Natural Language Processing

Text Classification: Sentiment Analysis

LESSON 7

prof. Antonino Staiano

M.Sc. In “"Machine Learning e Big Data” - University Parthenope of Naples

Text classification

* Focus on text categorization or classification
* The task of assigning a label or category to an entire text or document

* Many language processing tasks involve classification
* Sentiment Analysis
* Spam detection
* Language id
* Authorship’s attribution
* Assigning a library subject category to a text

Sentiment Analysis

» Extraction of sentiment

* The positive or negative orientation that a writer expresses toward some object
« A review of a movie, book, or product on the web

 An editorial or political text, expressing a sentiment toward a candidate or political
action

 Relevant for extracting consumer or public sentiment for fields from
marketing to politics

* The words of reviews provide cues on sentiments

+ ...characters and richly applied satire, and some great plot twists

- It was pathetic. The worst part about it was the boxing scenes ...

+ ...awesome caramel sauce and sweet toasty almonds. | love this place!
- ... awful pizza and ridiculously overpriced ...

Sentiment Analysis

* Let's suppose you have 1.000 product reviews, i.e., pieces of text
written by users

* Goal: To build a system to automatically determine what fraction
of them are positive vs negative reviews

* A classitfication problem where:
* A sample text is labeled as a positive sentiment or negative sentiment

Sentiment Analysis as a classification task

* Supervised ML

* given input features X and their labels Y

» Goal: minimize the cost as much as possible through a learning process
* A prediction function takes in parameters data to map features to output labels

* the best mapping from features to labels is achieved when the
difference between the expected and predicted values is minimized

e Cost
Features rediction _, output —— output
Function ~ B
X Y Label Y
Labels |
Y

Discriminative vs Generative classifiers

* Given a training set of documents each hand-labeled with a class
* (dy,ci) (dz c2), ..., (A, cn)
* A probabilistic (generative) classifier maps a new document dto its correct
class c € C, providing us with the probability of the observation being in the

class

* Builds a model of how a class could generate some input data
« Given an observation, it returns the class most likely to have generated the observation

A discriminative classifier learns what features from the input are most
useful to discriminate between the different possible classes

* We're going to use logistic regression (discriminative) and nalve Bayes
(generative) for our task

Sentiment Analysis as a classification task

Positive: 1

* Tweet: | am happy because | am learning NLP <

!

Logistic Regression

Negative: 0

Steps for Sentiment Analysis with LR

* To perform sentiment analysis on a tweet
1. Represent the text (i.e., "I am happy because | am learning NLP") as features
2. Train an LR classifier
3. use LR to classify the text

lam happy Train . .
because | am == X LR Classify | === Positive: |

learning NLP

Sentiment Analysis

Vocabulary & text representation

Vocabulary

* In order to feed tweets into the LR classifier, we need to represent the
text as a vector

* Firstly, we build a vocabulary V that makes it possible to encode any
text or tweet as an array of numbers

* V would be the list of unique words from your list of tweet

* Example ;taLLEh_aQD_\/lLaus_e | am learning
* Tweets: [tweet_1, tweet_2, ..., tweet_m] —

| hated the movie

* V =[l, am, happy, because, NLP, ..., hated, the, movie]
LG O N ——

Text representation

* The vocabulary is used to represent the tweets

* For every tweet, scan every word from the vocabulary and put a 1 if it
appears in the tweet, 0 otherwise (BoW)

| am happy because | am learning NLP

[I, am, happy, because, learning, NLP, ... hated, the, movie]
Ll l | I T
[1, 1, 1, 1, 1, 1, | .. 0, 0, 0]

* Note: this type of representation with a small number of non-zero values is
called a sparse representation

Problems with sparse representation

* If n = |V|, with the sparse representation, a logistic regression
model would have to learn n+1 parameters

* For large vocabulary sizes:
* Large training time
* Large time for predictions

| am happy because | am learning NLP

[111111...?...000]

i
1 V|

m=) 3|l zeros

Sentiment Analysis

Negative and Positive frequencies

Positive and Negative frequency

A better representation could be obtained by a frequency count of the vocabulary for each
class of tweets
* Example

* Let's suppose to have a corpus consisting of four tweets and associated with that corpus, a set of
unique words, i.e., the vocabulary V

* VI=8

+ Two positive tweets and two negative tweets

« Count the times any word in V appears in the positive tweets and negative tweets Vocabulary
|
Corpus Positive tweets
P) | am happy because | am learning NLP am
| am happy because | am learning NLP | am happy happy
I am happy because
| am sad, | am not learning NLP Negati learning
egative tweets NLP
I am sad | am sad, | am not learning NLP sad
| am sad not

Positive and Negative frequency

* Given a corpus with positive and negative tweets as follows:

Positive tweets Negative tweets
| am happy because | am learning NLP | am sad, | am not learning NLP
| am happy | am sad

* Create a dictionary to map the word and the class it appeared in
(positive or negative)

Word frequencies in classes

* Create a dictionary to map the word, and the class it appeared in
(positive or negative)

Vocabulary PosFreq (1) NegFreq (0)

I 3 3

am 3 3 : dictionary mapping from

happy 2 0 (word, class) to frequency

because 1 o)
learning 1 1
NLP 1 1
sad o) 2
not o) 1

Feature extraction with frequencies

* Encode a tweet as a 3D-vector

Xm =1, Zf?“eqs(w, 1), Zfreqs(w, 0)]
ot

Feat ft t S Neg F [
eatures of tweet m Sum Pos Frequencies um Neg Frequencies

Bias

Feature extraction with frequencies

* Encode the positive feature:

Vocabulary PosFreq (1) | am sad, | am not learning NLP

I
am

3
o Xy = TI.Z,/'/‘(75 (w, 1)2 (w, 0)]
w

.

8

learning
NLP
sad
not

e le I

Feature extraction with frequencies

* Encode the negative feature

Vocabulary NegFreq (0) | am sad, | am not learning NLP

| S
am 3

X = IZ (w, ».Zf/'(75(w, 0)]

w
learning 1 l
NLP 1
sad 2 11
not 1

* Tweet | am sad, | am not learning -> [1,8,11], where 1 is for the bias, 8 the
positive feature, and 11 the negative feature

Feature extraction

* Tweet | am sad, | am not learning -> [1,8,11], where 1 is for the bias, 8
the positive feature, and 11 the negative feature

| am sad, | am not learning NLP

Xm =11, Zf?“eqs(w, 1), Zf?“eqs(w, 0)]
w l w

Xm — [1, 87 11]

Sentiment Analysis

Preprocessing

Tweet preprocessing

* When working with any text corpus the first step to accomplish is a
preprocessing step where the text is clean of unmeaningful information

* That's true also for tweet corpus

* When preprocessing, the following steps are performed
1. Eliminate handles and URLs
2. Tokenize the string into words
3. Remove stop words like “and, is, a, on, etc.”
4

Stemming or converting every word to its stem, e.g., dancer, dancing, danced,
becomes 'danc'

5. Convert all your words to lowercase

Stop words and punctuation

* Let’s consider the following tweet

@AntSta and @UniParthNLPStud are tuning a GREAT Al
model at https://neptunia.uniparthenope.it!!!

Stop words Punctuation
and
is
are :
at !
has ¢

for
a

Stop words and punctuaction

@AntSta ard @UniParthNLPStud are
Stop words
tuning & GREAT Al model at and

is
are

_at
l has

for

https://neptunia.uniparthenope.it!!!

a

@AntSta @UniParthNLPStud tuning
GREAT Al model
https://neptunia.uniparthenope.it!!!

Stop words and punctuation

@AntSta @UniParthNLPStud tuning
GREAT Al model Punctuation

https://neptunia.uniparthenope.itb+ .
@AntSta @UniParthNLPStud tuning
GREAT Al model

https://neptunia.uniparthenope.it

Handles and URLs

@ARtSta-@UntParthNEPStud tuning
GREAT Al model

.

tuning GREAT Al model

Stemming and lowercasing

tuning GREAT Al model

B tun B GREAT
tun==== — tuned — Great ™= great
tuning _ great

x

Preprocessed tweet: [tun, great, ai, model]

Sentimental Analysis

General overview

Until now

* Given a text

* perform preprocessing followed by a feature extraction step to convert text into
numerical representation

| am Happy Because | am learning NLP @UniparthNLP

[happy, learn, nlp]

v

Bias « (1,4, 2] » Sum Neg Freq

Sum Pos Freqg

General overview

* The previous process is performed on a set of m tweets

| am Happy Because | am learning lhappy, learn, nlp] [1,40,20]
NLP @UniparthNLP

| am sad not learning NLP mmm) [sad not, learn, nlp] mmm) [1,20,50]

| am sad :([sad] [1,5,35]

Numerical representation of tweets corpus

* This way we get a matrix of features for all m tweets, i.e., a mx3
matrix:

1 X7 X2V [1,40,20]
s
a1 x{™ x{™) [1,5,35]

« X will be the input of a LR model

Logistic regression

et Cost
Features fSelletely Output —— output v
Function ~ Vs
X Y Label Y
Labels |
Y

Logistic regression

* Input observation
* vector x = [Xq, Xo,..., X,]

* Weights (one per feature)
- 0=[0,0,...,0,]

* Output
* a predicted class y € {0, 1}

How to do the classification

* For each feature x;,, weight O, tells us the importance of x;
* (Plus, we'll have a bias b)

* All the weighted features and the bias are summed up

n—1
h=<zeixi>+b= 0-x+b

=0

* | this sum is high, we say h=1; if low, then h=0

Making the LR’s output a probability

* We need to formalize “the sum is high”
* We'd like a principled classitier that gives us a probability
* We want a model that can tell us:

p(y=1|x; 6)
p(y=0|x; 6)

* Solution: use a function of h that goes from 0 to 1

Logistic regression

* Logistic regression makes use of the sigmoid function which outputs a
probability between 0 and 1

Where do 0's come from?

* Supervised classification:
« We know the correct label y (either O or 1) for each x
« But what the system produces is an estimate,

* We want to set © and b to minimize the distance between our
estimate V' and the true YV

* We need a distance estimator
 a loss function or a cost function

* We need an optimization algorithm to update @ and b to minimize
the loss

Cross-Entropy Loss

» A case of conditional maximum likelihood estimation

* We choose the parameters 8, b that maximize
* The log probability ...
* of the true y labels in the training data ...
* given the observation x

Cross-entropy loss

* Goal: maximize the probability of the correct label p(y/x)

* Since there are only 2 discrete outcomes (0 or 1) we can express
the probability p(y/x) from our classifier as

piylx) = 7 (1—9)'

* Noting:
* It y=1, this simplifies to ¥
e |t y=0, this simplities to 1- y

Cross-entropy loss

* Now take the log of both sides (mathematically handy)

logp(ylx) = log [$” (1 —3)'7]
= ylogH+ (1—y)log(1—3)

Stochastic Gradient Descent

* Let's make explicit that the loss function is parameterized by
weights 6

« we'll represent y as h (x; ©) to make the dependence on © more obvious

* We want the weights that minimize the loss, averaged over all
examples:

0 = argminlZLCE(h(x(i);Q),y(i))
o Mo

Minimizing the loss

For logistic regression, the loss function is
convex

A convex function has just one minimum

Gradient descent starting from any point is
guaranteed to find the minimum
* The gradient of a function of many variables is a

vector pointing in the direction of the greatest
increase in a function

Gradient Descent: Find the gradient of the loss
function at the current point and move in the
opposite direction

Gradient descent

* The value of the gradlent L(h(x 0),y) weighted by a learning
rate n

* A higher learning rate means move 6 faster

d
t+1 _ ot
0 0 ndeL(h(x 0),y)

LR training

* To train LR function, the following procedure is performed

* Initialize the parameter theta

« compute the gradient to update theta

* calculate the cost until good enough

f
h=h(X,0)
V=—X'(h-y)
I=0-1V
J(6)

Until good
enough

Initialize
parameters

l

r—> Classify/predict

¥
Get gradient

¥

Update
¥

Get Loss

Logistic regression

* Given a tweet, you can transform it into a vector and run it through your
sigmoid function to get a prediction

@AntSta and @UniParthNLPStud are

tuning a GREAT Al model at
https://neptunia.uniparthenope.it!!!
| 1 " 0.00003
2 = 3476 6= | 0.00150
| 245 | —0.00120|

T T T T T T T T T T T 1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

9T (1)

Testing the LR classifier

» Compute the LR prediction on each tweet from a test set and
compare it to corresponding label

o

(D)

(1) =
Yoo = pred

S o Y SE QN
HOOHo:

m (1) __ _(i_)
Accuracy _)Z (pred Yyal)
m

1=1

