Natural Language Processing

On Logistic regression

LESSON 8

Logistic regression

Logistic Regression

- When we work with classification problems, the output is
- $y \in\{0,1\}$
- For a multi-class, $y \in\{0,1,2, \ldots, C\}$
- In theory, we could approach the problem as a regression problem, where the output is
- $y \in R$
- Let's discuss how (hypothetically) to approach sentiment analysis as a linear regression task. Recall
- $y \in\{0,1\}$

0: "Negative Class"
1: "Positive Class"

Linear Regression for Classification?

- Threshold classifier output $h_{\theta}(x)$ at 0.5
- If $h_{\theta}(x)>=0.5$, predict $y=1$
- If $h_{\theta}(x)<0.5$, predict $y=0$

Towards Logistic Regression

- Classification y $=0$ or 1
- $h_{\boldsymbol{\theta}}(\mathrm{x})=\boldsymbol{\theta}^{\boldsymbol{T}} \cdot \boldsymbol{x}$ can be >1 or <0
- Logistic regression
- $h_{\boldsymbol{\theta}}(\mathrm{x})=\mathrm{g}\left(\boldsymbol{\theta}^{\boldsymbol{T}} \cdot \boldsymbol{x}\right)$
- $0<=h_{\theta}(x)<=1$

LR model representation

- Goal: $0<=h_{\theta}(x)<=1$
- Logistic regression makes use of the sigmoid function which outputs a probability between 0 and 1
- $\mathrm{h}_{\boldsymbol{\theta}}(\mathrm{x})=\mathrm{g}\left(\boldsymbol{\theta}^{\boldsymbol{T}} \cdot \boldsymbol{x}\right)=\frac{1}{1+e^{-\boldsymbol{\theta}^{T} \cdot \boldsymbol{x}}}$
z
Sigmoid or Logistic function

Interpretation of model output

- $h_{\theta}(x)=$ estimated probability that $y=1$ on input x
- Example
- $\mathrm{x}=\left[\begin{array}{l}x_{0} \\ x_{1}\end{array}\right]=\left[\begin{array}{c}1 \\ \text { PosFreq }\end{array}\right]$
- then if $h_{\theta}(x)=0.7$ tell us that 70% is the chance the tweet is positive
- $h_{\theta}(x)=P(y=1 \mid x ; \theta)->$ probability that $y=1$, given x, parametrized by $\boldsymbol{\theta}$
- $P(y=0 \mid x ; \boldsymbol{\theta})+P(y=1 \mid x ; \boldsymbol{\theta})=1$, therefore $P(y=0 \mid x ; \boldsymbol{\theta})=1-P(y=1 \mid x ; \boldsymbol{\theta})$

Decision boundary

- $\mathrm{h}_{\boldsymbol{\theta}}(\mathrm{x})=\mathrm{g}\left(\boldsymbol{\theta}^{\boldsymbol{T}} \cdot \boldsymbol{x}\right)=\frac{1}{1+e^{-\boldsymbol{\theta}^{T} \cdot \boldsymbol{x}}}$

- predict $y=1$ if $h_{\boldsymbol{\theta}}(x)>=0.5 \Rightarrow \boldsymbol{\theta}^{\boldsymbol{T}} \cdot \boldsymbol{x}>=0$
- Predict $y=0$ if $h_{\theta}(x)<0.5 \Rightarrow \boldsymbol{\theta}^{\boldsymbol{T}} \cdot \boldsymbol{x}<0$

Decision Boundary

$$
h\left(x^{(i)}, \theta\right)=\frac{1}{1+e^{-\theta^{T} x^{(i)}}}
$$

Decision Boundary

- Predict $y=1$ if $-3+x_{1}+x_{2}>=0 \Leftrightarrow x_{1}+x_{2}>=3$

Non-linear Decision Boundary

- $h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} \boldsymbol{x}_{1}^{2}+\theta_{4} \boldsymbol{x}_{2}^{2}\right)$
$\cdot \theta=\left[\begin{array}{l}\theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{4}\end{array}\right]=\left[\begin{array}{c}-1 \\ \mathbf{0} \\ 0 \\ 1 \\ 1\end{array}\right]$
- Predict $y=1$ if $\quad-\mathbf{1}+\boldsymbol{x}_{\mathbf{1}}^{2}+\boldsymbol{x}_{\mathbf{2}}^{\mathbf{2}} \geq \mathbf{0}$

Cost Function

- Training set: $\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}$
- m samples $\quad x \in\left[\begin{array}{c}x_{0} \\ x_{1} \\ \ldots \\ \ldots \\ x_{n}\end{array}\right] \in R^{n+1} x_{0}=1, y \in\{0,1\}$
- $h_{\boldsymbol{\theta}}(\boldsymbol{x})=\frac{1}{1+e^{-\theta^{r} \cdot \boldsymbol{x}}}$
- How to choose parameters $\boldsymbol{\theta}$?

Cost function

- Linear regression: $\mathrm{J}(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$
- $\operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)=\frac{1}{2}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$
- $J(\boldsymbol{\theta})$ is non-convex with $h_{\boldsymbol{\theta}}(\boldsymbol{x})=\frac{1}{1+e^{-\boldsymbol{\theta}^{r} \cdot \boldsymbol{x}}}$

Logistic Regression cost function

- $\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}$
- Cost $=0$ if $y=1$ and $h_{\theta}(x)=1$
- but as $h_{\theta}(x) \rightarrow 0, \operatorname{Cos} t \rightarrow \infty$
- captures the intuition that if $h_{\theta}(x)=0$, it will penalize the learning algorithm by a very large cost
- (predict $\mathrm{P}(y=1 \mid x ; \theta)=0$, but $\mathrm{y}=1$)

Logistic regression cost function

- $\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}$

Simplifying the cost function

- $\mathrm{J}(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$
- $\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}$
- Since $y=0$ or 1 (always):
- $\operatorname{Cost}\left(h_{\theta}(x), y\right)=-y \log \left(h_{\theta}(x)\right)-(1-y) \log \left(1-h_{\theta}(x)\right)$

Logistic regression cost function

- $\mathrm{J}(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$
$=-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]$
- To fit parameters $\boldsymbol{\theta}$
- $\min _{\theta} J(\theta)$
- To make a prediction given a new x
- Output $h_{\theta}(\boldsymbol{x})=\frac{1}{1+e^{-\theta^{\prime} \cdot \boldsymbol{x}}}$

Gradient Descent

- $J(\boldsymbol{\theta})=-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]$
- min $J(\theta)$:

Repeat \{

$$
\theta_{j}:=\theta_{j}-\eta \frac{\partial}{\partial \theta_{j}} J(\theta) \text { (simultaneously update all } \theta_{j} \text {) }
$$

\}

$$
\frac{\partial}{\partial \theta_{j}} J(\theta)=\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

Minimizing the loss

- For logistic regression, the loss function is convex
- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
- The gradient of a function of many variables is a vector pointing in the direction of the greatest increase in a function
- Gradient Descent: Find the gradient of the loss function at the current point and move in the opposite direction

LR training

- To train LR function, the following procedure is performed
- Initialize the parameter theta
- compute the gradient to update theta
- calculate the cost until good enough

Logistic regression

- Given a tweet, you can transform it into a vector and run it through your sigmoid function to get a prediction

Testing the LR classifier

- Compute the LR prediction on each tweet from a test set and compare it to corresponding label

$$
\begin{aligned}
& y_{v a l}^{(i)}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
1
\end{array}\right] \quad \operatorname{pred}^{(i)}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right] \\
& \text { Accuracy } \longrightarrow \sum_{i=1}^{m} \frac{\left(\text { pred }^{(i)}==y_{v a l}^{(i)}\right)}{m}
\end{aligned}
$$

Multiclass Classification

- Sentiment analysis: Positive, Negative, Neutral
- Email foldering/tagging: Work, Friends, Family, Hobby

Multi-class classification:

One-vs-all

Class 2: \square
Class 3: \mathbf{X}

$$
h_{\theta}^{(i)}(x)=\mathrm{P}(y=i \mid x ; \theta)(i=1,2,3)
$$

One-vs-all

- Train logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that $y=i$
- On a new input x to make a prediction, pick the class i that maximizes
- $\max _{i} h_{\theta}^{(i)}(x)$

