
On Logistic regression

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 8

Natural Language Processing

Logistic regression

Parameters

Supervised ML (training)

Prediction
Function Output

Labels

Features
Cost
Output

vs
Label

Logistic Regression

• When we work with classification problems, the output is
• 𝑦 ∈ {0,1}
• For a multi-class, 𝑦 ∈ {0,1,2, … , 𝐶}

• In theory, we could approach the problem as a regression problem, where the
output is
• 𝑦 ∈ 𝑅

• Let’s discuss how (hypothetically) to approach sentiment analysis as a linear
regression task. Recall

• 𝑦 ∈ {0,1}
0: “Negative Class”

1: “Positive Class”

Linear Regression for Classification?

1: Yes

0: No
X X X X X

X X X X X X X

Positive ?

Positive frequencies

• Threshold classifier output hθ(x) at 0.5
• If hθ(x) >= 0.5, predict y = 1
• If hθ(x) < 0.5, predict y = 0

hθ(x) = 𝜽𝑻 " 𝒙

0.5

X

Towards Logistic Regression

• Classification y = 0 or 1
• hθ(x) = 𝜽𝑻 " 𝒙 can be > 1 or < 0

• Logistic regression
• hθ(x) = g(𝜽𝑻 " 𝒙)
• 0 <= hθ(x) <= 1

LR model representation

• Goal: 0 <= hθ(x) <= 1

• Logistic regression makes use of the sigmoid function which outputs a
probability between 0 and 1

• hθ(x) = g(𝜽𝑻 " 𝒙) = !
!"#!𝜽

𝑻#𝒙 0.5

1

0

g(z)

z
Sigmoid or Logistic function

Interpretation of model output

• hθ(x) = estimated probability that y = 1 on input x
• Example

• x =
𝑥!
𝑥" =

1
𝑃𝑜𝑠𝐹𝑟𝑒𝑞

• then if hθ(x) = 0.7 tell us that 70% is the chance the tweet is positive

• hθ(x) = P(y = 1|x;θ) -> probability that y = 1, given x, parametrized by θ

• P(y = 0|x; θ) + P(y = 1|x; θ) = 1, therefore P(y = 0|x; θ) = 1 - P(y = 1|x; θ)

Decision boundary

• hθ(x) = g(𝜽𝑻 " 𝒙) = !
!"#!𝜽

𝑻#𝒙

• predict y = 1 if hθ(x) >= 0.5 ⟹𝜽𝑻 " 𝒙 >= 0
• Predict y = 0 if hθ(x) < 0.5 ⟹𝜽𝑻 " 𝒙 < 0

0.5

1
g(z)

z𝒛 = 𝜽𝑻 3 𝒙
𝒈 𝒛 ≥ 𝟎. 𝟓 𝒘𝒉𝒆𝒏 𝒛 ≥ 𝟎
𝒈 𝒛 < 𝟎. 𝟓 𝒘𝒉𝒆𝒏 𝒛 < 𝟎

Decision Boundary
Overview of logistic regression

Decision Boundary

1 2 3

1

2

3

x2

x1

• Predict y = 1 if -3 + x1 +x2 >= 0 ⟺ x1+x2>=3

hθ(𝒙) = g(𝜽𝟎+ 𝜽𝟏𝒙𝟏+ 𝜽𝟐𝒙𝟐)

𝜽 =
𝜽𝟎
𝜽𝟏
𝜽𝟐

=
−𝟑
𝟏
𝟏

x1+x2=3 hθ(𝒙) = 0.5

y=1

y=0

Non-linear Decision Boundary

1

1

-1

-1

y=1

y=0

• hθ(𝒙) = g(𝜽𝟎+ 𝜽𝟏𝒙𝟏+ 𝜽𝟐𝒙𝟐+ 𝜽𝟑𝒙𝟏𝟐+ 𝜽𝟒𝒙𝟐𝟐)

• 𝜽 =

𝜽𝟎
𝜽𝟏
𝜽𝟐
𝜽𝟑
𝜽𝟒

=

−𝟏
𝟎
𝟎
𝟏
𝟏

• Predict y =1 if - 𝟏 + 𝒙𝟏𝟐+ 𝒙𝟐𝟐 ≥ 𝟎

Cost Function

• Training set: 𝑥(!), 𝑦(!) , 𝑥(*), 𝑦(*) , … , 𝑥(+), 𝑦(+)

• m samples 𝑥 ∈

𝒙𝟎
𝒙𝟏
…
…
𝒙𝒏

∈ 𝑅,"! 𝒙𝟎 =1, 𝑦 ∈ {0,1}

• hθ(𝒙) = !
!"#!𝜽

𝑻#𝒙

• How to choose parameters θ?

Cost function

• Linear regression: J(θ) = !
+
∑-.!+ !

*
ℎ/ 𝑥(-) − 𝑦(-)

*

• Cost(ℎ/ 𝑥(-) , 𝑦(-)) = !
*
ℎ/ 𝑥(-) − 𝑦(-) *

• J(θ) is non-convex with hθ(𝒙) = !
!"#!𝜽

𝑻#𝒙

Logistic Regression cost function

• Cost(ℎ(𝑥 , 𝑦) =$
−𝑙𝑜𝑔 ℎ(𝑥 𝑖𝑓 𝑦 = 1
− log 1 − ℎ(𝑥 𝑖𝑓 𝑦 = 0

• 𝐶𝑜𝑠𝑡 = 0 if 𝑦 = 1 and ℎ(𝑥 = 1
• but as ℎ& 𝑥 → 0, 𝐶𝑜𝑠𝑡 → ∞
• captures the intuition that if ℎ& 𝑥 = 0, it will penalize the learning algorithm by a

very large cost
• (predict P(𝑦 = 1 | 𝑥; 𝜃) = 0, but y =1)

0 1ℎ# 𝑥

𝑖𝑓 𝑦 =1

Logistic regression cost function

• Cost(ℎ/ 𝑥 , 𝑦) =9
−𝑙𝑜𝑔 ℎ/ 𝑥 𝑖𝑓 𝑦 = 1
− log 1 − ℎ/ 𝑥 𝑖𝑓 𝑦 = 0

ℎ# 𝑥

𝑖𝑓 𝑦 = 0

Simplifying the cost function

• J(θ) = !
+
∑-.!+ Cost(ℎ/ 𝑥(-) , 𝑦(-))

• Cost(ℎ/ 𝑥 , 𝑦) =9
−𝑙𝑜𝑔 ℎ/ 𝑥 𝑖𝑓 𝑦 = 1
− log 1 − ℎ/ 𝑥 𝑖𝑓 𝑦 = 0

• Since y = 0 or 1 (always):

• Cost(ℎ/ 𝑥 , 𝑦) = −𝑦 𝑙𝑜𝑔 ℎ/ 𝑥 − (1 − 𝑦)𝑙𝑜𝑔 1 − ℎ/ 𝑥

Logistic regression cost function

• J(θ) = !
+
∑-.!+ Cost(ℎ/ 𝑥(-) , 𝑦(-))

=- !
+
[∑-.!+ 𝑦(-)𝑙𝑜𝑔 ℎ/ 𝑥(-) + (1 − 𝑦(-))𝑙𝑜𝑔 1 − ℎ/ 𝑥(-)]

• To fit parameters θ
• min

θ
𝐽(θ)

• To make a prediction given a new x
• Output hθ(𝒙) = "

")*!𝜽
𝑻#𝒙

Gradient Descent

• J(θ) =- !
+
[∑-.!+ 𝑦(-)𝑙𝑜𝑔 ℎ/ 𝑥(-) + (1 − 𝑦(-))𝑙𝑜𝑔 1 − ℎ/ 𝑥(-)]

• min
θ

𝐽(θ):

Repeat {

𝜃0 ≔ 𝜃0-𝜂
1
1/'

𝐽(𝜃) (simultaneously update all 𝜃0)

}
𝜕
𝜕𝜃0

𝐽 𝜃 =
1
𝑚N

-.!

+

ℎ/ 𝑥(-) − 𝑦(-) 𝑥0
(-)

Minimizing the loss

• For logistic regression, the loss function is
convex

• A convex function has just one minimum

• Gradient descent starting from any point is
guaranteed to find the minimum

• The gradient of a function of many variables is a
vector pointing in the direction of the greatest
increase in a function

• Gradient Descent: Find the gradient of the loss
function at the current point and move in the
opposite direction

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

θ

LR training

Training LR

Until good
enough

Initialize
parameters

Classify/predict

Get gradient

Update

Get Loss

• To train LR function, the following procedure is performed
• Initialize the parameter theta
• compute the gradient to update theta
• calculate the cost until good enough

𝜼

Vectorized expression

of the gradient

Logistic regression

Overview of logistic regression
@YMourri and
@AndrewYNg are tuning a
GREAT AI model

[tun, ai, great,
model]

4.92

@AntSta and @UniParthNLPStud are

tuning a GREAT AI model at

https://neptunia.uniparthenope.it!!!

• Given a tweet, you can transform it into a vector and run it through your
sigmoid function to get a prediction

Testing the LR classifier

0
1
1
0
1

0
1
0
0
1

• Compute the LR prediction on each tweet from a test set and
compare it to corresponding label

𝑦!"#
(%) = 𝑝𝑟𝑒𝑑(%)=

Multiclass Classification

• Sentiment analysis: Positive, Negative, Neutral

• Email foldering/tagging: Work, Friends, Family, Hobby

Andrew(Ng(

x1(

x2(

x1(

x2(

Binary(classifica&on:(Mul&`class(classifica&on:(

One-vs-all

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

Andrew(Ng(

x1(

x2(

One?vs?all+(one?vs?rest):+

Class(1:(
Class(2:(
Class(3:(

x1(

x2(

x1(

x2(

x1(

x2(

ℎ/
- (𝑥)=P(𝑦 = 𝑖|𝑥; 𝜃) (𝑖 = 1,2,3)

ℎ!
" (𝑥)

P(𝑦 = 1|𝑥; 𝜃)

ℎ!
(𝑥)

P(𝑦 = 2|𝑥; 𝜃)

ℎ!
$ (𝑥)

P(𝑦 = 3|𝑥; 𝜃)

One-vs-all

• Train logistic regression classifier ℎ/
- (𝑥) for each class 𝑖 to predict

the probability that 𝑦 = 𝑖
• On a new input x to make a prediction, pick the class 𝑖 that

maximizes

• max
5
ℎ#
5 (𝑥)

