

Natural Language Processing

Text Classification: Sentiment Analysis

LESSON 7

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

Text classification

- Focus on text categorization or classification
 - The task of assigning a label or category to an entire text or document
- Many language processing tasks involve classification
 - Sentiment Analysis
 - Spam detection
 - Language id
 - Authorship's attribution
 - Assigning a library subject category to a text

Sentiment Analysis

- Extraction of sentiment
 - The positive or negative orientation that a writer expresses toward some object
 - A review of a movie, book, or product on the web
 - An editorial or political text, expressing a sentiment toward a candidate or political action
- Relevant for extracting consumer or public sentiment for fields from marketing to politics
- The words of reviews provide cues on sentiments
 - + ... characters and richly applied satire, and some great plot twists
 - It was pathetic. The worst part about it was the boxing scenes ...
 - + ...awesome caramel sauce and sweet toasty almonds. I love this place!
 - ... awful pizza and ridiculously overpriced ...

Sentiment Analysis

- Let's suppose you have 1.000 product reviews, i.e., pieces of text written by users
- Goal: To build a system to automatically determine what fraction of them are positive vs negative reviews
- A classification problem where:
 - A sample text is labeled as a positive sentiment or negative sentiment

Sentiment Analysis as a classification task

- Supervised ML
 - given input features X and their labels Y
- Goal: minimize the cost as much as possible through a learning process
 - A prediction function takes in parameters data to map features to output labels
 - the best mapping from features to labels is achieved when the difference between the expected and predicted values is minimized

PARTHENOPE

Odeeplearning a

Discriminative vs Generative classifiers

- Given a training set of documents each hand-labeled with a class
 - (d₁,c₁), (d₂, c₂), ..., (d_N, c_N)
- A probabilistic (generative) classifier maps a new document *d* to its correct class *c* ∈ *C*, providing us with the probability of the observation being in the class
 - Builds a model of how a class could generate some input data
 - Given an observation, it returns the class most likely to have generated the observation
- A discriminative classifier learns what features from the input are most useful to discriminate between the different possible classes
- We're going to use logistic regression (discriminative) and naïve Bayes (generative) for our task

Sentiment Analysis as a classification task

Steps for Sentiment Analysis with LR

• To perform sentiment analysis on a tweet

- 1. Represent the text (i.e., "I am happy because I am learning NLP") as features
- 2. Train an LR classifier
- 3. use LR to classify the text

Sentiment Analysis

Vocabulary & text representation

Vocabulary

- In order to feed tweets into the LR classifier, we need to represent the text as a vector
- Firstly, we build a vocabulary V that makes it possible to encode any text or tweet as an array of numbers
- V would be the list of unique words from your list of tweet

PARTHENOPE

Text representation

- The vocabulary is used to represent the tweets
 - For every tweet, scan every word from the vocabulary and put a 1 if it appears in the tweet, 0 otherwise (**BoW**)

I am happy because I am learning NLP

[I , am,	happy,	because,	learning,	NLP,	•••	hated,	the,	movie]
\downarrow \downarrow	Ļ	Ļ	\downarrow	Ļ	↓	Ļ	Ļ	Ļ
[1, 1,	1,	1,	1,	1,	•••	0,	0,	0]

• Note: this type of representation with a small number of non-zero values is called a sparse representation

Problems with sparse representation

- If n = |V|, with the sparse representation, a logistic regression model would have to learn n+1 parameters
- For large vocabulary sizes:
 - Large training time
 - Large time for predictions

I am happy because I am learning NLP

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & \dots & 0 & 0 & 0 \end{bmatrix} \longrightarrow \text{ all zeros}$$

$$1 \longrightarrow |V|$$

PARTHENOPE

Sentiment Analysis

Negative and Positive frequencies

Positive and Negative frequency

- A better representation could be obtained by a frequency count of the vocabulary for each class of tweets
- Example
 - Let's suppose to have a corpus consisting of four tweets and associated with that corpus, a set of unique words, i.e., the vocabulary V
 - |V|=8
 - Two positive tweets and two negative tweets

• (Count the times	any word in V	appears i	n the positive	tweets and negative	e tweets	Vocabulary
-----	-----------------	---------------	-----------	----------------	---------------------	----------	------------

Corpus	Positive tweets	am
I am happy because I am learning NLP	I am happy	happy
I am happy		because
I am sad, I am not learning NLP	Negative tweets	learning NLP
I am sad	I am sad, I am not learning NLP	sad
	I am sad	not

Positive and Negative frequency

• Given a corpus with positive and negative tweets as follows:

Positive tweets	Negative tweets
I am happy because I am learning NLP	I am sad, I am not learning NLP
I am happy	l am sad

• Create a dictionary to map the word and the class it appeared in (positive or negative)

Word frequencies in classes

• Create a dictionary to map the word, and the class it appeared in (positive or negative)

Vocabulary	PosFreq (1)	NegFreq (0)	
	3	3	-
am	3	3	freas: dictionary manning from
happy	2	0	(word, class) to frequency
because	1	0	
learning	1	1	
NLP	1	1	
sad	0	2	
not	0	1	

Feature extraction with frequencies

Encode a tweet as a 3D-vector

Feature extraction with frequencies

• Encode the positive feature:

Vocabulary	PosFreq (1)	I am sad, I am not learning NLP
	3	
am	3	
happy	2	$X_m = [1, \sum freqs(w, 1), \sum freqs(w, 0)]$
because	1	\overline{w} \overline{w}
learning	1	
NLP	<u> 1 </u>	
sad	0	8
not	0	

Feature extraction with frequencies

• Encode the negative feature

Vocabulary	NegFreq (0)	I am sad, I am not learning NLP
I	3	
am	3	
happy	0	$X_m = [1, \sum freqs(w, 1), \sum freqs(w, 0)]$
because	0	\overline{w} \overline{w}
learning	1	
NLP	<u> 1 </u>	¥
sad	2	11
not	1	

Tweet I am sad, I am not learning -> [1,8,11], where 1 is for the bias, 8 the
positive feature, and 11 the negative feature

PARTHENOPE

Feature extraction

 Tweet I am sad, I am not learning -> [1,8,11], where 1 is for the bias, 8 the positive feature, and 11 the negative feature

I am sad, I am not learning NLP

Sentiment Analysis

Tweet preprocessing

- When working with any text corpus the first step to accomplish is a preprocessing step where the text is clean of unmeaningful information
- That's true also for tweet corpus
- When preprocessing, the following steps are performed
 - 1. Eliminate handles and URLs
 - 2. Tokenize the string into words
 - 3. Remove stop words like "and, is, a, on, etc."
 - 4. Stemming or converting every word to its stem, e.g., dancer, dancing, danced, becomes 'danc'
 - 5. Convert all your words to lowercase

Stop words and punctuation

• Let's consider the following tweet

@AntSta and @UniParthNLPStud are tuning a GREAT AI

model at https://neptunia.uniparthenope.it!!!

Stop words	Punctuation
and	,
is	•
are	:
at	!
has	u
for	(
а	

PARTHENOPE

Stop words and punctuaction

@AntSta <mark>and</mark> @UniParthNLPStud <mark>are</mark>
tuning a GREAT AI model at
https://neptunia.uniparthenope.it!!!
@AntSta @UniParthNLPStud tuning
GREAT AI model
https://poptur@againarthanana_it///

Stop words	Punctuation
and	
anu	9
is	۰
are	0 0
at	
has	"
for	(
<u>a</u>	

O deeplearning.ai

Stop words and punctuation

@AntSta @UniParthNLPStud tuning			
GREAT AI model			
https://neptunia.uniparthenope.it!!!			
@AntSta @UniParthNLPStud tuning			
GREAT AI model			

Stop words	Punctuation
and	,
İS	•
а	:
at	!
has	"
for	(
of	

O deeplearning.ai

PARTHENOPE

Handles and URLs

@AntSta @UniParthNLPStud tuning GREAT AI model https://neptunia.uniparthenope.it tuning GREAT AI model

Stemming and lowercasing

Preprocessed tweet: [tun, great, ai, model]

PARTHENOPE

Sentimental Analysis

General overview

Until now

- Given a text
 - perform preprocessing followed by a feature extraction step to convert text into numerical representation

```
I am Happy Because I am learning NLP @UniparthNLP

[happy, learn, nlp]

↓

Bias ← [1, 4, 2] → Sum Neg Freq

Sum Pos Freq
```

PARTHENOPE

General overview

• The previous process is performed on a set of m tweets

Numerical representation of tweets corpus

 This way we get a matrix of features for all m tweets, i.e., a mx3 matrix:

• X will be the input of a LR model

Logistic regression

🕲 deeplearning.ai

🕲 deeplearning.ai

Logistic regression

- Input observation
 - vector $x = [x_1, x_2, ..., x_n]$
- Weights (one per feature)
 - $\boldsymbol{\Theta} = [\boldsymbol{\Theta}_1, \, \boldsymbol{\Theta}_2, \dots, \, \boldsymbol{\Theta}_n]$
- Output
 - a predicted class $\widehat{y} \in \{0, 1\}$

How to do the classification

- For each feature x_i , weight θ_i tells us the importance of x_i
 - (Plus, we'll have a bias b)
- All the weighted features and the bias are summed up

$$h = \left(\sum_{i=0}^{n-1} \theta_i x_i\right) + b = \boldsymbol{\theta} \cdot \boldsymbol{x} + b$$

• If this sum is high, we say h=1; if low, then h=0

Making the LR's output a probability

- We need to formalize "the sum is high"
- We'd like a principled classifier that gives us a probability
- We want a model that can tell us:

p(y=1|x; θ) p(y=0|x; θ)

• Solution: use a function of h that goes from 0 to 1

Logistic regression

 Logistic regression makes use of the sigmoid function which outputs a probability between 0 and 1

eeplearning.ai

Where do θ 's come from?

- Supervised classification:
- We know the correct label y (either 0 or 1) for each x
- But what the system produces is an estimate, \hat{y}
- We want to set θ and b to minimize the **distance** between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$
- We need a distance estimator
 - a loss function or a cost function
- We need an optimization algorithm to update θ and b to minimize the loss

Cross-Entropy Loss

- A case of conditional maximum likelihood estimation
- We choose the parameters θ , b that maximize
 - The log probability ...
 - of the true y labels in the training data ...
 - given the observation x

Cross-entropy loss

- Goal: maximize the probability of the correct label p(y/x)
- Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y/x) from our classifier as

$$p(y|x) = \hat{y}^{y} (1-\hat{y})^{1-y}$$

- Noting:
 - If y=1, this simplifies to \hat{y}
 - If y=0, this simplifies to 1- \hat{y}

Cross-entropy loss

• Now take the log of both sides (mathematically handy)

$$log p(y|x) = log [\hat{y}^{y} (1-\hat{y})^{1-y}]$$

= $y log \hat{y} + (1-y) log (1-\hat{y})$

Stochastic Gradient Descent

- \bullet Let's make explicit that the loss function is parameterized by weights θ
 - we'll represent \hat{y} as h (x; $\boldsymbol{\theta}$) to make the dependence on $\boldsymbol{\theta}$ more obvious
- We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \frac{1}{m} \sum_{i=1}^{m} L_{\text{CE}}(h(x^{(i)}; \theta), y^{(i)})$$

Minimizing the loss

- For logistic regression, the loss function is convex
- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
 - The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function
- Gradient Descent: Find the gradient of the loss function at the current point and move in the opposite direction

Gradient descent

- The value of the gradient $\frac{d}{d\theta}L(h(x;\theta),y)$ weighted by a learning rate η
- A higher learning rate means move θ faster

$$\theta^{t+1} = \theta^t - \eta \frac{d}{d\theta} L(h(x;\theta), y)$$

LR training

• To train LR function, the following procedure is performed

- Initialize the parameter theta
- compute the gradient to update theta
- calculate the cost until good enough

PARTHENOPE

Logistic regression

 Given a tweet, you can transform it into a vector and run it through your sigmoid function to get a prediction

Testing the LR classifier

• Compute the LR prediction on each tweet from a test set and compare it to corresponding label

