} > 1$$



- There is no gradient descent, just counting frequencies of words in the corpus
- Five steps for training a Naïve Bayes model



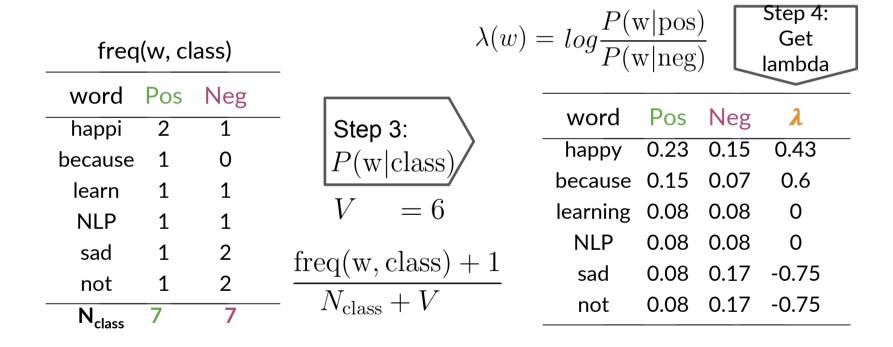
• Start by computing the vocabulary for each word in class



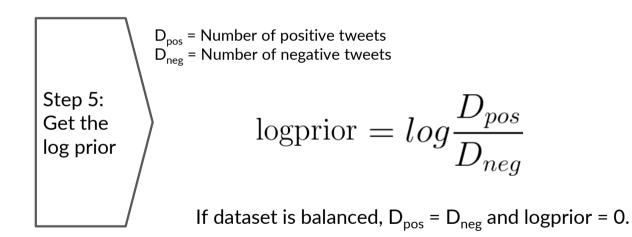
word	Pos	Neg
happi	2	1
because	1	0
learn	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	7	7

freq(w,class)

Get the conditional probability (w. Laplacian smoothing)



- Estimate the log prior
 - count the number of positive and negative tweets



Training Naïve Bayes: Recap

- 1. Get or annotate a dataset with positive and negative tweets
- 2. Preprocess the tweets $-> [w_1, w_2, w_3,...]$
- 3. Compute freq(w,class)
- 4. Get P(w|Pos) and P(w|Neg)
- 5. Get lambda(w)
- 6. Compute log prior = log(P(Pos)/P(Neg))

Unknown words

- What about unknown words
 - Appearing in test data
 - Not appearing in training data or vocabulary
- We ignore them
 - Removed from the test document
 - Pretend they weren't there
 - Don't include any probability for them at all
- Why don't we build an unknown word model?
 - It doesn't help
 - Knowing which class has more unknown words is not generally helpful

Stop words

- Some systems ignore stop words
 - Stop words
 - Very frequent words like the and a
 - Sort the vocabulary by word frequency in the training set
 - Call the top 10 or 50 words in the stop word list
 - Remove all stop words from both training and test sets
- But removing stop words doesn't usually help
 - In practice, most NB algorithms use all words and don't use stop word list

Testing Naïve Bayes

- Performance on unseen data $-> X_{val} Y_{val}$
- Predict using λ and log prior for each new tweet
- Accuracy

$$\frac{1}{m} \sum_{i=1}^{m} (pred_i == Yval_i)$$

- Words that not appear in $\lambda(m)$
 - treated as neutral words!

Evaluation

- Let's consider just binary text classification tasks
- Imagine you're the CEO of Delicious Pie Company
- You want to know what people are saying about your pies
- So you build a "Delicious Pie" tweet detector
 - Positive class: tweets about Delicious Pie Co
 - Negative class: all other tweets

The 2-by-2 confusion matrix

gold standard labels

gold positive gold negative

systemsystemoutputpositivelabelssystemnegative

gora positive	gord negative	
true positive	false positive	$\mathbf{precision} = \frac{tp}{tp+fp}$
false negative	true negative	
$recall = \frac{tp}{tp+fn}$		$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$

Evaluation: Accuracy

- Why don't we use accuracy as our metric?
- Imagine we saw 1 million tweets
 - 100 of them talked about Delicious Pie Co.
 - 999,900 talked about something else
- We could build a dumb classifier that just labels every tweet "not about pie"
 - It would get 99.99% accuracy!!! Wow!!!!
 - But useless! Doesn't return the comments we are looking for!
 - That's why we use precision and recall instead

Evaluation: Precision

 % of items the system detected (i.e., items the system labeled as positive) that are in fact positive (according to the human gold labels)

$$\frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$

Evaluation: Recall

 % of items actually present in the input that were correctly identified by the system

$$\mathbf{Recall} = \frac{\mathbf{true\ positives}}{\mathbf{true\ positives} + \mathbf{false\ negatives}}$$

Why Precision and recall

- Our dumb pie-classifier
 - Just label nothing as "about pie"
- Accuracy=99.99% but
 - Recall = 0
 - (it doesn't get any of the 100 Pie tweets)
- Precision and recall, unlike accuracy, emphasize true positives:
 - finding the things that we are supposed to be looking for

A combined measure: F

• F measure: a single number that combines P and R:

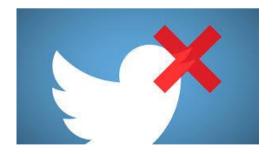
$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

• We almost always use balanced F_1 (i.e., $\beta = 1$)

$$F_1 = \frac{2PR}{P+R}$$

Naïve Bayes Assumptions

- Naïve Bayes is affected by the word frequencies in the corpus
- Example
 - On Twitter, there are usually more positive tweets than negative ones
 - However, some "clean" datasets you may find are artificially balanced to have to the same amount of positive and negative tweets
 - Just keep in mind, that in the real world, the data could be much noisier



- There are many applications of naive Bayes including:
 - Author identification
 - Spam filtering
 - Information retrieval
 - Word disambiguation
 - This method is usually used as a simple baseline, and it is also fast

Author identification:

$$\frac{P(\Box book)}{P(\Box book)}$$

Spam filtering:

$$\frac{P(\text{spam}|\text{email})}{P(\text{nonspam}|\text{email})}$$

Information retrieval:

$$P(\text{document}_k|\text{query}) \propto \prod_{i=0}^{|query|} P(\text{query}_i|\text{document}_k)$$

Retrieve document if $P(\text{document}_k|\text{query}) > \text{threshold}$

Word disambiguation:

$$\frac{P(\text{river}|\text{text})}{P(\text{money}|\text{text})}$$

Bank:

Error Analysis

Source of errors in Naïve Bayes

- There are several mistakes that could cause you to misclassify an example or a tweet
 - Removing punctuation and stop words

Tweet: This is not good, because your attitude is not even close to being nice.

processed_tweet: [good, attitude, close, nice]

Tweet: My beloved grandmother :(

processed_tweet: [belov, grandmoth]

Source of errors in Naïve Bayes

- There are several mistakes that could cause you to misclassify an example or a tweet
 - Word order

Tweet: I am happy because I do not go.

Tweet: I am not happy because I did go.

Source of errors in Naïve Bayes

- There are several mistakes that could cause you to misclassify an example or a tweet
 - Adversarial attacks
 - Sarcasm, Irony and Euphemisms

Tweet: This is a ridiculously powerful movie. The plot was gripping and I cried right through until the ending!

processed_tweet: [ridicul, power, movi, plot, grip, cry, end]

Harms in Sentiment Classifiers

- Kiritchenko and Mohammad (2018) found that most sentiment classifiers assign lower sentiment and more negative emotion to sentences with African American names in them
- This perpetuates negative stereotypes that associate African Americans with negative emotions

Harms in toxicity classification

- Toxicity detection is the task of detecting hate speech, abuse, harassment, or other kinds of toxic language
- But some toxicity classifiers incorrectly flag as being toxic sentences that are non-toxic but simply mention identities like blind people, women, or gay people
- This could lead to censorship of discussions about these groups

What causes these harms?

- Can be caused by:
 - Problems in the training data; machine learning systems are known to amplify the biases in their training data
 - Problems in the human labels
 - Problems in the resources used (like lexicons)
 - Problems in model architecture (like what the model is trained to optimize)
- Mitigation of these harms is an open research area
- Meanwhile: model cards

Model cards

- For each algorithm you release, document:
 - training algorithms and parameters
 - training data sources, motivation, and preprocessing
 - evaluation data sources, motivation, and preprocessing
 - intended use and users
 - model performance across different demographic or other groups and environmental situations
- (Mitchell et al., 2019)

In Summary: Naïve Bayes is not so Naïve

- Very Fast, low storage requirements
- Work well with very small amounts of training data
- Robust to Irrelevant Features
 Irrelevant Features cancel each other, without affecting the results
- Optimal if the independence assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for the problem
- A good dependable baseline for text classification
 - But we know that other classifiers give better accuracies