1. Introduction to proteins
2. Sequence alignments - Part 1
3. Substitutions and gaps
4. Homology search in data banks

BIOinformatics $=$ genes + proteins + informatics

(part of computational biology, biocomputing)

GENE: DNA segment which codes for a specific protein and determines an hereditary feature

Building blocks: 4 nucleotides (ACGT/U)

PROTEIN: expression product of a gene and ed EFFECTOR of the biochemical function whose information is stored in the gene

Building blocks: 20 amino acids

MOLECULAR EVOLUTION

Protein structure

Proteins are made up of 20 different amino acids: ACDEFGHIKLMNPQRSTVWY

Protein structure

Knowing the relationship between a protein structure and its function provides a fundamental understanding of how the protein works allowing to foresee how modifying the structure could affect the function

Most of the currently marketed pharmaceuticals act by interacting with proteins

The structure adopted by a protein is entirely determined by its amino acids sequence, however the rules that govern how a protein chain of a given sequence folds up are not yet fully understood

One of the main aims of Bioinformatics is to predict and analyze the structure of proteins and the relationship of the structure to the function

Protein structure

Proteins are made of 20 amino acids, covalently bonded by peptide bonds

side-chains
The 20 amino acids are made of $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{H}$ (S in case of Cys and Met) atoms

Their side chains differ in size and chemical nature

Protein structure

Protein structure

Protein structure

Protein structure

UNCHARGED POLAR SIDE CHAINS

Protein structure

Amino acids hydrophilicity/hydrophobicity:

Protein structure

Peptide bonds are planar. However the bonds made by $\mathrm{C} \alpha$ with N and C are singular and give rise to two torsional angles per residue (ϕ and ψ, defined between -180° and $+180^{\circ}$)

These torsion angles are the main source of flexibility for proteins

Protein structure

ϕ and ψ angles assume preferentially some values, as steric hindrance prevents certain combinations

Ramachandran plot, the darker the color, the more favorable

Example for a real structure, with outliers the combination of angles

Protein structure: hierarchy

There are four levels of protein structure to consider:

Protein secondary structure: α helices and β-strands

α - helices

β-pleated sheets
α-helices and β-strands are the only regular protein secondary structure motifs
α-helices and β-strands are connected by turns (ordered 3/4residue motifs) or loops

Protein secondary structure: α helices and β-strands

α-helices
In a α-helix (right hand) conformation dihedral angles (φ, ψ) assume values around $-60^{\circ} /-45^{\circ}$ and every backbone $\mathrm{N}-\mathrm{H}$ group hydrogen bonds to the backbone $\mathrm{C}=\mathrm{O}$ group of the amino acid located 4-residue upstream

Protein secondary structure: α helices and β-strands

β-pleated sheets

A β-strand is a stretch of polypeptide chain typically 3 to 10 amino acids long with backbone in an extended conformation - dihedral angles (φ, ψ) values around $-135^{\circ} /+135^{\circ}$; they can form sheets where their backbone H -bond to that of another strand

Protein structure

The folded state of a protein corresponds to a free energy minimum

Residues which are distant in sequence can come close in the folded structure to form a functional site, e.g. a binding/ catalytic site

Protein structure: classes

Collagen, a fibrous protein
structural

Myoglobin, a globular protein
globular

Bacteriorhodopsin
membrane

Enzymes are globular proteins which catalyze reactions through an active site

Example:
Chymotrypsin is a digestive enzyme active in the small intestine where it contributes to proteins deigestion
It can break peptide bonds thanks to its active site (catalytic Ser-protease triad).

Protein domains

Many proteins consist of several domains

A protein domain is a region of a protein that is self-stabilizing and that folds independently from the rest

Domains usually form functional units
Domains vary in length from ≈ 50 amino acids up to ≈ 250 amino acids

Molecular evolution uses domains as building blocks: a domain may appear in a variety of different proteins

[^0]

A specific protein fold allows it to perform its function!

lac repressor:
blocks transcription of a specific DNA
region

Example of protein sequence

> YQVRNSSGLYHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWV AVTPTVATRDGKLPTTQLRRHIDLLVGSATLCSALYVGDLCGSVFLVGQ LFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMMMNWSPTAALVVAQLL RIPQAILDMIAGAHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDAETHV TGGSAGHTTAGLVRLLSPGAKQNIQLINTNGSWHINSTALNCNESLNTG WLAGLFYHHKFNSSGCPERLASCRRLTDFAQGGGPISYANGSGLDERPY CWHYPPRPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAPTYSWGANDT DVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNTLLCPT DCFRKHPEATYSRCGSGPWITPLLLLLALPQRAY

Structural/functional information is contained in the amino acid sequence of a protein chain

> Proteins vary by the different combination of the 20 amino acids in their sequence

Example of protein sequence

> YQVRNSSGLYHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWV AVTPTVATRDGKLPTTQLRRHIDLLVGSATLCSALYVGDLCGSVFLVGQ LFTFSPRRHWTTQDCNCSIYPGHITGHRMAWDMMMNWSPTAALVVAQLL RIPQAILDMIAGAHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDAETHV TGGSAGHTTAGLVRLLSPGAKQNIQLINTNGSWHINSTALNCNESLNTG WLAGLFYHHKFNSSGCPERLASCRRLTDFAQGGGPISYANGSGLDERPY CWHYPPRPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAPTYSWGANDT DVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNTLLCPT DCFRKHPEATYSRCGSGPWITPLLLLLALPQRAY

Structural/functional information is contained in the amino acid sequence of a protein chain

In principle, there can be 20^{n} different polypeptide chains of length n : 20^{250} of length 250 (over 10^{325}), but only a tiny fraction of them exist (again, think of evolution!)

Protein structure

Proteins are made up of 20 different amino acids: ACDEFGHIKLMNPQRSTVWY

There seems to be a limited number, in the order of thousands $\left(10^{3}\right)$, of fold families, thus also proteins with different sequences may in principle fold similarly

"Informatics" problems with protein sequences

Storing and archiving protein sequences

Search for regularities and "patterns" (e.g. active sites)

Comparing protein sequences and measuring their similarity

"Informatics" problems with protein sequences

Storing and archiving protein sequences

Search for regularities and "patterns" (e.g. active sites)

Comparing protein sequences and measuring their similarity

Similarity \& homology

- Two sequences are similar if they can be aligned so that many corresponding (aligned) amino acids are identical or similar
- Technically two or more proteins may be defined homologous if they derive from a common ancestor
- Homology between two sequences cannot be observed but only inferred by their similarity in sequence or function
- The concept of similarity can be extended to 3D structures

Homology

Two or more proteins may be defined homologous if they derive from a common ancestor through an evolutionary event

Species 1
Species 2

Homology

early globin gene

Example: α-globin and β-globin, composing together the quaternary structure of hemoglobin

Homology

Tyyo secguerices are horriologous if they clerive frors al corsinsors arscestor:
The Horizontal Gene Transfer (HGT) is the genetic material transfer between two different genomes

Species 1

Homology

Homology between two proteins/genes can be deduced by their similarity in sequence, structure or function

Species $=$ human
Species = codfish

Species $=$ human

Species = codfish


```
Uomo
Nomo C F P V V L G H E G A G I V E S V G E G V T K L K A G D T V I P L Y Y I P Q C G E C K F C L N P K T N L C Q K I R V T Q G
```



```
Merluzzo
Merluzzo FGGA A V NTA K V E P G S T C A V F G L G A V G L A A V M G C H S A G A K R I I A V D L N P D K F E K A K V F G A T D
```


Two sequences are similar if they can be aligned so that many corresponding (aligned) amino acids (or nucleotides) are identical or similar

With a sequence alignment we search for a correspondence between amino acids (or nucleotides) that most probably reflects the evolution of proteins (or genes)

Sequence alignment

What is the correspondence between amino acids (or nucleotides) which most likely reflects the evolution of two proteins (or genes)?

Sequence alignment

Aim: minimizing the evolutionary distance between sequences to be aligned, therefore minimizing differences (that is maximizing similarities) between the components (nucleotides or amino acids) of the sequences themselves

The hypothesis of most reasonable alignment is the one involving the lowest number of mutations to pass from one sequence to the other one

Sequence alignment

Applications

- Function recognition
- assessing a significant similarity between two sequences is enough
- Phylogeny
- Measuring the similarity on a quantitative basis is required
- Model building
- Explicitly constructing the best possible alignment is required

Sequence alignment

A dot matrix or dot-plot provides un immediate view of the similarity between two sequences

In a dot-plot a dot is reported in correspondence of two identical characters

Sequence alignment: dot-plot

Sequence alignment: dot-plot

Latin RESPUBLICA
English RE-PUBLICdeletions

Dot plot

Dot plot

'Horizontal' sequence

Sequence alignment: dot-plot

Sequence1 (12 charaters) THISSEQUENCE

Sequence2 (15 charaters) THISISASEQUENCE

Sequence alignment: dot-plot

Sequence1 (19 characters)
LAMIAPRIMASEQCREATA
Sequence2 (22 characters)
MIAALTRASEQDALLINEARE

	\mathbf{L}	\mathbf{A}	\mathbf{M}	\mathbf{I}	\mathbf{A}	\mathbf{P}	\mathbf{R}	\mathbf{I}	\mathbf{M}	\mathbf{A}	\mathbf{S}	\mathbf{E}	\mathbf{Q}	\mathbf{C}	\mathbf{R}	\mathbf{E}	\mathbf{A}	\mathbf{T}	\mathbf{A}
\mathbf{M}	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
\mathbf{I}	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{L}	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{T}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
\mathbf{R}	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{S}	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
\mathbf{E}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0
\mathbf{Q}	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
\mathbf{D}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{L}	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{L}	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{l}	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
\mathbf{N}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{E}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{R}	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
\mathbf{E}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

	\mathbf{L}	\mathbf{A}	\mathbf{M}	\mathbf{I}	\mathbf{A}	\mathbf{P}	\mathbf{R}	\mathbf{I}	\mathbf{M}	\mathbf{A}	\mathbf{S}	\mathbf{E}	\mathbf{Q}	\mathbf{C}	\mathbf{R}	\mathbf{E}	\mathbf{A}	\mathbf{T}	\mathbf{A}
\mathbf{M}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
\mathbf{l}	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{L}	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{T}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
\mathbf{R}	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{S}	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
\mathbf{E}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0
\mathbf{Q}	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
\mathbf{D}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{L}	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{L}	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{l}	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
\mathbf{N}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{E}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	$\mathbf{1}$	0	0	0
\mathbf{A}	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1
\mathbf{R}	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	\mathbf{C}	0
\mathbf{E}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	\mathbf{C}

Sequence alignment

LAMIAPRIMASEQCREATA-----------
-MIAALTR-------ASEQDAALLINEARE
LAMIAPRIMASEQ--------CREATA
--MIAAL---TRASEQDAALLINEARE

Different paths through a dot-plot correspond to different alignments

The quality of an alignment is measured by giving it a quantitative score

Non only the identity between amino acids matter, but also the similarity

Not all amino acids substitutions are equally likely to occur

Sequence alignment

For obtaining an optimal alignment (the one with maximum score, not necessarily the correct one, reflecting the evolutionary process), we need:

1) A score for the substitution of amino acids/ nucleobases
2) Penalty for insertions/deletions (INDELs)
3) Algorithm to perform the alignment
4) Measure of the alignment significance

Sequence alignment - Part 1

For obtaining an optimal alignment (the one with maximum score, not necessarily the correct one, reflecting the evolutionary process), we need:

1) A score for the substitution of amino acids/ nucleobases
2) Penalty for insertions/deletions (INDELs)
3) Algorithm to perform the alignment
4) Measure of the alignment significance

1. Score for substitutions

- Identity (1 or 0) between nucleobases and amino acids
- Physico-chemical properties of amino acids
- Lowest number of nucleobases to be substituted to obtain the observed mutation
- Substitution frequences observed in protein families (first proposed by Margaret Dayhoff in the ' 70 s)

$\begin{array}{r}\mathrm{H} \\ \hline\end{array}$
Alanina (Ala) A

Valina (Val) V

Leucina (Leu) L

Isoleucina (Ile) |

AMINOACIDI CON CATENE LATERALI CONTENENTI ZOLFO O GRUPPI OSSIDRILICI

AMINOACIDI AROMATICI

Fenilalanina (Phe) F

Istidina (His) H
AMINOACIDI ACIDI E LORO AMIDI

Acido aspartico (Asp) D Acido glutammico (Glu) E

Asparagina (Asn) N

Glutammina (GIn) Q
G $\quad \mathrm{A} \quad \mathrm{V} \quad \mathrm{L} \quad$ I

$\begin{array}{lllll}\mathrm{S} & \mathrm{C} & \mathrm{T} & \mathrm{M} & \mathrm{P}\end{array}$

$\begin{array}{llllll}F & Y & W & H & K & R\end{array}$
D E N Q

ex. 1 Substitution Matrix

	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y
A	2																			
C	-2	12																		
D	0	-5	4																	
E	0	-5	3	4																
F	-4	-4	-6	-5	9															
G	1	-3	1	0	-5	5														
H	-1	-3	1	1	-2	-2	6													
I	-1	-2	-2	-2	1	-3	-2	5												
K	-1	-5	0	0	-5	-2	0	-2	5											
L	-2	-6	-4	-3	2	-4	-2	2	-3	6										
M	-1	-5	-3	-2	0	-3	-2	2	0	4	6									
N	0	-4	2	1	-4	0	2	-2	1	-3	-2	2								
P	1	-3	-1	-1	-5	-1	0	-2	-1	-3	-2	-1	6							
Q	0	-5	2	2	-5	-1	3	-2	1	-2	-1	1	0	4						
R	-2	-4	-1	-1	-4	-3	2	-2	3	-3	0	0	0	1	6					
S	1	0	0	0	-3	1	-1	-1	0	-3	-2	1	1	-1	0	2				
T	1	-2	0	0	-3	0	-1	0	0	-2	-1	0	0	-1	-1	1	3			
V	0	-2	-2	-2	-1	-1	-2	4	-2	2	2	-2	-1	-2	-2	-1	0	4		
W	-6	-8	-7	-7	0	-7	-3	-5	-3	-2	-4	-4	-6	-5	2	-2	-5	-6	17	
Y	-3	0	-4	-4	7	-5	0	-1	-4	-1	-2	-2	-5	-4	-4	-3	-3	-2	0	10

PAM 250

20×20 matrices

Point Accepted Mutations
A positive score means that a given aa substitution is favorable
A negative score means that a given aa substitution is unfavorable

ex. 2 Substitution Matrix

	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y
A	4																			
C	0	9	-3																	
D	-2	-3	6																	
E	-1	-4	2	5																
F	-2	-2	-3	-3	6															
G	0	-3	-1	-2	-3	6														
H	-2	-3	-1	0	-1	-2	8													
I	-1	-1	-3	-3	0	-4	-3	4												
K	-1	-3	-1	1	-3	-2	-1	-3	5											
L	-1	-1	-4	-3	0	-4	-3	2	-2	4										
M	-1	-1	-3	-2	0	-3	-2	1	-1	2	5									
N	-2	-3	1	0	-3	0	1	-3	0	-3	-2	6								
P	-1	-3	-1	-1	-4	-2	-2	-3	-1	-3	-2	-2	7							
Q	-1	-3	0	2	-3	-2	0	-3	1	-2	0	0	-1	5						
R	-1	-3	-2	0	-3	-2	0	-3	2	-2	-1	0	-2	1	5					
S	1	-1	0	0	-2	0	-1	-2	0	-2	-1	1	-1	0	-1	4				
T	0	-1	-1	-1	-2	-2	-2	-1	-1	-1	-1	0	-1	-1	-1	1	5			
V	0	-1	-3	-2	-1	-3	-3	3	-2	1	1	-3	-2	-2	-3	-2	0	4		
W	-3	-2	-4	-3	1	-2	-2	-3	-3	-2	-1	-4	-4	-2	-3	-3	-2	-3	11	
Y	-2	-2	-3	-2	3	-3	2	-1	-2	-1	-1	-2	-3	-1	-2	-2	-2	-1	2	7

BLOSUM 62

BLOcks SUbstitution Matrix (from the derived BLOCKS database)
A positive score means that a given aa substitution is favorable
A negative score means that a given aa substitution is unfavorable

PAM e BLOSUM matrices report the $\log _{2}$ of:

Example of score calculation for the substitution of an Ala with a Thr

Tot aa $=3 \times 8=24$
Tot aligned aa pairs $=3 \times 8=24$
$f_{A T}=2 / 24=0.083$
$\mathrm{f}_{\mathrm{A}}=2 / 24=0.083$
$\frac{f_{A T}}{f_{A} \times f_{T}}=\frac{0.083}{0.010}=8$
$\mathrm{f}_{\mathrm{T}}=3 / 24=0.12$
$f_{A} x f_{T}=0.010$

$$
\ln _{2}\left(\frac{\mathrm{f}_{\mathrm{AT}}}{\mathrm{f}_{\mathrm{A}} \times \mathrm{f}_{\mathrm{T}}}\right)=3
$$

Example of score calculation for the substitution of an Ala with a Thr

Tot aa $=3 \times 8=24$
Tot aligned aa pairs $=3 \times 8=24$
In a substitution matrix we would write 3 at the
cross between
$\mathrm{Ala}(\mathrm{A})$ and $\mathrm{Thr}(\mathrm{T})$

$$
\begin{aligned}
& \frac{f_{A T}}{f_{A} \times f_{T}}=\frac{0.083}{0.010}=8 \\
& \ln _{2}\left(\frac{f_{A T}}{f_{A} \times f_{T}}\right)=3
\end{aligned}
$$

More rigorously...

$$
s(i j)=\operatorname{int}\left(k \cdot \ln _{2} \frac{f_{i j}}{f_{i} \times f_{j}}\right)
$$

We only take the integer

Site-specific matrices, based on empirical rules

PAM N: Percent/Point Accepted Mutations (where N is the number of accepted mutations every 100 aa)

BLOSUM N: BLOcks SUbstitution Matrix (where N is the maximum \% of sequence identity between aligned homologs)

- PAM 1 can be used to generate matrices for higher evolutionary distances: multiplying it again and again by itself.
PAM2 = PAM1 * PAM1
- PAM250: etc etc
- 2,5 mutations per residue
- Equivalent to 20\% remaining matches between two sequences, that is l' 80% of amino acid positions are changed.
- It is the default matrix used in many analysis software.

ex. 2 Substitution Matrix

- BLOSUM matrices have been developed to align scarcely correlated sequences. They have largely replaced the PAM ones.
- They are obtained from the derived BLOCKS databank containing alignments of highly correlated protein regions, which can be aligned without gaps.
- BLOSUM62: is obtained from alignments of proteine sharing a maximum of 62 \% sequence identity. It is largely used. (Corrispondes approximately to a PAM110).

ex. 2 Substitution Matrix

- BLOSUM matrices have been developed to align scarcely correlated sequences. They have largely replaced the PAM ones.
- They are obtained from the derived BLOCKS databank containing alignments of highly correlated protein regions, which can be aligned without gaps.
- BLOSUM62: is obtained from alignments of proteine sharing a maximum of 62 \% sequence identity. It is largely used. (Corrispondes approximately to a PAM110).

More recently, matrices have been constructed using newer and larger data sets. The PET91 matrix, e.g., represents a new generation of Dayhoff-type matrices
ex. 1 Substitution Matrix

	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y
A	2																			
C	-2	12																		
D	0	-5	4																	
E	0	-5	3	4																
F	-4	-4	-6	-5	9															
G	1	-3	1	0	-5	5														
H	-1	-3	1	1	-2	-2	6													
I	-1	-2	-2	-2	1	-3	-2	5												
K	-1	-5	0	0	-5	-2	0	-2	5											
L	-2	-6	-4	-3	2	-4	-2	2	-3	6										
M	-1	-5	-3	-2	0	-3	-2	2	0	4	6									
N	0	-4	2	1	-4	0	2	-2	1	-3	-2	2								
P	1	-3	-1	-1	-5	-1	0	-2	-1	-3	-2	-1	6							
Q	0	-5	2	2	-5	-1	3	-2	1	-2	-1	1	0	4						
R	-2	-4	-1	-1	-4	-3	2	-2	3	-3	0	0	0	1	6					
S	1	0	0	0	-3	1	-1	-1	0	-3	-2	1	1	-1	0	2				
T	1	-2	0	0	-3	0	-1	0	0	-2	-1	0	0	-1	-1	1	3			
V	0	-2	-2	-2	-1	-1	-2	4	-2	2	2	-2	-1	-2	-2	-1	0	4		
W	-6	-8	-7	-7	0	-7	-3	-5	-3	-2	-4	-4	-6	-5	2	-2	-5	-6	17	
Y	-3	0	-4	-4	7	-5	0	-1	-4	-1	-2	-2	-5	-4	-4	-3	-3	-2	0	10

PAM 250
20×20 matrices
Point Accepted Mutations

ex. 1 Substitution Matrix

Ala residues are easily substituted by other aa

ex. 1 Substitution Matrix

Cys residues are not easily substituted (they often give disulfide bonds)

ex. 1 Substitution Matrix

Arg \& Lys tend to substitute each other

ex. 1 Substitution Matrix

Polar \& apolar aa do not tend to substitute each other

2. Scoring penalty for INDELs (gaps)

Substitution matrices have been derived from alignments that did not present insertions/ deletions (INDELs). Indels need therefore to be dealt with separately, on an empirical basis.

In aligning two sequences an Igorithm would tend to maximize the score (correspondence between identical or similar amino acids) by inserting a large number of gaps.

Is this the way which best reflects evolution?

2. Scoring penalty for INDELs (gaps)

We have indels (gaps) when a letter of a stretch of letters in one sequence is paired up with blanks spaces in another one

In nature INDEL events are often lethal (deleterious)

Therefore we need to penalize insertions and deletions. That means associating to them a negative score to be subtracted to the total score of the alignment .

2. Scoring penalty for INDELs (gaps)

In nature deletion of a series of contiguous nucleobases/amino acids is a more likely event than the independent deletion of the same number of nucleobases/amino acids in non contiguous positions

Let's distinguish the start of (introducing) a gap :

$$
\begin{aligned}
& \text { EGQTCA } \\
& \text { AG-TCL }
\end{aligned}
$$

from the extension of (extending) a gap:

$$
\begin{aligned}
& \text { EGQQQTCA } \\
& \text { AG---TCL }
\end{aligned}
$$

2. Scoring penalty for INDELs (gaps)

In nature deletion of a series of contiguous nucleobases/amino acids is a more likely event than the independent deletion of the same number of nucleobases/amino acids in non contiguous positions

Let's distinguish the start of a gap:

$$
\begin{aligned}
& \text { EGQTCA } \\
& \text { AG-TCL }
\end{aligned}
$$

from the extension of a gap:

$$
\begin{aligned}
& \text { EGQQQTCA } \\
& \text { AG---TCL }
\end{aligned}
$$

Sequence alignment - Part 1

For obtaining an optimal alignment (the one with maximum score, not necessarily the correct one, reflecting the evolutionary process), we need:

1) A score for the substitution of amino acids/ nucleobases
2) Penalty for insertions/deletions (INDELs)
3) Algorithm to perform the alignment
4) Measure of the alignment significance

Homology search in databases

- Protein vs. proteins
- Gene (tranlastion to aa) vs. proteins
- Gene vs. genes
- Protein vs. translation to aa of nucleotide sequences (all frames)

When we compare protein sequences we search for the best correspondence for 20 different amino acids
When we compare nucleotide sequences we search for the best correspondence for only 4 nucleotides (nucleobases)

When we compare protein sequences we search for the best correspondence for 20 different amino acids

When we compare nucleotide sequences we search for the best correspondence for only 4 nucleotides (nucleobases)

Probability of finding a good correspondence (high score alignment) by chance is higher for nucleotide sequences than for protein sequences

Furthermore, when we compare protein sequences we can take into account the similarity between amino acids

When we compare protein sequences we search for the best correspondence for 20 different amino acids

When we compare nucleotide sequences we search for the best correspondence for only 4 nucleotides (nucleobases)

Probability of finding a good correspondence (high score alignment) by chance is higher for nucleotide sequences than for protein sequences

Furthermore, when we compare protein sequences we can take into account the similarity between amino acids

When possible, comparing protein sequences has to be preferred!

How we can "fish" from databases potentially homologous sequences?

Exact algorithms (Smith-Waterman)

Exact, it provides the best alignment(s) for a pair of sequences.
Given 2 sequences: A of length n and B of length m, Smith-Waterman takes n*m computational steps.

If we search for homologs of the query sequence $A(n=200$ aa)
In a database made of 10^{6} sequences with $\mathrm{m}=200$ aa
The number of computational steps is $=10^{6} \times 200 \times 200=$ $\sim 10^{10}$
10^{3} steps per sec $=10^{7}$ secs $=120$ days $=4$ months !
There is a need for approximate (heuristic) algorithms

Exact algorithms (Smith-Waterman)

Exact, it provides the best alignment(s) for a pair of sequences.

Given 2 sequences: A of length n and B of length m, Smith-Waterman takes $n^{*} m$ computational steps.

How do we discard irrelevant alignments?

Heuristic algorithms (BLAST, FASTA) are needed to discard most of the irrelevant alignments.

Software such as FASTA and BLAST, starting from a query sequence:

Software such as FASTA and BLAST, starting from a query sequence:
first "fish" from databases a subset of sequences which are potential homologs

Software such as FASTA and BLAST, starting from a query sequence:
first "fish" from databases a subset of sequences which are potential homologs
then perform the best alignment of each sequence in the subset with the query sequence

FASTA: example

Step 1 = Division of the sequence in 2-letter words (k-tuples). Possible words: AC, CD, DD, DE, EF, FG, GS, SA, AT, TR, RM, MA, AS, ST, RK

Note. A typical value of k for DNA is 6

Step 2 = Table of word frequencies

Query: ACDDEFGSATRMASTRK
DB: Seq 1 LKDCDDAFSGSTLTLMRASRK
Seq 2 ACKRAEFSGSVTRMLSTRK
Seq 3 ACDDEFGLLLTRYTMASTRK

Word	Query	Seq 1	Seq 2	Seq 3	Off1	Off2	Off3
AC	1	-	1	1	-	0	0
CD	2	4	-	2	2	-	0
DD	3	5	-	3	2	-	0
DE	4	-	-	4	-	-	0
EF	5	-	6	5	-	1	0
FG	6	-	-	6	-	-	0
GS	7	10	9	-	3	2	-
SA	8	-	-	-	-	-	-
AT	9	-	-	-	-	-	-
TR	10	-	12,17	11	-	2,7	1
RM	11	-	13	-	-	2	-
MA	12	-	-	15	-	-	3
AS	13	18	-	16	5	-	3
ST	14	11	16	17	-3	2	3
RK	16	20	18	19	4	2	3

Step 3 = Similarity score calculation /nit1 (based on the Table at the step 2)

Query: ACDDEFGSATRMASTRK
DB: Seq 1 LKDCDDAFSGSTLTLMRASRK
Seq 2 ACKRAEFSGSVTRMLSTRK
Seq 3 ACDDEFGLLLTRYTMASTRK

Init1(seq2) based on this approximate alignment

Table of word frequencies

Word	Query	Seq 1	Seq 2	Seq 3	Off1	Off2	Off3
AC	1	-	1	1	-	0	0
CD	2	4	-	2	2	-	0
DD	3	5	-	3	2	-	0
DE	4	-	-	4	-	-	0
EF	5	-	6	5	-	1	0
FG	6	-	-	6	-	-	0
GS	7	10	9	-	3	2	-
SA	8	-	-	-	-	-	-
AT	9	-	-	-	-	-	-
TR	10	-	12,17	11	-	2,7	1
RM	11	-	13	-	-	2	-
MA	12	-	-	15	-	-	3
AS	13	18	-	16	5	-	3
ST	14	11	16	17	-3	2	3
RK	16	20	18	19	4	2	3

Step 4 = Similarity score calculation InitN (based on the alignment at step 3 and on the Table at step 2)

Query: ACDDEFGSATRMASTRK
DB: Seq 1 LKDCDDAFSGSTLTLMRASRK
Seq 2 ACKRAEFSGSVTRMLSTRK
Seq 3 ACDDEFGLLLTRYTMASTRK

\ln nitN(seq2) $=\ln$ nit1(seq2) + score(novel matches $)-\boldsymbol{K}($ gap $)$

Step 5 = Final alignment of the sequences with the best InitN score with the query sequence and calculation of the final score opt (score for the novel, complete alignment)

NOTE. The choice of the sequences subset in the DB with whom the optimal alignment is finally performed is based on the approximate scores Init1 \& InitN

FASTA

1. Divides the query sequence in 2-letter words (k-tuples).
2. Finds these words in the database sequences and calculates the offset
3. Calculates the similarity of the ten regions with most identical words for each sequence in the DB (init1)
4. Calculates the similarity of the ten regions with most identical words including penalization for insertions \& deletions
5. Accurately aligns the N sequences with best initN score \rightarrow obtaining opt

How good an alignment is?

How good an alignment is?

=
How better than a random alignment it is?

- (Unrelated) sequences which give a random alignment:
- Non-homologous sequences
- Shuffled sequences
- Randomly generated sequences
- Low complexity sequences

Low complexity

Low complexity

Low complexity regions in protein sequences have a highly biased amino acid composition, often repeats of proline, alanine, serine, glycine, leucine, and glutamic acid

Especially abundant in eukaryotic proteins

Are they homologous sequences? Evaluating the significance of the alignment

a) Generating a large number of random sequences with the same composition of the query seq ("shuffled" sequences)
b) Ripeting the similarity search on random of the DBs using as a query each of the random sequence
c) Calculating corresponding opt scores, their average value $M_{\text {random }}$ and their standard devation $\sigma_{\text {random }}$

Distribution of
random scores

Are they homologous sequences?
 Evaluating the significance of the alignment

Two sequences can be considered homologous if the optimal score (opt) for their alignment falls off the random scores distribution

Are they homologous sequences?
 Evaluating the significance of the alignment

4. Calculating the Z-score and the expectation value (E-value) for the aligment of the query sequence with its putative homologs

Are they homologous sequences?

Evaluating the significance of the alignment
4. Calculating the Z-score and the expectation value (E value) for the aligment of the query sequence with its putative homologs
Z-score = number of standard deviations which separate the query score (opt) from the average of the random scores
Z-score $(S)=\left(o p t_{\text {query }}-M_{\text {random }}\right) / \sigma_{\text {random }}$

average

$M_{\text {random }}=\frac{\sum\left(\text { opt }_{i}\right)}{n}$

standard deviation

$$
\sigma_{\text {random }}=\sqrt{\frac{\sum_{i}\left(o p t_{i}-M_{\text {random }}\right)}{n-1}}
$$

Are they homologous sequences? Evaluating the significance of the alignment

E-value $=$ expectation value: number of alignments with a score \geq S (o opt) that would be expected by chance by searching a complete database of size n (length of all sequences)

Indicates how probable is finding a score S by chance

E-value $=\kappa m n \exp (-\lambda S)$

Are they homologous sequences?
 Evaluating the significance of the alignment

E-value = expectation value: number of alignments with a score $\geq \mathrm{S}$ (o opt) that would be expected by chance by searching a complete database of size n (length of all sequences)

The lower, the better!
Statistical parameters, dipending on the matrix and the DB

size of the query (m) size of the database (n)

Are they homologous sequences? Evaluating the significance of the alignment

E-value = expectation value: number of alignments with a score \geq S (o opt) that would be expected by chance by searching a complete database
The typical threshold for a good E-value from a FASTA/BLAST search is $E=10^{-5}$ or lower

E-value $=\kappa m n \exp (-\lambda S)$

The probability of having by chance an alignment with a score $\geq S$ is given by:

$$
\left.P=1-\mathrm{e}^{(-k m n} \exp (-\lambda S)\right)
$$

Are they homologous sequences? Evaluating the significance of the alignment

It is possible to normalize the score:

$$
\begin{gathered}
\mathbf{s}^{\prime}=(\lambda \mathbf{S}-\mathbf{l n} \kappa) / \ln \mathbf{2} \\
\text { Bit-score }
\end{gathered}
$$

E-value $=\mathrm{mn} 2^{-s^{\prime}}$

The bit-score is independent from query sequence length and database size

Thus, it is possible to compare directly the obtained bit-scores from searches in different databases and with different matrices

FASTA

Tools > Sequence Similarity Searching > FASTA

Protein Similarity Search

This tool provides sequence similarity searching against protein databases using the FASTA suite of programs. FASTA provides a heuristic search with a protein query. FASTX and FASTY translate a DNA query. Optimal searches are available with SSEARCH (local), GGSEARCH (global) and GLSEARCH (global query, local database)

```
STEP 1 - Select your databases
PROTEIN DATABASES
1 Database Selected
X Clear Selection
UniProt Knowledgebase (The UniProt Knowledgebase includes UniProtKB/Swiss-Prot and
* UniProtKB/TrEMBL)
- _UniProtKB/Swiss-Prot (The manually annotated section of UniProtKB)
* UniProtKB/Swiss-Prot isoforms (The manually annotated isoforms of UniProtKB/Swiss-Prot)
* UniProtKB/TrEMBL (The automatically annotated section of UniProtKB)
- UniProtKB Reference Proteomes plus Swiss-Prot
- UniProtKB COVID-19
* UniProtKB Taxonomic Subsets
* UniProt Clusters
* Patents
* Structures
* Other Protein Databases
```

```
Enter or paste a PROTEIN v sequence in any supported format:
```

```
>NP_001382996.1 putative keratin-associated protein 4-16 [Homo sapiens]
MCSSKMPCSPSASSLCAASPPNCCHPSCCQTTCCRTTSCSHSCSVSSCCRPQCCHSVCCQPTCCRPSCCQ
TTCCRTTCCHPSCCVSSCCRPQCCHSVCFQPTCCHPSCCISSSCCPSCCESSCCCPCCCLRPVCGRVSCH
VTCYHPTCVISTCPHPLCCASPPLPLPFPSPPVPLPFFLSLALPSPPRPSPPLLSPVLIPSPSPSPSLPS
```

LSPPLPSPPLPSPHFPSVNPKSMLQ
or Upload a file: (Choose File) no file selected

no file selected

STEP 3 - Set your parameters

PROGRAM

STEP 4 - Submit your job

Be notified by email (Tick this box if you want to be notified by email when the results are available)

Tools $>$ Sequence Similarity Searching $>$ FASTA
Results for job fasta-I20220325-093358-0760-32105718-p2m

| Summary Table | Tool Output | Visual Output | Functional Predictions | Submission Details |
| :--- | :--- | :--- | :--- | :--- | :--- |

Selection:

```
Select All Invert Clear
```


Apply to selection:

Annotations:

Show Hide

Alignments:

> Show Hide

Entries:

Download in
fasta

format

Tools:

Launch

Clustal Omega

Align.	- DB:ID -	Source *	Length *	$\begin{aligned} & \text { Score } \\ & (\text { Bits }) \end{aligned}$	$\begin{aligned} & \text { Identities } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Positives } \\ & \% \end{aligned}$	E()
$\square 1$	SP:G5E9R7	Putative keratin-associated protein 4-16 OS=Homo sapiens OX=9606 $\mathrm{GN}=\mathrm{KRTAP} 4-16 \mathrm{PE}=5 \mathrm{SV}=1$ Cross-references and related information in: - Gene expression $>$ Nucleotide sequences $>$ Genomes \& metagenomes - Literature Samples \& ontologies Protein families - Protein expression data Protein sequences	235	219.0	100.0	100.0	3.8E-56
a^{2}	SP:Q9BQ66	Keratin-associated protein 4-12 OS=Homo sapiens OX=9606 $\mathrm{GN}=\mathrm{KRTAP4}-12 \mathrm{PE}=1 \mathrm{SV}=1$ Cross-references and related information in: - Gene expression $>$ Bioactive molecules $>$ Nucleotide sequences - Genomes \& metagenomes Literature \downarrow Samples \& ontologies - Molecular interactions Protein families Protein expression data - Protein sequences \boldsymbol{P} Diseases	201	133.6	81.4	89.4	1.6E-30
\square^{3}	SP:Q9BYR2	Keratin-associated protein 4-5 OS=Homo sapiens OX=9606 $\mathrm{GN}=\mathrm{KRTAP4} 4-5 \mathrm{PE}=1 \mathrm{SV}=4$	181	120.4	68.9	82.9	1.4E-26
$5{ }^{4}$	SP:Q9BYQ8	Keratin-associated protein 4-9 OS=Homo sapiens OX=9606 $\mathrm{GN}=\mathrm{KRTAP4}-9 \mathrm{PE}=2 \mathrm{SV}=2$ Cross-references and related information in: - Gene expression - Bioactive molecules $>$ Nucleotide sequences Genomes \& metagenomes Literature Samples \& ontologies - Protein families Protein expression data Reactions \& pathways - Protein sequences Diseases	210	119.7	69.9	83.1	2.5E-26
05	SP:Q9BYQ5	Keratin-associated protein 4-6 OS=Homo sapiens OX=9606 $\mathrm{GN}=\mathrm{KRTAP4-6} \mathrm{PE}=2 \mathrm{SV}=4$ Cross-references and related information in: Gene expression $>$ Bioactive molecules $>$ Nucleotide sequences Genomes \& metagenomes Literature $>$ Samples \& ontologies - Protein families Protein expression data Reactions \& pathways - Protein sequences Diseases	205	117.4	64.6	71.2	1.2E-25
0^{6}	SP:Q9BYG6	Keratin-associated protein 4-11 OS=Homo sapiens OX=9606 $\mathrm{GN}=$ KRTAP4-11 $\mathrm{PE}=1 \mathrm{SV}=2$ Cross-references and related information in: Gene expression Bioactive molecules Nucleotide sequences	195	117.3	62.6	72.1	1.3E-25

```
>>SP:Q9BQ66 KR412_HUMAN Keratin-associated protein 4-12
OS=Homo sapiens OX=9606 GN=KRTAP4-12 PE=1 SV=1 (201 aa)
    initn: 1297 init1: 1126 opt: 1142 z-score: 683.6 bits: 133.6 E(566996): 1.6e-30
Smith-Waterman score: 1142; 81.4% identity (89.4% similar) in 161 ad overlap (2-101:40-198)
    10 20 30
NP_001 MCSSKMPCSPSA-SSLCAASPPNCCHPSCCQ
    : . : :. .:.: :.::.:::::
SP:Q9B CSDQGCGLENCCRPSCCQTTCCRTTCCRPSCCVSSCCRPQCCQSVCCQ--PTCCRPSCCQ
\begin{tabular}{llllll}
10 & 20 & 30 & 40 & 50 & 60
\end{tabular}
\begin{tabular}{llllll}
40 & 50 & 60 & 70 & 80 & 90
\end{tabular}
NP_001 TTCCRTTSCSHSCSVSSCCRPQCCHSVCCQPTCCRPSCCQTTCCRTTCCHPSCCVSSCCR
```



```
SP:Q9B TTCCRTTCCRPSCCVSSCCRPQCCQSVCCQPTCCRPSCCQTTCCRTTCCRPSCCVSSCCR \(\begin{array}{llllll}70 & 80 & 90 & 100 & 110 & 120\end{array}\)
100 \begin{tabular}{llllll}
110 & 120 & 130 & 140 & 150
\end{tabular}
NP_001 PQCCHSVCFQPTCCHPSCCISSSCCPSCCESSCCCPCCCLRPVCGRVSCHVTCYHPTCVI
```



```
SP:Q9B PQCCQSVCCQPTCCRPSCCISSSCCPSCCESSCCRPCCCLRPVCGRVSCHTTCYRPTCVI
```

130
140
150
160
170
180

```
160 \begin{tabular}{llllll}
170 & 180 & 190 & 200 & 210
\end{tabular}
NP_001 STCPHPLCCASPPLPLPFPSPPVPLPFFLSLALPSPPRPSPPLLSPVLIPSPSPSPSLPS ::::.::::
SP:Q9B STCPRPLCCASSCC
190200
```


BLAST (Basic Local Alignment Search Tool)

1. Divides the query sequence in words (default, 3 aa)
2. Compares each word with regions of same size in the DB sequences and computes the score
3. If the score is \geq a threshold value \boldsymbol{T} below which the similarity is considered too low, extends the aligned region searching for high similarity regions (score above a second threshold value \boldsymbol{S}), stopping when the score cannot be improved anymore

BLAST Algorithm, Step 1

- Given a word of length w (usually 3 for proteins) \& a scoring/substitution matrix (es. BLOSUM62):

Create a list of all the words (w-letters) that give a score $>T$ sewhen compared with the query words of length w -

```
Query Sequence L N K C K T P Q G QRLVNQ
```

	PQG 18	Word
	PEG 15	
	PR G 14	Neighborhood
	P K G 14	
	P N G 13	
	P D G 13	
	P M G 13	
Below	P Q A 12	
Threshold $(\mathrm{T}=13)$	$\text { P Q N } 12$ etc.	

BLAST Algorithm, Step 2

- Identifies all the positions in the database where there is a word sufficiently similar (hit list).

BLAST Algorithm, Step 3

- The software attempts to extend the alignment in both directions adding pairs of residues. Residues are added until the score cannot be improved anymore. It considers only alignments with a score above the threshold value (S).

```
Query: 325 SLAALLNRCKTPQGQRLVNQWIKQPLMDKNRIEERINLUEA 365
    +LA++L+ TPGR++ +W+ P+ D + ER + A
Sbjct: 290 TLASVLDCTVTPMGSRMLKRULHMPVRDTRVLLERCOTIGA }33
```

High-scoring Segment Pair (HSP)
High Scoring Segment Pairs

BLAST \& FASTA differ in the way they "fish" putative homologs from the DB (similarity/identity).

BLAST \& FASTA differ in the way they "fish" putative homologs from the DB (similaritylidentity)

Furthermore a fundamental difference between BLAST \& FASTA is in the way they compute the distribution of random scores:

FASTA computes it each time a novel query is submitted for the search in a given DB

BLAST uses distributions precomputed on each DB for ensembles of random sequences of standard composition

BLAST e FASTA differ in the way they "fish" putative homologs from the DB (similarity/identity)

Furthermore a fundamental difference between BLAST \& FASTA is in the way they compute the distribution of random scores:

FASTA computes it each time a novel query is submitted for the search in a given DB

BLAST uses distributions precomputed on each DB for ensembles of random sequences of standard composition

For this reason BLAST "masks" the regions of query sequence at low complexity


```
old BLAST format (X)
novel BLAST format
    (small letters)
```


BLAST

Specialized searches

BLAST

BLAST

\oplus Besthits
 Θ Additional BLAST Hits

Select: All None Selected:0

BLAST

PSI-blast

(Position-Specific Iterative blast)

PSI-blast

(Position-Specific Iterative blast)

PSI-BLAST is a variation of BLAST that uses features of a particular protein family to identify related sequences in a protein database

In PSI-BLAST a profile or position-specific scoring matrix (PSSM) of a set of sequences is constructed from a multiple alignment of the highest-score hits found by the initial BLAST search

In the PSSM a high score is assigned to a highly conserved residue at a certain position while a negative score is assigned to other residues at that position

The profile generated is used to replace the substitution matrix in a subsequent BLAST search
Homologs search for E. coli thioredoxin

query ${ }^{(a)}$

PSI-BLAST

1^{a} iteration

Homologs search for E. coli thioredoxin

Homologs search for E. coli thioredoxin

a)
pactardetia con 21

results

PSI-BLAST

1^{a} iteration Fhifkardinar farroasd day 5 traptagcer <2ava 2idarur Craside canch joos mornal Whan
Kheath monlong
Ereep
Rabilt
Crickos
Dist jartald a dincaddan
 Cañchtabdy tar mangars Ricianar owenarin Mancapara crama

parphyra parpara a.onctiof Farrocas dav Straptocyour ciavalagarm
 Himan
Rheath monkery
Eacep
Ctiross
Dict jortald $=$ dincadfar
Dict yartali an dincaddeaz Dromatila malavoquatar Caseftabdy tir angarir vicisar oxemitia Marcapora crasia

Profile of

 results
Sequence logos

Profiles of multiple sequence alignments can be represented graphically in the form of sequence logos, easily showing the residue preference or conservation at particular positions, which point to a functional role

Examples from Web Logo
https://weblogo.berkeley.edu/logo.cgi

Homologs search for E. coli thioredoxin

(a)
vactardetia on 24

	践
results	$=$
PSI-BLAST	
	${ }^{\text {a }}$

Fiatardetia ond

parphyra parparia
 straptagoir ezava 2agarm
 Mrain
Rheath monkery
Eacep
Ctiross
Dact jartali a diacadfaz Dict yartali an dincaddeaz Drarcotila malasogartar Candetabdy tir angarir kazanar cocaniar

query

PSI-BLAST \rightarrow

$2^{\text {a }}$ iteration

For sequence identities below 30 \% PSI-BLAST allows to
correctly identify
a three-fold higher number of homologs as as compared to BLAST

Are homologs found for all the protein sequences?

Unique sequences, i.e. sequences with no significant match in homologs searches (BLAST hit with E-value $>10^{-3}$ or $>10^{-5}$ for alignments of <80 residues) are referred to as orphan ORFs or ORFans and, in particular, singleton ORFans

The percentage of singleton ORFans in each newly sequenced genome can be as high as 60\%

In addition to these unique ORFans, a large fraction of ORFs in each genome has homologs only in the same genome or in closely related genomes. These ORFs are referred to as paralogous and orthologous ORFans, respectively

1. Introduction to proteins. Different sequences correspond to different 3D structures. Specific structures determine specific functions.
2. Sequence alignment. We search for those that best reflect the evolutionary path. Based on sequence similarity we can infer homology (an evolutionary relationship)
3. Substitutions \& gaps. Substitution matrices allow to assign a score for the correspondence of different amino acids. It is necessary to penalize insertions and deletions (INDELs).
4. Homology search in databases. BLAST \& FASTA identify a subset of sequences from the databanks, align them to the query and compare the obtained score to a distribution of random scores.

[^0]: Example: pyruvate kinase contains an all- β nucleotide binding domain (blue), an α / β substrate binding domain (grey) and an $\alpha / \beta-$ regulatory domain (green) connected by linkers

