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Text classification

• Focus on text categorization or classification
• The task of assigning a label or category to an entire text or document

• Many language processing tasks involve classification
• Sentiment Analysis
• Spam detection
• Language id
• Authorship’s attribution
• Assigning a library subject category to a text



Sentiment Analysis

• Extraction of sentiment
• The positive or negative orientation that a writer expresses toward some object

• A review of a movie, book, or product on the web
• An editorial or political text, expressing a sentiment toward a candidate or political 

action

• Relevant for extracting consumer or public sentiment for fields from 
marketing to politics

• The words of reviews provide cues on sentiments
+ …characters and richly applied satire, and some great plot twists
- It was pathetic. The worst part about it was the boxing scenes …
+ …awesome caramel sauce and sweet toasty almonds. I love this place!
- … awful pizza and ridiculously overpriced …



Sentiment Analysis 

• Let’s suppose you have 1.000 product reviews, i.e., pieces of text 
written by users

• Goal: To build  a system to automatically determine what fraction 
of them are positive vs negative reviews

• A classification problem where:
• A sample text is labeled as a positive sentiment or negative sentiment



Sentiment Analysis as a classification task

Parameters

Supervised ML (training)

Prediction 
Function Output

Labels

Features
Cost
Output 

vs 
Label

• Supervised ML 
• given input features X and their labels Y

• Goal: minimize the cost as much as possible through a learning process
• A  prediction function takes in parameters data to map features to output labels
• the best mapping from features to labels is achieved when the 

difference between the expected and predicted values  is minimized



Discriminative vs Generative classifiers

• Given a training set of documents each hand-labeled with a class 
• (d1,c1), (d2, c2), …, (dN, cN)

• A probabilistic (generative) classifier maps a new document d to its correct 
class c ∈C, providing us with the probability of the observation being in the 
class
• Builds a model of how a class could generate some input data

• Given an observation, it returns the class most likely to have generated the observation

• A discriminative classifier learns what features from the input are most 
useful to discriminate between the different possible classes

• We’re going to use logistic regression (discriminative) and naïve Bayes 
(generative) for our task



Sentiment Analysis as a classification task

• Tweet: I am happy because I am learning NLP

Positive: 1

Negative: 0

Logistic Regression



Steps for Sentiment Analysis with LR

Sentiment analysis

I am happy 
because I am 
learning NLP

Train 
LR Classify Positive: 1

I am happy 
because I am 
learning NLP

Positive: 1

• To perform sentiment analysis on a tweet
1. Represent the text (i.e., "I am happy because I am learning NLP") as features 
2. Train an LR classifier
3. use LR to classify the text



Vocabulary & text representation
Sentiment Analysis



Vocabulary

• In order to feed tweets into the LR classifier, we need to represent the 
text as a vector

• Firstly, we build  a vocabulary V that makes it possible to encode any 
text or tweet as an array of numbers

• V would be the list of unique words from your list of tweet

• Example
• Tweets: [tweet_1, tweet_2, …, tweet_m]

• V = [I, am, happy, because, NLP, …, hated, the, movie]

Vocabulary

I am happy because I am learning 
NLP

I hated the movie

[ I, am, happy, because, learning, NLP, hated, the, movie ]...

......

...
Tweets: 
[tweet_1, tweet_2, ..., tweet_m]



Text representation

Feature extraction

I am happy because I am learning NLP

[ I , am, happy, because, learning, NLP, hated, the, movie ]...

[ 1, 1, 1, 1, 1, 1, 0, 0, 0 ]...

A Ѵot of zeros! That’s a sparse representation.

• The vocabulary is used to represent the tweets
• For every tweet, scan every word from the vocabulary and put a 1 if it 

appears in the tweet, 0 otherwise (BoW)

• Note: this type of representation with a small number of non-zero values is 
called a sparse representation



Problems with sparse representation

• If n = |V|, with the sparse representation, a logistic regression 
model would have to learn n+1 parameters

• For large vocabulary sizes:
• Large training time
• Large time for predictionsFeature extraction

I am happy because I am learning NLP

[ I , am, happy, because, learning, NLP, hated, the, movie ]...

[ 1, 1, 1, 1, 1, 1, 0, 0, 0 ]...

A Ѵot of zeros! That’s a sparse representation.

[1 1 1 1 1 1 … 0 … 0 0 0]

1 |V|
all zeros



Negative and Positive frequencies
Sentiment Analysis



Positive and Negative frequency
• A better representation could be obtained by a frequency count of the vocabulary for each 

class of tweets 

• Example
• Let’s suppose to have a corpus consisting of four tweets and associated with that corpus, a set of 

unique words, i.e., the vocabulary V
• |V|=8

• Two positive tweets and two negative tweets

• Count the times any word in V appears in the positive tweets and negative tweets
Positive and negative counts

Vocabulary
I

am
happy

because
learning

NLP
sad
not

I am happy because I am learning 
NLPI am happy 

I am sad, I am not learning NLP 

I am sad

Corpus

I am happy because I am learning NLP

I am happy

I am sad, I am not learning NLP

I am sad

Corpus
I  am happy because I  am learning NLP

I am happy

I am sad, I  am not learning NLP

I am sad

Posit ive tweets

Negative tweets



Positive and Negative frequency

• Given a corpus with positive and negative tweets as follows:

• Create a dictionary to map the word and the class it appeared in 
(positive or negative)



Word frequencies in classes

• Create a dictionary to map the word, and the class it appeared in 
(positive or negative)

Word frequency in classes
Vocabulary

I
am

happy
because
learning

NLP
sad
not

PosFreq (1)
3
3
2
1
1
1
0
0

NegFreq (0)
3
3
0
0
1
1
2
1

freqs: dictionary mapping from 
(word, class) to frequency



Feature extraction with frequencies

• Encode a tweet as a 3D-vectorSummary 

վ Dictionary mapping (word,class) to frequencies

➔ Cleaning unimportant information from your tweetsFeatures of tweet m

Bias

Sum Pos Frequencies
Sum Neg Frequencies



Feature extraction with frequencies

• Encode the positive feature:



Feature extraction with frequencies

• Encode the negative feature

• Tweet I am sad, I am not learning -> [1,8,11], where 1 is for the bias, 8 the 
positive feature, and 11 the negative feature 



Feature extraction

• Tweet I am sad, I am not learning -> [1,8,11], where 1 is for the bias, 8
the positive feature, and 11 the negative feature 

Feature extraction
I am sad, I am not learning NLP



Preprocessing
Sentiment Analysis



Tweet preprocessing

• When working with any text corpus the first step to accomplish is a 
preprocessing step where the text is clean of unmeaningful information 

• That’s true also for tweet corpus

• When preprocessing, the following steps are performed
1. Eliminate handles and URLs
2. Tokenize the string into words
3. Remove stop words like “and, is, a, on, etc.”
4. Stemming or converting every word to its stem, e.g., dancer, dancing, danced, 

becomes 'danc'
5. Convert all your words to lowercase



Stop words and punctuation

Preprocessing: stop words and punctuation

@YMourri and @AndrewYNg are 
tuning a GREAT AI model at 
https://deeplearning.ai!!!

Punctuation
,
.
:
!
“
‘

Stop words
and
is

are
at

has
for
a

• Let’s consider the following tweet

@AntSta and @UniParthNLPStud are tuning a GREAT AI 

model at https://neptunia.uniparthenope.it!!!



Stop words and punctuaction

Preprocessing: stop words and punctuation

@YMourri and @AndrewYNg are 
tuning a GREAT AI model at 
https://deeplearning.ai!!!

Stop words
and
is

are
at

has
for
a

Punctuation
,
.
:
!
“
‘

@YMourri @AndrewYNg tuning 
GREAT AI model 
https://deeplearning.ai!!!

@AntSta and @UniParthNLPStud are 

tuning a GREAT AI model at

https://neptunia.uniparthenope.it!!!

@AntSta @UniParthNLPStud tuning 

GREAT AI model 

https://neptunia.uniparthenope.it!!!



Stop words and punctuation

Preprocessing: stop words and punctuation

Stop words
and
is
a
at

has
for
of

Punctuation
,
.
:
!
“
‘

@YMourri @AndrewYNg tuning 
GREAT AI model 
https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning 
GREAT AI model 
https://deeplearning.ai

@AntSta @UniParthNLPStud tuning 

GREAT AI model 

https://neptunia.uniparthenope.it!!!

@AntSta @UniParthNLPStud tuning 

GREAT AI model 

https://neptunia.uniparthenope.it



Handles and URLs

@AntSta @UniParthNLPStud tuning 

GREAT AI model 

https://neptunia.uniparthenope.it

tuning GREAT AI model



Stemming and lowercasing
tuning GREAT AI model

tun

tune

tuned

tuning

GREAT

Great

great
great

ste
mming

lowercasing

Preprocessed tweet: [tun, great, ai, model]



General overview
Sentimental Analysis



Until now

• Given a text
• perform preprocessing followed by a feature extraction step to convert  text into 

numerical representation

I am Happy Because I am learning NLP @UniparthNLP

[happy, learn, nlp]

[1, 4, 2]Bias

Sum Pos Freq

Sum Neg Freq



General overview

I am Happy Because I am learning

NLP @UniparthNLP

I am sad not learning NLP 

I am sad :(

…

[happy, learn, nlp]

[sad, not, learn, nlp]

[sad]

…

[1,40,20]

[1,20,50]

[1,5,35]

…

• The previous process is performed on a set of m tweets



Numerical representation of tweets corpus
• This way we get a matrix of features for all m tweets, i.e., a mx3 

matrix:

• X will be the input of a LR model

[1,40,20]

[1,20,50]

[1,5,35]

…



Logistic regression

Parameters

Supervised ML (training)

Prediction 
Function Output

Labels

Features
Cost
Output 

vs 
Label



Logistic regression

• Input observation
• vector  x = [x1, x2,…, xn]

• Weights (one per feature)
• θ = [θ1, θ2,…, θn]

• Output
• a predicted class "𝑦 Î {0,1}



How to do the classification

• For each feature xi, weight θi tells us the importance of xi
• (Plus, we'll have a bias b)

• All the weighted features and the bias are summed up

ℎ = #
!"#

$%&

𝜃!𝑥! + 𝑏 = 𝜽 ) 𝒙 + 𝑏

• If this sum is high, we say h=1; if low, then h=0



Making the LR’s output a probability

•We need to formalize “the sum is high”
•We’d like a principled classifier that gives us a probability 
•We want a model that can tell us:

p(y=1|x; θ)
p(y=0|x; θ)

• Solution: use a function of h that goes from 0 to 1



Logistic regression

Overview of logistic regression

• Logistic regression makes use of the sigmoid function which outputs a 
probability between 0 and 1 



Where do θ’s come from?

• Supervised classification: 

• We know the correct label y (either 0 or 1) for each x

• But what the system produces is an estimate, +𝑦
• We want to set θ and b to minimize the distance between our 

estimate +𝑦(i) and the true y(i)

• We need a distance estimator
• a loss function or a cost function

• We need an optimization algorithm to update θ and b to minimize 
the loss



Cross-Entropy Loss

• A case of conditional maximum likelihood estimation
• We choose the parameters 𝜃, b that maximize 

• The log probability …
• of the true y labels in the training data …
• given the observation x



Cross-entropy loss

• Goal: maximize the probability of the correct label p(y/x)

• Since there are only 2 discrete outcomes (0 or 1) we can express 
the probability p(y/x) from our classifier as

• Noting:
• If y=1, this simplifies to "𝑦
• If y=0, this simplifies to 1- "𝑦
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the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right



Cross-entropy loss

• Now take the log of both sides (mathematically handy)

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
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Stochastic Gradient Descent

• Let's make explicit that the loss function is parameterized by 
weights 𝛳

• we’ll represent "𝑦 as h (x; θ ) to make the dependence on θ more obvious

• We want the weights that minimize the loss, averaged over all 
examples:

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE( f (x(i);q),y(i)) (5.13)h



Minimizing the loss

• For logistic regression, the loss function is 
convex

• A convex function has just one minimum

• Gradient descent starting from any point is 
guaranteed to find the minimum
• The gradient of a function of many variables is a 

vector pointing in the direction of the greatest 
increase in a function

• Gradient Descent: Find the gradient of the loss 
function at the current point and move in the 
opposite direction

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =

2

66664

∂
∂w1

L( f (x;q),y)
∂

∂w2
L( f (x;q),y)

...
∂

∂wn
L( f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)

θ



Gradient descent

• The value of the gradient '
'(
𝐿(ℎ 𝑥; 𝜃 , 𝑦) weighted by a learning 

rate η
• A higher learning rate means move 𝜃 faster

𝜃)*& = 𝜃) − 𝜂
𝑑
𝑑𝜃 𝐿 ℎ 𝑥; 𝜃 , 𝑦



LR training

Training LR

Until good 
enough

Initialize 
parameters

Classify/predict

Get gradient

Update 

Get Loss

• To train LR function, the following procedure is performed
• Initialize the parameter theta
• compute the gradient to update theta
• calculate the cost until good enough

𝜂



Logistic regression

Overview of logistic regression
@YMourri and 
@AndrewYNg are tuning a 
GREAT AI model 

[tun, ai, great, 
model]

4.92

@AntSta and @UniParthNLPStud are 

tuning a GREAT AI model at 

https://neptunia.uniparthenope.it!!!

• Given a tweet, you can transform it into a vector and run it through your 
sigmoid function to get a prediction 



Testing the LR classifier

0
1
1
0
1

0
1
0
0
1

• Compute the LR prediction on each tweet from a test set and 
compare it to corresponding label

𝑦!"#
(%) = 𝑝𝑟𝑒𝑑(%)=


