Natural Language Processing

Text Classification: Sentiment Analysis

LESSON 9

prof. Antonino Staiano

M.Sc. In “"Machine Learning e Big Data” - University Parthenope of Naples

Sentiment Analysis

A probabilistic formulation: Towards
Naive Bayes

A probabilistic formulation of Sentiment Analysis

* Now, we turn to a probabilistic formulation of Sentiment Analysis
* Based on Bayes' rule

* Suppose an extensive corpus of tweets that can be categorized as
either positive or negative sentiment, but not both

Corpus of tweets Tweets containing the word

«“ h a p py))
Positive Positive
« ha p py”
Negative Negative

Probabilities

* Define the event A as a tweet being labeled positive

* the probability of event A is calculated as the ratio between the counts of positive tweets in the corpus divided
by the total number of tweets in the corpus

Corpus of tweets

A — Positive tweet

Positive

P(A)=N,o, /N =13/20=0.65

Negative P(Negative) = 1 - P(POSitive) = 0.35
* Let's define Event B in a similar way by counting tweets containing the word happy

Tweets containing the word
((happy))

B — tweet contains “happy”

P(B) = P(happy) = N ,,p, / N

P(B)=4/20=0.2

Probability of the intersection

* The probability that a tweet is labeled positive and contains the word happy is
the ratio of the area of the intersection divided by the area of the entire
corpus

Positive
“happy”
“hapl)Y” ﬂ
Positive
P(Aﬂ B) = P(A7 B) = § = 0.15

Conditional probabilities

 Consider only tweets that contain the word happy

* the probability that a tweet is positive, given that it contains the word happy,
IS

* the number of tweets that are positive and also contain the word happy, divided by the
number that contain the word happy

Corpus

((happy"
M

Positive

Po%itive

«“« ha p})y”

P(A | B) = P(Positive | “happy”)

P(A|B)=3/4=0.75

Conditional probabilities

* The same case for positive tweets

Corpus

Positive

M

(lha ppy"

» m

Positive

T~

‘happy

P(B | A) = P(“happy”| Positive)

P(B|A)=3/13=0.231

Conditional probabilities

 Conditional probabilities help reduce the sample search space

 For example, given a specific event already happened, i.e., we know the word
is happy, one would only search in the blue circle below

P(Positive| “happy”) =

((happyl)

N P(Positive N “happy”)
P((Chappy77)

Positive

Bayes’ Rule

P(Positive N "happy")
P("happy")

P(Positive|"happy") =

P("happy" N Positive)

P("happy"|Positive) =

P(Positive)
P(P t |"h n) P("h an t)XP(POSlter)
ositivel|"ha = a ositive 5 _
i o P("happy")

* Let’s recall the general Bayes rule
p(xlyy = PYIOPCO
P
Cwmmevere

Naive Bayes classifier

P(d|c)P(c)

Py arsmax P(d|c)P(c)

ceC

* ¢=argmax P(c|d) = argmax
g g
ceC ceC

 Generative model

* Defines how a document is generated
« Sample a class with probability P(c), then
* Words generated by sampling from P(d|c)

* In general, we represent a document as a set of features
» ¢=argmax P(f1, fo ..., fnlc)P(C)

ceC

Naive Bayes Assumptions

* Nalve Bayes makes the independence
assumption between features associated with
each class

* Example1
* "“Itis sunny and hot in the Sahara desert”

* the words sunny and hot tend to depend on each
other and are correlated to a certain extent with the

word desert

* Example 2

* "It's always cold and snowy in ___

1

* if you were to fill in the sentence above, the model will
assign equal weight to the words spring, summer, fall,

winter

spring?? summer? fall?? winter??

Naive Bayes Assumptions formally

* Nalve Bayes assumption
* P(f1, [z -, fule) = P(f1lc)P(f2lc)... P(falc)
* Naive Bayes classifier
* Cyp=arg ncleacxp(c) [1s P(flc)
* To apply NB to text, word positions need to be considered

* Positions <- all word positions in the test document

« Cyg = arg max P(¢) Iiepositions PWilc)

Learning the Bayes Model

* Maximum likelihood estimates
* Simply use the frequencies in the data

p(C) = ch
! Ntotal
f)(w c.) = count(w;,c ;) fraction of times word w; appears
i1¢;)= . |
E COLtnt(w,cj) among all words in documents of class c;
wev

Naive Bayes for Sentiment Analysis

 Determine the word counts for each occurrence of a word in the
positive and negative corpora

word Neg
I 3 3
Positive tweets am 3 3
| am happy because | am learning NLP happy 2 1
| am happy because 1 0
learning 1 1
Negative tweets » NLP 1 1
| am sad, | am not learning NLP sad 1 2
| am sad 2! 1 2

N lass 13

Naive Bayes for Sentiment Analysis

« Compute the conditional probabilities of each word given the

class

word Neg word Neg

| 3 3 | | 0.24 0.24 |
am 3 3 | am 0.24 0.24 |
happy 2 1 happy 0.15 0.08
because 1 0 because 0.08 0
learning 1 1 ‘ P(wi|class) " learning 0.08 0.08 |
NLP 1 1 | NLP 0.08 0.08 |
sad 1 2 | sad 0.08 0.15 |
not 1 2 | not 0.08 0.15 |
N jass 13

Naive Bayes

* Once obtained the probabilities, the likelihood score can be computed
A score greater than 1 indicates that the class is positive, otherwise negative
* Let's suppose to have a new tweet:

Tweet: | am happy today; | am learning. word Neg
m "
P(wilPos) 015 . L1 024 024
| | P(wi|Neg) ~ 008 | am 0.24 0.24
=1 | _happy 0.15 0.08
because 0.08 0
0.24 0.24 0.15 0.24 0.24 0.08
X X X X X |__learning__0.08 0.08
0.24 0.24 0.08 0.24 0.24 0.08
Nave B dit e for b lassificat NLP 0.08 0.08
° \% ondadition rule tor binary classitication
alve bayes ¢ y sad 0.08 0.15
m
P(w;|pos) not 0.08 0.15
i1 P(wj|neg)

Laplacian Smoothing

* We usually compute the probability of a word given a class as follows
* P(wil class)= freq (w;, class) / Ny, class € { Positive, Negative }

* However, if a word does not appear in the training, then it automatically
gets a probability of 0. To fix this, we add smoothing as follows

* P(wilclass)=freq (w;, class) + 1 /(Ngass + V)

* Ngass: frequency of all words in class

* V: number of unique words in vocabulary

Ratio of probabilities

* Words can have many shades of emotional meaning

* For sentiment classification, they're simplified into three categories: neutral, positive, and
negative

» All can be identified by using their conditional probabilities

word Neg
| | 020 020 1 |
Positive 00 | am 0.20 020 1 |
happy 0.14 0.10 1.4 W,

because 0.10 0.10

P(w; |) / P(w; | Neg)

| |
Neutral 1 | learning 0.10 0.10 1 |

| NLP 0.10 0.10 1 |

| sad 0.10 0.15 0.6 | freq(wi,1) + 1/ (freq(wi,0)+1)
Negative ¥ O | not 0.10 0.15 0.6 |

Naive Bayes’ inference

* Naive Bayes formula for binary classification
* Class € { , Negative }
*w, i=1,...,mwords in a tweet

> 1

| Pwos) [y Pwilpos)
' P(neg) H P

prior ratio

likelihood

Log Likelihood

 Sentiments probability calculation requires multiplication of many numbers with

values between 0 and 1
* risk of numerical underflow (values to small)

* Trick: use a log of the score instead of the raw score

log(P(pOS) H i(wz]pos)) = I g ‘|'Z log P(w;|pos)

P(wj|neg)

log prior + log likelihood

—— lOg
(wi |neg) Negative Neutral Positive ‘ Z (wi \neg)

- e

P(wi|pos)

lambda score

33 >0 oy

-00 0 o0

>0 D ——

Negative Neutral Positive

Training Naive Bayes

* There is no gradient descent, just counting frequencies of words in the
corpus

* Five steps for training a Naive Bayes model

Training Naive Bayes

Lowercase

Remove punctuation, urls, names
Remove stop words

Stemming

Tokenize sentences

Step 0: Collect and annotate corpus

Positive tweets Positive tweets

| am happy because | am learning [happi, because, learn, NLP]

NIR happy, not sad. @NLP

[happi, not, sad]

Step 1:
Preprocess

Negative tweets Negative tweets

| am sad, | am not learning NLP [sad, not, learn, NLP]
| am sad, not happy!! [sad, not, happi]

Training Naive Bayes

* Start by computing the vocabulary for each word in class

freg(w,class)

word Pos Neg

Positive tweets -

_ happi 2 1
[happi, because, learn, NLP] because 1 0
[happi, not, sad] learn 1 1

Negative tweets NLP 1 1
[sad, not, learn, NLP] sad 1 2
[sad, not, happi] not 1 2

N 7 7

Training Naive Bayes

* Get the conditional probability (w. Laplacian smoothing)

freq(w, class)

word Pos Neg

happi 2
because 1
learn 1
NLP 1
sad 1
not 1

N 7

class

/MNP R O e

Step 4:
A(w)::logfm“deS) th
P(w|neg) lambda
Step 3: word Pos Neg

P(W|Class) happy 0.23 0.15 043
because 0.15 0.07 0.6

V.o =6 learning 0.08 0.08 O
NLP 0.08 0.08 0

freq(w, class) + 1 sad 008 017 -0.75
Nelass +V not 008 0.17 -0.75

Training Naive Bayes

* Estimate the log prior
* count the number of positive and negative tweets

D,os = Number of positive tweets

D, e = Number of negative tweets

Step 5: Dpos

Get the : —

log prior logprlor o lOQD
neg

If dataset is balanced, D, = D, and logprior = 0.

Training Naive Bayes: Recap

Get or annotate a dataset with positive and negative tweets
Preprocess the tweets -> [wq, Wy, Ws,...]

Compute freg(w,class)

Get P(w|Pos) and P(w|Neg)

Get lambda(w)

Compute log prior = log(P(Pos)/P(Neq))

o kA wh =

Unknown words

* What about unknown words
* Appearing in test data
* Not appearing in training data or vocabulary

* We ignore them
* Removed from the test document
* Pretend they weren't there
* Don't include any probability for them at all

* Why don’t we build an unknown word model?

* |t doesn't help
* Knowing which class has more unknown words is not generally helpful

Stop words

* Some systems ignore stop words
* Stop words

* Very frequent words like the and a
* Sort the vocabulary by word frequency in the training set
* Call the top 10 or 50 words in the stop word list
* Remove all stop words from both training and test sets

* But removing stop words doesn’t usually help
* In practice, most NB algorithms use all words and don’t use stop word list

Testing Naive Bayes

 Performance on unseen data -> X, Y,

* Predict using 4 and log prior for each new tweet

* Accuracy

1 m
EE(predi == Ywval;)
i=1

* Words that not appear in A(m)
* treated as neutral words!

Evaluation

* Let's consider just binary text classification tasks
* Imagine you're the CEO of Delicious Pie Company
* You want to know what people are saying about your pies

* So you build a "Delicious Pie" tweet detector

* Positive class: tweets about Delicious Pie Co
* Negative class: all other tweets

The 2-by-2 confusion matrix

gold standard labels
gold positive gold negative
svstem System ” " oo 1P
oyu out positive true positive | false positive _[_)_l‘_e_c_l_S}(_)fl““tR p

t : :
labels nsgga%?,le false negative | true negative

tp+tn
tp+{p-+tn+in

|

|

| J—
i accuracy

|

Evaluation: Accuracy

* Why don't we use accuracy as our metric?

* Imagine we saw 1 million tweets
* 100 of them talked about Delicious Pie Co.
* 999,900 talked about something else

* We could build a dumb classifier that just labels every tweet "not

about pie"
* It would get 99.99% accuracy!!! Wow!!!!
* But useless! Doesn't return the comments we are looking for!

* That's why we use precision and recall instead

Evaluation: Precision

* % of items the system detected (i.e., items the system labeled as
positive) that are in fact positive (according to the human gold

labels)

true positives

Precision = — -
true positives + false positives

Evaluation: Recall

* % of items actually present in the input that were correctly
identified by the system

true positives

Recall = . .
true positives + false negatives

Why Precision and recall

* Our dumb pie-classifier
* Just label nothing as "about pie"

* Accuracy=99.99% but

* Recall =0
* (it doesn't get any of the 100 Pie tweets)

* Precision and recall, unlike accuracy, emphasize true positives:
* finding the things that we are supposed to be looking for

A combined measure: F

* F measure: a single number that combines P and R:

(B2 +1)PR
B?P+R

* We almost always use balanced F; (i.e.,, B = 1)

Fg =

2PR

Fi=
P+R

Naive Bayes Assumptions

* Naive Bayes is affected by the word frequencies in the corpus

* Example
* On Twitter, there are usually more positive tweets than negative ones

* However, some "clean" datasets you may find are artificially balanced to
have to the same amount of positive and negative tweets

* Just keep in mind, that in the real world, the data could be much noisier

Applications of Naive Bayes

* There are many applications of naive Bayes including:
 Author identification
* Spam filtering
* Information retrieval
* Word disambiguation
* This method is usually used as a simple baseline, and it is also fast

Applications of Naive Bayes

Author identification:

3 book)

&l book)

Spam filtering: P(Spam| email)

P(nonspam|email)

Applications of Naive Bayes

Information retrieval:

lquery]
P(documenty |query) o< H P(query;|documenty)
i=0

Retrieve document if P(documenty|query) > threshold

Applications of Naive Bayes

Word disambiguation:

P(river|text)

P(money|text)

Bank:

Error Analysis

Source of errors in Naive Bayes

* There are several mistakes that could cause you to misclassify an
example or a tweet

* Removing punctuation and stop words

Tweet: This is not good, because your attitude is not even close to being
nice.

processed_tweet: [good, attitude, close, nice]

Tweet: My beloved grandmother :(

processed_tweet: [belov, grandmoth]

Source of errors in Naive Bayes

* There are several mistakes that could cause you to misclassify an
example or a tweet
* Word order

Tweet: | am ha because | d¢ 0. > <
PPy fnot g 2s
Tweet: | 2 @- happy because | did go. 7PN

Source of errors in Naive Bayes

* There are several mistakes that could cause you to misclassify an
example or a tweet
* Adversarial attacks

 Sarcasm, Irony and Euphemisms

Tweet: This is a ridiculously powerful movie. The plot was gripping and |
cried right through until the ending!

processed_tweet: [ridicul, power, movi, plot, grip, cry, end]

Harms in Sentiment Classifiers

e Kiritchenko and Mohammad (2018) found that most sentiment
classitfiers assign lower sentiment and more negative emotion to
sentences with African American names in them

* This perpetuates negative stereotypes that associate African
Americans with negative emotions

Harms in toxicity classification

* Toxicity detection is the task of detecting hate speech, abuse,
harassment, or other kinds of toxic language

 But some toxicity classifiers incorrectly flag as being toxic
sentences that are non-toxic but simply mention identities like
blind people, women, or gay people

* This could lead to censorship of discussions about these groups

What causes these harms?

* Can be caused by:

* Problems in the training data; machine learning systems are known to
amplify the biases in their training data

* Problems in the human labels
* Problems in the resources used (like lexicons)
* Problems in model architecture (like what the model is trained to optimize)

* Mitigation of these harms is an open research area

« Meanwhile: model cards

Model cards

* For each algorithm you release, document:
* training algorithms and parameters

training data sources, motivation, and preprocessing

evaluation data sources, motivation, and preprocessing

intended use and users

model performance across different demographic or other groups and
environmental situations

* (Mitchell et al., 2019)

In Summary: Naive Bayes is not so Naive

* Very Fast, low storage requirements

« Work well with very small amounts of training data

* Robust to Irrelevant Features
Irrelevant Features cancel each other, without affecting the results

* Optimal if the independence assumptions hold: If assumed independence is
correct, then it is the Bayes Optimal Classitier for the problem

A good dependable baseline for text classification
 But we know that other classifiers give better accuracies

