
Text Classification: Sentiment Analysis

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 9

Natural Language Processing

A probabilistic formulation: Towards
Naïve Bayes

Sentiment Analysis

A probabilistic formulation of Sentiment Analysis

• Now, we turn to a probabilistic formulation of Sentiment Analysis
• Based on Bayes’ rule

• Suppose an extensive corpus of tweets that can be categorized as
either positive or negative sentiment, but not bothIntroduction

Corpus of tweets

Positive

Negative

Positive

Negative

“happy”

Tweets containing the word
“happy”

Introduction

Corpus of tweets

Positive

Negative

Positive

Negative

“happy”

Tweets containing the word
“happy”

Probabilities

Introduction

Corpus of tweets

Positive

Negative

Positive

Negative

“happy”

Tweets containing the word
“happy”

Probabilities

Corpus of tweets

Positive

Negative

“happy”

A → Positive tweet

P(A) = Npos / N = 13 / 20 = 0.65

P(Negative) = 1 - P(Positive) = 0.35

• Define the event A as a tweet being labeled positive
• the probability of event A is calculated as the ratio between the counts of positive tweets in the corpus divided

by the total number of tweets in the corpus

• Let's define Event B in a similar way by counting tweets containing the word happyProbabilities

“happy”

Tweets containing the word
“happy”

B → tweet contains “happy”.

P(B) = P(happy) = Nhappy / N

P(B) = 4 / 20 = 0.2

Probabilities

“happy”

Tweets containing the word
“happy”

B → tweet contains “happy”.

P(B) = P(happy) = Nhappy / N

P(B) = 4 / 20 = 0.2

Probability of the intersection

Probability of the intersection

Corpus

“happy” Positive

Positive

“happy”

“happy”

Positive

• The probability that a tweet is labeled positive and contains the word happy is
the ratio of the area of the intersection divided by the area of the entire
corpus

Conditional probabilities

• Consider only tweets that contain the word happy
• the probability that a tweet is positive, given that it contains the word happy,

is
• the number of tweets that are positive and also contain the word happy, divided by the

number that contain the word happy
Conditional Probabilities

Positive “happy”

P(A | B) = P(Positive | “happy”)

P(A | B) = 3 / 4 = 0.75

Corpus

“happy”

“happy”

Positive

Conditional probabilities

• The same case for positive tweets

Conditional Probabilities

Positive

“happy”

P(B | A) = P(“happy”| Positive)

P(B | A) = 3 / 13 = 0.231

Corpus

Positive

“happy”

Positive

Conditional probabilities

• Conditional probabilities help reduce the sample search space

• For example, given a specific event already happened, i.e., we know the word
is happy, one would only search in the blue circle below

Conditional probabilities

Corpus

“happy” Positive

“happy”

Positive

Bayes’ Rule

𝑃 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 "ℎ𝑎𝑝𝑝𝑦" =
𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∩ "ℎ𝑎𝑝𝑝𝑦")

𝑃("ℎ𝑎𝑝𝑝𝑦")

𝑃 "ℎ𝑎𝑝𝑝𝑦" 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =
𝑃("ℎ𝑎𝑝𝑝𝑦" ∩ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑃 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 "ℎ𝑎𝑝𝑝𝑦" = 𝑃 "ℎ𝑎𝑝𝑝𝑦" 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ×
𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
𝑃("ℎ𝑎𝑝𝑝𝑦")

𝑃 𝑋 𝑌 =
𝑃 𝑌 𝑋 𝑃(𝑋)

𝑃(𝑌)

• Let’s recall the general Bayes rule

Naïve Bayes classifier

• �̂�=argmax
!∈#

𝑃 𝑐 𝑑 = argmax
!∈#

$ 𝑑 𝑐 $(!)
$(')

= argmax
!∈#

𝑃 𝑑 𝑐 𝑃(𝑐)

• Generative model
• Defines how a document is generated

• Sample a class with probability P(c), then
• Words generated by sampling from P(d|c)

• In general, we represent a document as a set of features
• �̂�=argmax

!∈#
𝑃 𝑓1, 𝑓2, … , 𝑓𝑛 𝑐 𝑃(𝑐)

Naïve Bayes Assumptions
• Naïve Bayes makes the independence

assumption between features associated with
each class

• Example1
• “It is sunny and hot in the Sahara desert”
• the words sunny and hot tend to depend on each

other and are correlated to a certain extent with the
word desert

• Example 2
• “It’s always cold and snowy in ___”
• if you were to fill in the sentence above, the model will

assign equal weight to the words spring, summer, fall,
winter

Naïve Bayes Assumptions

● Independence

“It is sunny and hot in the Sahara desert.”

Naïve Bayes Assumptions

“It’s always cold and snowy in ___ .”

spring?? summer? fall?? winter??Naïve Bayes Assumptions

“It’s always cold and snowy in ___ .”

spring?? summer? fall?? winter??

Naïve Bayes Assumptions formally

• Naïve Bayes assumption
• 𝑷 𝒇𝟏, 𝒇𝟐, … , 𝒇𝒏 𝒄 = 𝑷 𝒇𝟏 𝒄 𝑷 𝒇𝟐 𝒄 … 𝑷 𝒇𝒏 𝒄

• Naïve Bayes classifier
• 𝑪𝑵𝑩 = 𝒂𝒓𝒈𝐦𝐚𝐱

𝒄∈𝑪
𝑷(𝒄)∏𝒇𝑷 𝒇 𝒄

• To apply NB to text, word positions need to be considered
• Positions <- all word positions in the test document

• 𝐶𝑁𝐵 = 𝑎𝑟𝑔max
!∈#

𝑃(𝑐)∏$∈%&'$($&)' 𝑃 𝑤𝑖 𝑐

Learning the Bayes Model

• Maximum likelihood estimates
• Simply use the frequencies in the data

P̂(wi | cj) =
count(wi,cj)
count(w,cj)

w∈V
∑

'𝑃 𝑐$ =
𝑁%!
𝑁&'&()

fraction of times word wi appears
among all words in documents of class cj

Naïve Bayes for Sentiment Analysis

word Pos Neg

I 3 3

am 3 3

happy 2 1

because 1 0

learning 1 1

NLP 1 1

sad 1 2

not 1 2

Nclass 13 13

• Determine the word counts for each occurrence of a word in the
positive and negative corpora

Naïve Bayes for Sentiment Analysis

• Compute the conditional probabilities of each word given the
class

𝑃(𝑤(|𝑐𝑙𝑎𝑠𝑠)

word Pos Neg

I 3 3

am 3 3

happy 2 1

because 1 0

learning 1 1

NLP 1 1

sad 1 2

not 1 2

Nclass 13 13

word Pos Neg

I 0.24 0.24

am 0.24 0.24

happy 0.15 0.08

because 0.08 0

learning 0.08 0.08

NLP 0.08 0.08

sad 0.08 0.15

not 0.08 0.15

Naïve Bayes

• Once obtained the probabilities, the likelihood score can be computed
• A score greater than 1 indicates that the class is positive, otherwise negative
• Let’s suppose to have a new tweet:

!
)*+

,
𝑃(𝑤𝑖|𝑃𝑜𝑠)
𝑃(𝑤𝑖|𝑁𝑒𝑔) =

0.15
0.08 = 1.875 > 1

!.#$
!.#$

× !.#$
!.#$

× !.%&
!.!'

× !.#$
!.#$

× !.#$
!.#$

× !.!'
!.!'

• Naïve Bayes condition rule for binary classificationSummary

վ Naive Bayes inference condition rule for binary classification

վ Table of probabilities

word Pos Neg

I 0.24 0.24

am 0.24 0.24

happy 0.15 0.08

because 0.08 0

learning 0.08 0.08

NLP 0.08 0.08

sad 0.08 0.15

not 0.08 0.15

Laplacian Smoothing

• We usually compute the probability of a word given a class as follows
• P(wi∣ class)= freq (wi, class) / Nclass class ∈ { Positive, Negative }

• However, if a word does not appear in the training, then it automatically
gets a probability of 0. To fix this, we add smoothing as follows
• P(wi∣class)=freq (wi, class) + 1 /(Nclass + V)

• Nclass: frequency of all words in class

• V: number of unique words in vocabulary

Ratio of probabilities

word Pos Neg ratio

I 0.20 0.20 1

am 0.20 0.20 1

happy 0.14 0.10 1.4

because 0.10 0.10 1

learning 0.10 0.10 1

NLP 0.10 0.10 1

sad 0.10 0.15 0.6

not 0.10 0.15 0.6

ratio(wi)	=

P(wi |	Pos)	/	P(wi |	Neg)
≈

freq(wi,1) + 1/ (freq(wi,0)+1)

• Words can have many shades of emotional meaning

• For sentiment classification, they're simplified into three categories: neutral, positive, and
negative

• All can be identified by using their conditional probabilities

Naïve Bayes’ inference

• Naïve Bayes formula for binary classification
• Class ∈ { Positive, Negative }
• wi, i=1,…,m words in a tweet

Naïve Bayes’ inference class ∈ {pos, neg}
w -> Set of m words in a tweet

● A simple, fast, and powerful baseline
● A probabilistic model used for classification likelihood

prior ratio

Log Likelihood

• Sentiments probability calculation requires multiplication of many numbers with
values between 0 and 1
• risk of numerical underflow (values to small)

• Trick: use a log of the score instead of the raw score

Log Likelihood

վ Products bring risk of underflow

վ

վ

log prior + log likelihood

Log Likelihood

1

Neutral
> 1

Negative Positive

0

> 0
- 0

NeutralNegative Positive

3.3 > 0
Log Likelihood

1

Neutral
> 1

Negative Positive

0

> 0
- 0

NeutralNegative Positive

3.3 > 0

lambda score

Training Naïve Bayes

• There is no gradient descent, just counting frequencies of words in the
corpus

• Five steps for training a Naïve Bayes model

Training Naïve Bayes

I am happy because I am learning
NLPI am happy, not sad. @NLP

Positive tweets

I am sad, I am not learning NLP
I am sad, not happy!!

Negative tweets

Step 1:
Preprocess

Step 0: Collect and annotate corpus

[happi, because, learn, NLP]
[happi, not, sad]

Positive tweets

[sad, not, learn, NLP]
[sad, not, happi]

Negative tweets

● Lowercase
● Remove punctuation, urls, names
● Remove stop words
● Stemming
● Tokenize sentences

Training Naïve Bayes

• Start by computing the vocabulary for each word in class

Training Naïve Bayes

word
happi

because
learn
NLP
sad
not

Pos
2
1
1
1
1
1

Neg
1
0
1
1
2
2

Step 2:
Word
count

Nclass 7 7

[happi, because, learn, NLP]
[happi, not, sad]

Positive tweets

[sad, not, learn, NLP]
[sad, not, happi]

Negative tweets

freq(w, class)freq(w,class)

Training Naïve Bayes

• Get the conditional probability (w. Laplacian smoothing)

Training Naïve Bayes

word
happy

because
learning

NLP
sad
not

Pos
0.23
0.15
0.08
0.08
0.08
0.08

Neg
0.15
0.07
0.08
0.08
0.17
0.17

𝝀
0.43
0.6
0
0

-0.75
-0.75

Step 4:
Get

lambda
word
happi

because
learn
NLP
sad
not

Pos
2
1
1
1
1
1

Neg
1
0
1
1
2
2

Nclass 7 7

freq(w, class)

Step 3:

Training Naïve Bayes

• Estimate the log prior
• count the number of positive and negative tweets

Training Naïve Bayes

Step 5:
Get the
log prior

Dpos = Number of positive tweets
Dneg = Number of negative tweets

If dataset is balanced, Dpos = Dneg and logprior = 0.

Training Naïve Bayes: Recap

1. Get or annotate a dataset with positive and negative tweets

2. Preprocess the tweets -> [w1, w2, w3,…]

3. Compute freq(w,class)

4. Get P(w|Pos) and P(w|Neg)

5. Get lambda(w)

6. Compute log prior = log(P(Pos)/P(Neg))

Unknown words

• What about unknown words
• Appearing in test data
• Not appearing in training data or vocabulary

• We ignore them
• Removed from the test document
• Pretend they weren’t there
• Don’t include any probability for them at all

• Why don’t we build an unknown word model?
• It doesn’t help

• Knowing which class has more unknown words is not generally helpful

Stop words

• Some systems ignore stop words
• Stop words

• Very frequent words like the and a

• Sort the vocabulary by word frequency in the training set
• Call the top 10 or 50 words in the stop word list
• Remove all stop words from both training and test sets

• But removing stop words doesn’t usually help
• In practice, most NB algorithms use all words and don’t use stop word list

Testing Naïve Bayes

• Performance on unseen data -> Xval Yval

• Predict using 𝜆 and log prior for each new tweet

• Accuracy
1
𝑚[

,-.

/

𝑝𝑟𝑒𝑑, == 𝑌𝑣𝑎𝑙,

• Words that not appear in 𝜆(𝑚)
• treated as neutral words!

Evaluation

• Let's consider just binary text classification tasks

• Imagine you're the CEO of Delicious Pie Company

• You want to know what people are saying about your pies

• So you build a "Delicious Pie" tweet detector
• Positive class: tweets about Delicious Pie Co
• Negative class: all other tweets

The 2-by-2 confusion matrix

4.7 • EVALUATION: PRECISION, RECALL, F-MEASURE 11

As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrixconfusion

matrix
is a table for visualizing how an algorithm performs with respect to the human gold
labels, using two dimensions (system output and gold labels), and each cell labeling
a set of possible outcomes. In the spam detection case, for example, true positives
are documents that are indeed spam (indicated by human-created gold labels) that
our system correctly said were spam. False negatives are documents that are indeed
spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it for text classification tasks. That’s because accuracy
doesn’t work well when the classes are unbalanced (as indeed they are with spam,
which is a large majority of email, or with tweets, which are mainly not about pie).

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

Figure 4.4 A confusion matrix for visualizing how well a binary classification system per-
forms against gold standard labels.

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,

Evaluation: Accuracy

• Why don't we use accuracy as our metric?
• Imagine we saw 1 million tweets
• 100 of them talked about Delicious Pie Co.
• 999,900 talked about something else

• We could build a dumb classifier that just labels every tweet "not
about pie"
• It would get 99.99% accuracy!!! Wow!!!!
• But useless! Doesn't return the comments we are looking for!
• That's why we use precision and recall instead

Evaluation: Precision

• % of items the system detected (i.e., items the system labeled as
positive) that are in fact positive (according to the human gold
labels)

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

Evaluation: Recall

• % of items actually present in the input that were correctly
identified by the system

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

Why Precision and recall

• Our dumb pie-classifier
• Just label nothing as "about pie"

• Accuracy=99.99% but
• Recall = 0

• (it doesn't get any of the 100 Pie tweets)

• Precision and recall, unlike accuracy, emphasize true positives:
• finding the things that we are supposed to be looking for

A combined measure: F

• F measure: a single number that combines P and R:

• We almost always use balanced F1 (i.e., b = 1)

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

Naïve Bayes Assumptions

• Naïve Bayes is affected by the word frequencies in the corpus
• Example
• On Twitter, there are usually more positive tweets than negative ones
• However, some "clean" datasets you may find are artificially balanced to

have to the same amount of positive and negative tweets
• Just keep in mind, that in the real world, the data could be much noisier

Naïve Bayes Assumptions

● Relative frequencies in corpus

Applications of Naïve Bayes

• There are many applications of naive Bayes including:
• Author identification
• Spam filtering
• Information retrieval
• Word disambiguation
• This method is usually used as a simple baseline, and it is also fast

Applications of Naïve Bayes
Applications of Naïve Bayes

Author identification:

Spam filtering:

Applications of Naïve Bayes
Applications of Naïve Bayes

"Icon made by Vector Market from www.flaticon.com"

Information retrieval:

Retrieve document if

Applications of Naïve Bayes

Applications of Naïve Bayes

"Pictures with CC"

Bank:

Word disambiguation:

Error Analysis

Source of errors in Naïve Bayes

• There are several mistakes that could cause you to misclassify an
example or a tweet
• Removing punctuation and stop words

Source of errors in Naïve Bayes

Processing as a Source of Errors: Word Order

Tweet: I am happy because I do not go.

Tweet: I am not happy because I did go.

• There are several mistakes that could cause you to misclassify an
example or a tweet
• Word order

Source of errors in Naïve Bayes

Adversarial attacks

Tweet: This is a ridiculously powerful movie. The plot was gripping and I
cried right through until the ending!

processed_tweet: [ridicul, power, movi, plot, grip, cry, end]

Sarcasm, Irony and Euphemisms

• There are several mistakes that could cause you to misclassify an
example or a tweet
• Adversarial attacks

• Sarcasm, Irony and Euphemisms

Harms in Sentiment Classifiers

• Kiritchenko and Mohammad (2018) found that most sentiment
classifiers assign lower sentiment and more negative emotion to
sentences with African American names in them

• This perpetuates negative stereotypes that associate African
Americans with negative emotions

Harms in toxicity classification

• Toxicity detection is the task of detecting hate speech, abuse,
harassment, or other kinds of toxic language

• But some toxicity classifiers incorrectly flag as being toxic
sentences that are non-toxic but simply mention identities like
blind people, women, or gay people

• This could lead to censorship of discussions about these groups

What causes these harms?

• Can be caused by:
• Problems in the training data; machine learning systems are known to

amplify the biases in their training data
• Problems in the human labels
• Problems in the resources used (like lexicons)
• Problems in model architecture (like what the model is trained to optimize)

• Mitigation of these harms is an open research area

• Meanwhile: model cards

Model cards

• For each algorithm you release, document:
• training algorithms and parameters
• training data sources, motivation, and preprocessing
• evaluation data sources, motivation, and preprocessing
• intended use and users
• model performance across different demographic or other groups and

environmental situations

• (Mitchell et al., 2019)

In Summary: Naïve Bayes is not so Naïve

• Very Fast, low storage requirements

• Work well with very small amounts of training data

• Robust to Irrelevant Features
Irrelevant Features cancel each other, without affecting the results

• Optimal if the independence assumptions hold: If assumed independence is
correct, then it is the Bayes Optimal Classifier for the problem

• A good dependable baseline for text classification
• But we know that other classifiers give better accuracies

