
Corpora and text processing

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 5

Natural Language Processing

Eliza: A Rogerian psychotherapist

2 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

CHAPTER

2 Regular Expressions, Text
Normalization, Edit Distance

User: I am unhappy.
ELIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY
User: I need some help, that much seems certain.
ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
User: Perhaps I could learn to get along with my mother.
ELIZA: TELL ME MORE ABOUT YOUR FAMILY
User: My mother takes care of me.
ELIZA: WHO ELSE IN YOU FAMILY TAKES CARE OF YOU
User: My father.
ELIZA: YOUR FATHER
User: You are like my father in some ways.

Weizenbaum (1966)

The dialogue above is from ELIZA, an early natural language processing systemELIZA
that could carry on a limited conversation with a user by imitating the responses of
a Rogerian psychotherapist (Weizenbaum, 1966). ELIZA is a surprisingly simple
program that uses pattern matching to recognize phrases like “I need X” and translate
them into suitable outputs like “What would it mean to you if you got X?”. This
simple technique succeeds in this domain because ELIZA doesn’t actually need to
know anything to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is
one of the few dialogue genres where listeners can act as if they know nothing of the
world. ELIZA’s mimicry of human conversation was remarkably successful: many
people who interacted with ELIZA came to believe that it really understood them
and their problems, many continued to believe in ELIZA’s abilities even after the
program’s operation was explained to them (Weizenbaum, 1976), and even today
such chatbots are a fun diversion.chatbots

Of course modern conversational agents are much more than a diversion; they
can answer questions, book flights, or find restaurants, functions for which they rely
on a much more sophisticated understanding of the user’s intent, as we will see in
Chapter 24. Nonetheless, the simple pattern-based methods that powered ELIZA
and other chatbots play a crucial role in natural language processing.

We’ll begin with the most important tool for describing text patterns: the regular
expression. Regular expressions can be used to specify strings we might want to
extract from a document, from transforming “I need X” in ELIZA above, to defining
strings like $199 or $24.99 for extracting tables of prices from a document.

We’ll then turn to a set of tasks collectively called text normalization, in whichtext
normalization

regular expressions play an important part. Normalizing text means converting it
to a more convenient, standard form. For example, most of what we are going to
do with language relies on first separating out or tokenizing words from running
text, the task of tokenization. English words are often separated from each othertokenization
by whitespace, but whitespace is not always sufficient. New York and rock ’n’ roll
are sometimes treated as large words despite the fact that they contain spaces, while
sometimes we’ll need to separate I’m into the two words I and am. For processing
tweets or texts we’ll need to tokenize emoticons like :) or hashtags like #nlproc.

• An early NLP system able to carry on a limited conversation with a user
(chatbot)
• It is based on pattern matching to recognize phrases like “I need X” and translate them

into suitable output like “What would it mean to you if you got X?”

Eliza

• Despite its simplicity a pattern matching method at the basis of
Eliza play a crucial role in natural language processing

• The most important tool for describing text pattern is the regular
expression

Regular Expressions

Regular expressions
• Regular expression (RE), a language to specify text search strings

• Is an algebraic notation for characterizing a set of strings
• Useful in searching for patterns in a corpus of texts

• A regular expression function searches through the corpus and returns
all texts that match the pattern
• Unix program grep

• The corpus could be a single document or a collection

• A search can be planned to return every match on a line, if multiple
matches exist, or just the first match
• In our example we consider the latter only

• Regular expressions come in many variants. We describe here the so-called
extended regular expressions

Regular expressions

• Basically, the simplest regular expression is a sequence
(concatenation) of characters
• How can we search for any of these?
• woodchuck
• woodchucks
• Woodchuck
• Woodchucks4 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

RE Example Patterns Matched
/woodchucks/ “interesting links to woodchucks and lemurs”
/a/ “Mary Ann stopped by Mona’s”
/!/ “You’ve left the burglar behind again!” said Nori

Figure 2.1 Some simple regex searches.

the pattern /woodchucks/ will not match the string Woodchucks. We can solve this
problem with the use of the square braces [and]. The string of characters inside the
braces specifies a disjunction of characters to match. For example, Fig. 2.2 shows
that the pattern /[wW]/ matches patterns containing either w or W.

RE Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck “Woodchuck”
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati”
/[1234567890]/ any digit “plenty of 7 to 5”

Figure 2.2 The use of the brackets [] to specify a disjunction of characters.

The regular expression /[1234567890]/ specifies any single digit. While such
classes of characters as digits or letters are important building blocks in expressions,
they can get awkward (e.g., it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean “any capital letter”). In cases where there is a well-defined sequence asso-
ciated with a set of characters, the brackets can be used with the dash (-) to specify
any one character in a range. The pattern /[2-5]/ specifies any one of the charac-range

ters 2, 3, 4, or 5. The pattern /[b-g]/ specifies one of the characters b, c, d, e, f, or
g. Some other examples are shown in Fig. 2.3.

RE Match Example Patterns Matched
/[A-Z]/ an upper case letter “we should call it ‘Drenched Blossoms’ ”
/[a-z]/ a lower case letter “my beans were impatient to be hoed!”
/[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole”

Figure 2.3 The use of the brackets [] plus the dash - to specify a range.

The square braces can also be used to specify what a single character cannot be,
by use of the caret ˆ. If the caret ˆ is the first symbol after the open square brace [,
the resulting pattern is negated. For example, the pattern /[ˆa]/matches any single
character (including special characters) except a. This is only true when the caret
is the first symbol after the open square brace. If it occurs anywhere else, it usually
stands for a caret; Fig. 2.4 shows some examples.

RE Match (single characters) Example Patterns Matched
/[ˆA-Z]/ not an upper case letter “Oyfn pripetchik”
/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
/[ˆ.]/ not a period “our resident Djinn”
/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now”
/aˆb/ the pattern ‘aˆb’ “look up aˆ b now”

Figure 2.4 The caret ˆ for negation or just to mean ˆ. See below re: the backslash for escaping the period.

How can we talk about optional elements, like an optional s in woodchuck and
woodchucks? We can’t use the square brackets, because while they allow us to say

Disjunctions

• Letters inside square brackets []

• Ranges [A-Z]

Pattern Matches

[wW]oodchuck Woodchuck, woodchuck

[1234567890] Any digit

Pattern Matches

[A-Z] An upper case letter Drenched Blossoms

[a-z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit Hole

Negation in Disjunction

• Negations [^Ss]
• Caret (^) means negation only when first in []

Pattern Matches
[^A-Z] Not an upper case

letter
Oyfn pripetchik

[^Ss] Neither ‘S’ nor ‘s’ I have no exquisite reason”

[^e^] Neither e nor ^ Look here

a^b The pattern a caret b Look up a^b now

More Disjunctions

• Woodchuck is another name for groundhog!
• The pipe | for disjunction

Pattern Matches
groundhog|woodchuck woodchuck

yours|mine yours

a|b|c = [abc]
[gG]roundhog|[Ww]oodchuck Woodchuck

Regular Expressions

Pattern Matches
colou?r Optional

previous char
color colour

oo*h! 0 or more of
previous char

oh! ooh! oooh! ooooh!

o+h! 1 or more of
previous char

oh! ooh! oooh! ooooh!

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n

• ? *+.

Regular Expressions: Anchors

• ^ and $

Pattern Matches
^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\.$ The end.

.$ The end? The end!

Example

• Find me all instances of the word “the” in a text
• /the/

• misses capitalized examples
• /[tT]he/

• Incorrectly returns other or theology
• [^a-zA-Z][tT]he[^a-zA-Z]

Errors

• The process we just went through was based on fixing two
kinds of errors:

1. Matching strings that we should not have matched (there,
then, other) False positives (Type I errors)

2. Not matching things that we should have matched (The) False
negatives (Type II errors)

Errors cont.

• In NLP we are always dealing with these kinds of errors

• Reducing the error rate for an application often involves two
antagonistic efforts:
• Increasing accuracy or precision (minimizing false positives)
• Increasing coverage or recall (minimizing false negatives)

Substitutions

• Substitution in Python and UNIX commands:
• s/regexp1/pattern/

• Example
• s/colour/color/

Capture groups

• Say we want to put angles around all numbers:

the 35 boxes -> the <35> boxes

• capture groups are a way of storing part of the pattern into a
"register" so we can refer to it later in the substitution string
• Use parens () to "capture" a pattern into a numbered register (1, 2, 3…)

• Use \1 to refer to the contents of the register
• s/([0-9]+)/<\1>/

Capture groups: multiple registers

• Example

• /the (.*)er they (.*), the \1er we \2/

• Match: “the faster they ran, the faster we ran”
• Not match: “the faster they ran, the faster we ate”

But suppose we don't want to capture?

• Parentheses have a double function: grouping terms, and
capturing
• Non-capturing groups

• add a ?: after paren:

/(?:some|a few) (people|cats) like some \1/
• Match: some cats like some cats
• Not match: some cats like some some

Lookahead assertions

• (?= pattern) is true if pattern matches, but is zero-width;
doesn't advance character pointer

• (?! pattern) true if a pattern does not match

• How to match, at the beginning of a line, any single word that
doesn’t start with “Volcano”:

• /ˆ(?!Volcano)[A-Za-z]+/

Summary

• Regular expressions play a surprisingly large role
• Sophisticated sequences of regular expressions are often the first model

for any text processing

• For hard tasks, we use machine learning classifiers
• But regular expressions are still used for pre-processing, or as features in

the classifiers
• Can be very useful in capturing generalizations

Simple Application: ELIZA

• Early NLP system that imitated a Rogerian psychotherapist
• Joseph Weizenbaum, 1966.

• Uses pattern matching to match, e.g.,:
• “I need X”

and translates them into, e.g.
• “What would it mean to you if you got X?

Simple Application: ELIZA

Men are all alike
IN WHAT WAY
They're always bugging us about something or other

CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here
YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time
I AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

• Eliza works by having a series of RE substitutions
• Each matches and changes part of the input lines

• s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

• s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

• s/.* all .*/IN WHAT WAY?/

• s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

• Multiple substitutions can apply
• They are assigned a rank and applied in order

NLTK library

• NLTK is a collection of modules and corpora, released under an open- source
license, that allows students to learn and conduct research in NLP

• The most important advantage of using NLTK is that it is entirely self-
contained. Not only does it provide convenient functions and wrappers that
can be used as building blocks for common NLP tasks, but it also provides
raw and pre-processed versions of standard corpora used in NLP literature
and courses

• NLTK Book. https://www.nltk.org/book/

• Natural Language Toolkit. https://www.nltk.org/

Using NLTK

• NLTK ships with several useful text corpora
• Brown Corpus

• Considered to be the first general English corpus for computational linguistic
processing tasks

• 1.000.000 words of American English text printed in 1961
• 15 genres, e.g., Fiction, News, and Religious text
• Later, a POS-tagged version was also created

• Gutenberg Corpus
• Selection of 14 texts chosen from Project Gutenberg (the largest collection of free e-

books)
• 1.7 million words

• Michael Hart and Gregory Newby. Project Gutenberg. Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguistics.
http://www.gutenberg.org/wiki/Main_Page

Exploring Corpora

• Task: Use the NLTK corpus module to read the corpus austen-
persuasion.txt, included in the Gutenberg corpus collection, and
answer the following questions:
• How many total words does this corpus have ?
• How many unique words does this corpus have ?
• What are the counts for the 10 most frequent words ?

Exploring NLTK’s bundled corpora
Listing 1: Exploring NLTK’s bundled corpora.⌥ ⌅

import the gutenberg collection

>>> from nltk.corpus import gutenberg
what corpora are in the collection ?

>>> print gutenberg.fileids()
[’austen-emma.txt’, ’austen-persuasion.txt’,
’austen-sense.txt’, ’bible-kjv.txt’, ’blake-poems.txt’,
’bryant-stories.txt’, ’burgess-busterbrown.txt’,
’carroll-alice.txt’, ’chesterton-ball.txt’,
’chesterton-brown.txt’, ’chesterton-thursday.txt’,
’edgeworth-parents.txt’, ’melville-moby_dick.txt’,
’milton-paradise.txt’, ’shakespeare-caesar.txt’,
’shakespeare-hamlet.txt’, ’shakespeare-macbeth.txt’,
’whitman-leaves.txt’]

import FreqDist class

>>> from nltk import FreqDist
create frequency distribution object

>>> fd = FreqDist()
for each token in the relevant text, increment its counter

>>> for word in gutenberg.words(’austen-persuasion.txt’):
. . . fd.inc(word)
. . .
>>> print fd.N() # total number of samples

98171
>>> print fd.B() # number of bins or unique samples

6132
Get a list of the top 10 words sorted by frequency

>>> for word in fd.keys()[:10]:
. . . print word, fd[word]
, 6750
the 3120
to 2775
. 2741
and 2739
of 2564
a 1529
in 1346
was 1330
; 1290⌦⌃ ⇧

5

Listing 1: Exploring NLTK’s bundled corpora.⌥ ⌅
import the gutenberg collection

>>> from nltk.corpus import gutenberg
what corpora are in the collection ?

>>> print gutenberg.fileids()
[’austen-emma.txt’, ’austen-persuasion.txt’,
’austen-sense.txt’, ’bible-kjv.txt’, ’blake-poems.txt’,
’bryant-stories.txt’, ’burgess-busterbrown.txt’,
’carroll-alice.txt’, ’chesterton-ball.txt’,
’chesterton-brown.txt’, ’chesterton-thursday.txt’,
’edgeworth-parents.txt’, ’melville-moby_dick.txt’,
’milton-paradise.txt’, ’shakespeare-caesar.txt’,
’shakespeare-hamlet.txt’, ’shakespeare-macbeth.txt’,
’whitman-leaves.txt’]

import FreqDist class

>>> from nltk import FreqDist
create frequency distribution object

>>> fd = FreqDist()
for each token in the relevant text, increment its counter

>>> for word in gutenberg.words(’austen-persuasion.txt’):
. . . fd.inc(word)
. . .
>>> print fd.N() # total number of samples

98171
>>> print fd.B() # number of bins or unique samples

6132
Get a list of the top 10 words sorted by frequency

>>> for word in fd.keys()[:10]:
. . . print word, fd[word]
, 6750
the 3120
to 2775
. 2741
and 2739
of 2564
a 1529
in 1346
was 1330
; 1290⌦⌃ ⇧

5

Listing 1: Exploring NLTK’s bundled corpora.⌥ ⌅
import the gutenberg collection

>>> from nltk.corpus import gutenberg
what corpora are in the collection ?

>>> print gutenberg.fileids()
[’austen-emma.txt’, ’austen-persuasion.txt’,
’austen-sense.txt’, ’bible-kjv.txt’, ’blake-poems.txt’,
’bryant-stories.txt’, ’burgess-busterbrown.txt’,
’carroll-alice.txt’, ’chesterton-ball.txt’,
’chesterton-brown.txt’, ’chesterton-thursday.txt’,
’edgeworth-parents.txt’, ’melville-moby_dick.txt’,
’milton-paradise.txt’, ’shakespeare-caesar.txt’,
’shakespeare-hamlet.txt’, ’shakespeare-macbeth.txt’,
’whitman-leaves.txt’]

import FreqDist class

>>> from nltk import FreqDist
create frequency distribution object

>>> fd = FreqDist()
for each token in the relevant text, increment its counter

>>> for word in gutenberg.words(’austen-persuasion.txt’):
. . . fd.inc(word)
. . .
>>> print fd.N() # total number of samples

98171
>>> print fd.B() # number of bins or unique samples

6132
Get a list of the top 10 words sorted by frequency

>>> for word in fd.keys()[:10]:
. . . print word, fd[word]
, 6750
the 3120
to 2775
. 2741
and 2739
of 2564
a 1529
in 1346
was 1330
; 1290⌦⌃ ⇧

5

1

2

3

Using NLTK to plot Zipf’s Law

Listing 1a: Using NLTK to plot Zipf’s Law.⌥ ⌅
>>> from nltk.corpus import gutenberg
>>> from nltk import FreqDist
For plotting, we need matplotlib (get it from the NLTK download page)

>>> import matplotlib
>>> import matplotlib.pyplot as plt

Count each token in each text of the Gutenberg collection

>>> fd = FreqDist()
>>> for text in gutenberg.fileids():
. . . for word in gutenberg.words(text):
. . . fd.inc(word)

Initialize two empty lists which will hold our ranks and frequencies

>>> ranks = []
>>> freqs = []

Generate a (rank, frequency) point for each counted token and

and append to the respective lists, Note that the iteration

over fd is automatically sorted.

>>> for rank, word in enumerate(fd):
. . . ranks.append(rank+1)
. . . freqs.append(fd[word])
. . .

Plot rank vs frequency on a log�log plot and show the plot

>>> plt.loglog(ranks, freqs)
>>> plt.xlabel(’frequency(f)’, fontsize=14, fontweight=’bold’)
>>> plt.ylabel(’rank(r)’, fontsize=14, fontweight=’bold’)
>>> plt.grid(True)
>>> plt.show()⌦⌃ ⇧

7

Listing 1a: Using NLTK to plot Zipf’s Law.⌥ ⌅
>>> from nltk.corpus import gutenberg
>>> from nltk import FreqDist
For plotting, we need matplotlib (get it from the NLTK download page)

>>> import matplotlib
>>> import matplotlib.pyplot as plt

Count each token in each text of the Gutenberg collection

>>> fd = FreqDist()
>>> for text in gutenberg.fileids():
. . . for word in gutenberg.words(text):
. . . fd.inc(word)

Initialize two empty lists which will hold our ranks and frequencies

>>> ranks = []
>>> freqs = []

Generate a (rank, frequency) point for each counted token and

and append to the respective lists, Note that the iteration

over fd is automatically sorted.

>>> for rank, word in enumerate(fd):
. . . ranks.append(rank+1)
. . . freqs.append(fd[word])
. . .

Plot rank vs frequency on a log�log plot and show the plot

>>> plt.loglog(ranks, freqs)
>>> plt.xlabel(’frequency(f)’, fontsize=14, fontweight=’bold’)
>>> plt.ylabel(’rank(r)’, fontsize=14, fontweight=’bold’)
>>> plt.grid(True)
>>> plt.show()⌦⌃ ⇧

7

Using NLTK to plot Zipf’s Law

• Does Zipf’s Law hold for the Guntenberg Corpus?

Assignment n. 1

• Prepare Jupiter notebooks for explaining text normalization using
NLTK library
• Corpus loading
• Corpus statistics
• Tokenization
• Lemmatization
• Stemming

Jupiter notebook/Google colab

• Jupyter Notebook
• A Jupyter notebook lets you write and execute Python code locally in your web

browser
• Interactive, code re-execution, result storage, can interleave text, equations, and

images
• Can add conda environments to Jupyter notebook

• Google Colab
• https://colab.research.google.com/
• Google’s hosted Jupyter notebook service, runs in the cloud, requires no setup

to use, provides free access to computing resources including GPUs
• Come with many Python libraries pre-installed

Others interesting tasks to try …

• Language identification
• Detecting the source language for the input text

• Python langdetect

• Spell checkers
• Correct grammatical mistakes in text

• Python TextBlob based on NLTK

• Punctuation
• Python string.punctuation
• NLTK nltk.punkt

https://pypi.org/project/langdetect/
https://textblob.readthedocs.io/en/dev/
https://www.nltk.org/_modules/nltk/tokenize/punkt.html

