UNIVERSITA DEGLI STUDI DI NAPOLI

') PARTHENOPE

Natural Language Processing

Corpora and text processing

LESSON 5

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

Eliza: A Rogerian psychotherapist

User: I am unhappy.

ELIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY
User: I need some help, that much seems certain.

ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
User: Perhaps I could learn to get along with my mother.
ELIZA: TELL ME MORE ABOUT YOUR FAMILY

User: My mother takes care of me.

ELIZA: WHO ELSE IN YOU FAMILY TAKES CARE OF YOU

User: My father.

ELIZA: YOUR FATHER

User: You are like my father in some ways.

Weizenbaum (1966)

* An early NLP system able to carry on a limited conversation with a user

(chatbot)

* |tis based on pattern matching to recognize phrases like “I need X" and translate them
into suitable output like “What would it mean to you if you got X?"

Eliza

* Despite its simplicity a pattern matching method at the basis of
Eliza play a crucial role in natural language processing

* The most important tool for describing text pattern is the regular
expression

Regular Expressions

Regular expressions

* Regular expression (RE), a language to specify text search strings

* Is an algebraic notation for characterizing a set of strings
* Useful in searching for patterns in a corpus of texts

A regular expression function searches through the corpus and returns
all texts that match the pattern

* Unix program grep
* The corpus could be a single document or a collection
* A search can be planned to return every match on a line, if multiple

matches exist, or just the first match
* In our example we consider the latter only

* Regular expressions come in many variants. We describe here the so-called
extended regular expressions

Regular expressions

* Basically, the simplest regular expression is a sequence
(concatenation) of characters

* How can we search for any of these?
* woodchuck P2
* woodchucks

* Woodchuck
* Woodchucks

RE Example Patterns Matched

/woodchucks/ “interesting links to woodchucks and lemurs”
/a/ “Mary Ann stopped by Mona’s”

/V/ “You’ve left the burglar behind again!” said Nori

Disjunctions

* Letters inside square brackets]

[wW]oodchuck Woodchuck, woodchuck
[1234567890] Any digit

* Ranges [A-Z]

[A-Z] An upper case letter Drenched Blossoms
[a-2] A lower case letter my beans were impatient
[0-9] A single digit Chapter 1: Down the Rabbit Hole

Negation in Disjunction

* Negations [“Ss]
* Caret () means negation only when first in []

["A-Z] Not an upper case Oyfn pripetchik
letter
["Ss] Neither ‘S’ nor ‘s’ I have no exquisite reason”
["e”] Neither e nor A Look here
a’"b The patterna caretb Look up a"b now

More Disjunctions

* Woodchuck is another name for groundhog!
* The pipe | for disjunction

groundhog|woodchuck woodchuck
yours |mine yours
a|lbl|c = [abc]

[gG]roundhog | [Ww]oodchuck Woodchuck

Regular Expressions

° ? *_|_.

colou?r Optional color colour
previous char

oo*h! 0 or more of oh! ooh! oooh! ooooh!
previous char

o+h! 1 or more of oh! ooh! oooh! ooooh!
previous char

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n

Regular Expressions: Anchors

*Nand $
"[A-Z] Palo Alto
“["A-Za-2z] 1 “Hello"”
= (\).$ The end.
.S The end? The end!

Example

* Find me all instances of the word “the” in a text
* /the/

* misses capitalized examples
 /[tT]he/

* Incorrectly returns other or theology
e ["a-zA-Z][tT]he["a-zA-Z]

Errors

* The process we just went through was based on fixing two
kinds of errors:

1. Matching strings that we should not have matched (there,
then, other) False positives (Type | errors)

2. Not matching things that we should have matched (The) False
negatives (Type Il errors)

Errors cont.

* In NLP we are always dealing with these kinds of errors

* Reducing the error rate for an application often involves two
antagonistic efforts:

* Increasing accuracy or precision (minimizing false positives)
* Increasing coverage or recall (minimizing false negatives)

Substitutions

* Substitution in Python and UNIX commands:
* s/regexpl/pattern/

* Example
e s/colour/color/

Capture groups

* Say we want to put angles around all numbers:
the 35 boxes -> the <35> boxes

* capture groups are a way of storing part of the pattern into a
"register"” so we can refer to it later in the substitution string

* Use parens () to "capture" a pattern into a numbered register (1, 2, 3...)

* Use \1 to refer to the contents of the register
*s/([0-9]+)/<\1>/

Capture groups: multiple registers

* Example

* /the (.*)er they (.*), the \ler we \2/

* Match: “the faster they ran, the faster we ran”
* Not match: “the faster they ran, the faster we ate”

But suppose we don't want to capture?

* Parentheses have a double function: grouping terms, and
capturing
* Non-capturing groups
- add a ?7: after paren:
/(?:some|a few) (people|cats) like some \1/
* Match: some cats like some cats
* Not match: some cats like some some

Lookahead assertions

* (?= pattern) is true if pattern matches, but is zero-width;
doesn't advance character pointer

* (?! pattern) true if a pattern does not match

* How to match, at the beginning of a line, any single word that
doesn't start with “Volcano":

/" (?!Volcano)[A-Za-z]+/

Summary

* Regular expressions play a surprisingly large role
* Sophisticated sequences of regular expressions are often the first model
for any text processing
* For hard tasks, we use machine learning classifiers

« But regular expressions are still used for pre-processing, or as features in
the classifiers

« Can be very useful in capturing generalizations

Simple Application: ELIZA

* Early NLP system that imitated a Rogerian psychotherapist
* Joseph Weizenbaum, 1966.

 Uses pattern matching to match, e.qg.,:
e “T need X"

and translates them into, e.q.
* “What would it mean to you if you got X?

Simple Application: ELIZA

Men are all alike

IN WHAT WAY
They're always bugging us about something or other

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here

YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time

| AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

Eliza works by having a series of RE substitutions

« Each matches and changes part of the input lines
s/.* I'M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY?/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

Multiple substitutions can apply
* They are assigned a rank and applied in order

NLTK library

« NLTK is a collection of modules and corpora, released under an open- source
license, that allows students to learn and conduct research in NLP

* The most important advantage of using NLTK is that it is entirely self-
contained. Not only does it provide convenient functions and wrappers that
can be used as building blocks for common NLP tasks, but it also provides
raw and pre-processed versions of standard corpora used in NLP literature
and courses

* NLTK Book. https://www.nltk.org/book/
* Natural Language Toolkit. https://www.nltk.org/

Using NLTK

* NLTK ships with several useful text corpora
* Brown Corpus

« Considered to be the first general English corpus for computational linguistic
processing tasks

* 1.000.000 words of American English text printed in 1961
* 15 genres, e.g., Fiction, News, and Religious text
* Later, a POS-tagged version was also created

* Gutenberg Corpus

* Selection of 14 texts chosen from Project Gutenberg (the largest collection of free e-

books)

* 1.7 million words

* Michael Hart and Gregory Newby. Project Gutenberg. Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguistics.
http://www.gutenberg.org/wiki/Main_Page

Exploring Corpora

* Task: Use the NLTK corpus module to read the corpus austen-
persuasion.txt, included in the Gutenberg corpus collection, and
answer the following questions:

* How many total words does this corpus have ?
* How many unigue words does this corpus have ?
* What are the counts for the 10 most frequent words ?

Exploring NLTK's bundled corpora

import the gutenberg collection
>>> fromnltk.corpus import gutenberg

what corpora are in the collection ?

>>> print gutenberg.fileids()

[’austen-emma.txt’, ’austen-persuasion.txt’, # Get a list of the top 10 words sorted by frequency
austen-sense.txt’, ’bible-kjv.txt’, ’blake-poems.txt’, >>> for word in fd.keys()[:10]: 3
’bryant-stories.txt’, ’burgess-busterbrown.txt’, print word, fd[word]
‘carroll-alice.txt’, ’chesterton-ball.txt’, , 6750
'chesterton-brown.txt’, ’chesterton-thursday.txt’, the 3120
’edgeworth-parents.txt’, ’melville-moby_dick.txt’, to 2775
'milton-paradise.txt’, ’shakespeare-caesar.txt’, . 2741
’shakespeare-hamlet.txt’, ’shakespeare-macbeth.txt’, and 2739
'whitman-leaves.txt’] of 2564
a 1529
import FreqDist class in 1346
>>> fromnltk import FregDist 2 was 1330
create frequency distribution object . 1290

>>> fd = FregDist()
for each token in the relevant text, increment its counter

>>> for word in gutenberg.words(’ austen-persuasion.txt’)
fd.inc(word)

>>> print £d.N() # total number of samples

98171

>>> print £d.B() # number of bins or unique samples
6132

Using NLTK to plot Zipf's Law

>>> nltk.corpus gutenberg

>>> nltk FregDist

For plotting, we need matplotlib (get it from the NLTK download page)
>>> matplotlib

>>> matplotlib.pyplot as plt

Count each token in each text of the Gutenberg collection
>>> fd = FreqDist()
>>> text in gutenberg.fileids():
word in gutenberg.words(text):
fd.inc(word)

Initialize two empty lists which will hold our ranks and frequencies
>>> ranks = []
>>> freqs = []

Generate a (rank, frequency) point for each counted token and
and append to the respective lists, Note that the iteration
over fd is automatically sorted.
>>> rank, word in enumerate(£d):
ranks.append(rank+1)
freqgs.append(fd[word])

Plot rank vs frequency on a log—log plot and show the plot

>>> plt.loglog(ranks, fregs)

>>> plt.xlabel(’ frequency(£)’, fontsize=14, fontweight="bold’")
>>>plt.ylabel(’rank(r)’, fontsize=14, fontweight="bold")

>>> plt.grid(True)

>>> plt.show()

Using NLTK to plot Zipf's Law

* Does Zipt's Law hold for the Guntenberg Corpus?

Assignment n. 1

* Prepare Jupiter notebooks for explaining text normalization using
NLTK library
* Corpus loading
« Corpus statistics
* Tokenization
* Lemmatization
* Stemming

Jupiter notebook/Google colab

* Jupyter Notebook

« A Jupyter notebook lets you write and execute Python code locally in your web
browser

* Interactive, code re-execution, result storage, can interleave text, equations, and
Images

+ Can add conda environments to Jupyter notebook
* Google Colab
* https://colab.research.google.com/

* Google's hosted Jupyter notebook service, runs in the cloud, requires no setup
to use, provides free access to computing resources including GPUs

« Come with many Python libraries pre-installed

Others interesting tasks to try ...

* Language identification
* Detecting the source language for the input text
* Python Jangdetect

* Spell checkers
» Correct grammatical mistakes in text
* Python TextBlob based on NLTK
* Punctuation

* Python string.punctuation
* NLTK nltk.punkt

https://pypi.org/project/langdetect/
https://textblob.readthedocs.io/en/dev/
https://www.nltk.org/_modules/nltk/tokenize/punkt.html

