Bioinformatics

Prof Romina Oliva

 romina.oliva@uniparthenope.it
M.J. Zvelebil \& J.O. Baum Understanding Bioinformatics

Garland Science,
Taylor \& Francis Group

C.A. Orengo, D.T. Jones,
J.M. Thornton

Bioinformatics
CRC Press,
Taylor \& Francis Group

A.M. Lesk Introduction to Bioinformatics Oxford University Press

Lezioni on-line https://elearning.uniparthenope.it

1. Introduction to bioinformatics
2. DNA: sequence, structure, replication and translation
3. Genomes: evolution and information

Bioinformatics: collection, storage, organization and interpretation of large-scale biological data

Janet M. Thornton

Bioinformatics is a way of understanding biology using the power of computers and data

The informatics component is about organising and handling datasets, which requires a lot of technology

Once you capture the data, you need to understand what it means

Janet M. Thornton

Bioinformatics is a multidisciplinary subject, whose main components are:

biology
(B
statistics

Bioinformatics is what bioinformatics does

Eric C. Snowdeal III

At the end of the course, you should be able to

 say:What issues are of competence of bioinformatics
What issues bioinformatics can address nowadays, with what reliability rate

The main challenges for the near future
Ideas/suggestions for applications in your fields of interest?...

Life processes are due to the concerted action of biological (macro)molecules, mainly proteins

Instructions for the protein synthesis are contained in the genomes (DNA).

The main role of DNA, from unicellular bacteria to multicellular plants and animals, is information storage

All the information required to make and maintain an organism is stored in its DNA

Information about nucleic acids and proteins is the raw material of bioinformatics

BlOinformatics $=$ genes + proteins + informatics (part of computational biology, biocomputing)

GENE: DNA segment which codes for a specific protein and determines an hereditary feature

PROTEIN: expression product of a gene and EFFECTOR of the biochemical function whose information is stored in the gene

RNA: fundamental role in the gene expression regulation

A little history...	1977 DNA sequencing (Sanger)
1951 Pauling: alfa e beta	1980 Wutrich
1953 DNA double helix	1981 Greer
1955 Insulin sequence	1985 FASTP
1959 Myoglobin 3D structure	1986 Chothia and Lesk
1960 Anfinsen	1990 Blast
1967 Dayoff collection	1991 Fold recognition
1968 PAM	1993 PHD
1970 Nedleman and Wunsch	1994 CASP/CAPRI
1977 PDB	
1977 Chou and Fasman	

A little history...	1977 DNA sequencing (Sanger)
1951 Pauling: alfa e beta	1980 Wutrich
1953 DNA double helix	1981 Greer
1955 Insulin sequence	1985 FASTP
1959 Myoglobin 3D structure	1986 Chothia and Lesk
1960 Anfinsen	1990 Blast
1967 Dayoff collection	1991 Fold recognition
1968 PAM	1993 PHD
1970 Nedleman and Wunsch	1994 CASP/CAPRI
1977 PDB	2001

A little history...

1951 Pauling: alfa e beta
1953 DNA double helix

1955 Insulin sequence

1959 Myoglobin 3D structure

1960 Anfinsen

1967 Dayoff collection

1968 PAM

1970 Nedleman and Wunsch

1977 PDB

1977 Chou and Fasman

1977 DNA sequencing (Sanger)
1980 Wutrich

1981 Greer

1985 FASTP

1986 Chothia and Lesk
1990 Blast

1991 Fold recognition
1993 PHD
1994 CASP/CAPRI
2001
2007 Next Generation Sequencing
2020 AlphaFold

DNA, Deoxy-riboNucleic Acid

The DNA backbone is made of alternate phosphate groups and sugars (deoxyriboses)

Adenina (A)

Guanina (G)
pyrimidine

Citosina (C)

One of 4 nitrogencontaining bases: Adenine (A), Cytosine (C), Guanine (G) e Thymine (\mathbf{T}) is linked to each sugar at the C1' position

DNA, Deoxy-riboNucleic Acid

Adenina (A)

Guanina (G)

pyrimidine

Citosina (C)

The DNA backbone is made of alternate phosphate groups and sugars (deoxyriboses)

One of 4 nitrogencontaining bases: Adenine (A), Cytosine (C), Guanine (G) e Thymine (\mathbf{T}) is linked to each sugar at the C1' position
DNA sequences ONLY differ in the combination of the same 4 nucleobases: A, C, G, T

Example of DNA sequence

```
CCAGCTGGGTGAGCCTGGGAGGGAGGAGGTGAGTTGGGCTGGACTCAGGGACCGACTCTT
CCCGTCTCATGACTGTGTTTACTGGGCTGGATTTTGGGAAGGGGCCAGATTGCATCAGAC
AGGGCCTGATGGGCTGGAGCCAGACTGTGGTCTGAGGAGGAGACACAGCCTTATAAGCTG
AGGGAGTGGAGAGGCCCGGGGCCAGGAAAGCAGAGACAGACAAAGCGTTAGGAGAAGAAG
AGAGGCAGGGAAGACAAGCCAGGCACGATGGCCACCTTCCCACCAGCAACCAGCGCCCCC
CAGCAGCCCCCAGGCCCGGAGGACGAGGACTCCAGCCTGGATGAATCTGACCTCTATAGC
TTCATCCTTGTTAAA
```

DNA sequences ONLY differ in the combination of the same 4 nucleobases: A, C, G, T

Example of DNA sequence

```
CCAGCTGGGTGAGCCTGGGAGGGAGGAGGTGAGTTGGGCTGGACTCAGGGACCGACTCTT
CCCGTCTCATGACTGTGTTTACTGGGCTGGATTTTGGGAAGGGGCCAGATTGCATCAGAC
AGGGCCTGATGGGCTGGAGCCAGACTGTGGTCTGAGGAGGAGACACAGCCTTATAAGCTG
AGGGAGTGGAGAGGCCCGGGGCCAGGAAAGCAGAGACAGACAAAGCGTTAGGAGAAGAAG
AGAGGCAGGGAAGACAAGCCAGGCACGATGGCCACCTTCCCACCAGCAACCAGCGCCCCC
CAGCAGCCCCCAGGCCCGGAGGACGAGGACTCCAGCCTGGATGAATCTGACCTCTATAGC
TTCATCCTTGTTAAA
```

DNA sequences are written in a 4-letter alphabet

DNA sequences ONLY differ in the combination of the same 4 nucleobases: A, C, G, T

Example of DNA sequence

CCAGCTGGGTGAGCCTGGGAGGGAGGAGGTGAGTTGGGCTGGACTCAGGGACCGACTCTT
CCCGTCTCATGACTGTGTTTACTGGGCTGGATTTTGGGAAGGGGCCAGATTGCATCAGAC
AGGGCCTGATGGGCTGGAGCCAGACTGTGGTCTGAGGAGGAGACACAGCCTTATAAGCTG
AGGGAGTGGAGAGGCCCGGGGCCAGGAAAGCAGAGACAGACAAAGCGTTAGGAGAAGAAG
AGAGGCAGGGAAGACAAGCCAGGCACGATGGCCACCTTCCCACCAGCAACCAGCGCCCCC
CAGCAGCCCCCAGGCCCGGAGGACGAGGACTCCAGCCTGGATGAATCTGACCTCTATAGC
TTCATCCTTGTTAAA
Genetic information is stored in the nucleobases sequence of a

DNA chain
DNA sequences are written in a 4-letter alphabet DNA sequences ONLY differ in the combination of the same 4 nucleobases: A, C, G, T

DNA: Double helix structure, Watson \& Crick 1953

DNA: Double helix structure, Watson \& Crick 1953

DNA: Double helix structure, Watson \& Crick 1953

Guanine

Cytosine
G-C
Watson \& Crick base pairing

In a covalent bond two atoms (in the same molecule) share their valence electrons

Donor Acceptor

A H-bond is roughly 20-fold weaker than a covalent bond, energy of $\approx 2-5 \mathrm{kcal} / \mathrm{mol}$

H-bonds are the strongest inter-molecular interactions

Donor
Acceptor

A H-bond is roughly 20 -fold weaker than a covalent bond, energy of $\approx 2-5 \mathrm{kcal} / \mathrm{mol}$

The key for copying the genetic material !

The key for copying the genetic material !

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."

Watson J.D. \& Crick F.H.C., Nature Vol. 171 (1953)
"But what is all this ignorance compared to the perplexity in which phenomena such as the amazing memory that would be the hereditary transmission of acquired qualities put us? The impossibility, or only the suspicion of being able to conceive a mechanical explanation of such performances of the cellular substance is unbridgeable"

Thomas Mann, "Enchanted mountain", 1924

Replication of DNA (and of genetic information)

Molecole originali genitrici

Prima generazione di molecole figlie

Seconda generazione di molecole figlie

Thanks to the selective complementarity of the G-C \& A-T base pairs (Watson-Crick base pairing), DNA can replicate itself generating novel chains identical to the parent ones

Replication of DNA (and of genetic information)

Strand A Strand B

The error rate in DNA replication is as low as 1 base in 10^{9}

This allows to accurately transmit the genome to subsequent generations

> However, evolution relies on these infrequent errors

If DNA replication were perfect, there would be no genetic variation

DNA Transcription \& Tranlastion: the central dogma

DNA $\xrightarrow{\text { transcription }}$ RNA $\xrightarrow{\text { translation }}$ protein

DNA Transcription \& Tranlastion: the central dogma

PROCARIOTE

1. DNA is transcripted into a messanger RNA (mRNA) chain
2. mRNA is then translated into proteins

Ribosome

Protein under
synthesis

What's the difference between RNA (RiboNucleic Acid) e DNA (Deoxy-riboNucleic Acid) ?

RNA

DNA

RNA is identical to DNA apart from the presence of a hydroxyl group (OH) on the C2' atom of the sugar (ribose!) and the substitution of the Thymine (T) base with the Uracile (U) base

TRANSCRIPTION

1) Transcription of the gene information DNA to mRNA by a RNA-polymerase

DNA DNA under transcription to mRNA

DNA + mRNA

TRANSLATION

How is a nucleotide sequence (DNA/RNA, 4 nucleotides) translated into a protein sequence (20 amino acids)?

A code is needed!

proteina

AMINOACIDI ACIDI E LORO AMIDI

H
ammico (Glu) E

Glicina (Gly) G

Alanina (Ala) A

Valina (Val) V

Leucina (Leu) L

Metionina (Met) M

Isoleucina (Ile) |

AMINOACIDO

 CICLICO

AMINOACIDI BASICI

Protein sequences are written in a 20letter alphabet...

AMINOACIDI AROMATICI

Cisteina (Cys) C

Glutammina (GIn) Q
... the 20 amino acids

TRANSLATION

How is a nucleotide sequence (DNA/RNA, 4 nucleotides) translated into a protein sequence (20 amino acids)?

A code is needed!

TRANSLATION

How is a nucleotide sequence (DNA/RNA, 4 nucleotides) translated into a protein sequence (20 amino acids)?

$\mathrm{ABC}, \mathrm{DEF}, \mathrm{GHI}, \mathrm{JKL},$| Sequenza |
| :--- |
| di basi |$m R N A$

UNIVERSAL GENETIC CODE
protein

AUG GUU GGC GAU AGU UUC CGA AAA UGA
mRNA

Sequenza $\quad m R N A$ di basi
protein amminoacidi

TRANSLATION

How is a nucleotide sequence (DNA/RNA, 4 nucleotides) translated into a protein sequence (20 amino acids)?

EXAMPLE: AAU UCU CGU AGU | Sequenza |
| :--- |
| di basi |$m R N A$

$-N-S-R-S-\quad \begin{aligned} & \text { Sequenza di } \\ & \text { amminoacidi }\end{aligned} \quad$ protein
UNIVERSAL GENETIC CODE
protein

		SECOND BASE				
		U	C	A	G	
	U		$\begin{aligned} & \left.\begin{array}{l} \text { UCU } \\ \text { UCC } \end{array}\right\} \text { Ser } \\ & \left.\begin{array}{l} \text { UCA } \\ U C G \end{array}\right\} \text { Ser } \end{aligned}$	$\left.\begin{array}{l}\left.\begin{array}{l}\text { UAU } \\ \text { UAC }\end{array}\right\} \text { Tyr } \\ \text { UAA } \\ \text { UAG }\end{array}\right\}$ Stop	UGU UGC Cys UGA Stop UGG Trp	$\left\|\begin{array}{c} \mathrm{U} \\ \mathrm{C} \\ \mathrm{~A} \\ \mathrm{G} \end{array}\right\|$
	C	$\begin{aligned} & \left.\begin{array}{l} \text { CUU } \\ \mathrm{CUC}^{2} \end{array}\right\} \text { Leu } \\ & \left.\begin{array}{l} \text { CUA } \\ C U G \end{array}\right\} \text { Leu } \end{aligned}$	$\left.\begin{array}{l} \mathrm{CCU}^{\mathrm{CCC}} \end{array}\right\} \text { Pro }$	$\left.\begin{array}{l} \mathrm{CAU}^{\mathrm{CAC}} \\ \mathrm{CAA} \\ \mathrm{CAG} \end{array}\right\} \text { His }$		$\begin{array}{c\|c} \mathrm{U} \\ \mathrm{C} \\ \mathrm{~A} \\ \mathrm{~A} & \mathrm{an} \\ \mathrm{G} & \mathrm{aj} \\ \mathrm{~m} \end{array}$
	A	$\begin{aligned} & \text { AUU } \\ & \left.\begin{array}{l} \text { AUC } \\ \text { AUA } \end{array}\right\} \text { Ie } \\ & \text { AUG Met } \end{aligned}$	$\left.\begin{array}{l} \mathrm{ACU} \\ \mathrm{ACC} \end{array}\right\} \text { Thr }$	$\left.\begin{array}{l} \left.\begin{array}{l} A A U \\ A A C \end{array}\right\} \text { Asn } \\ A A A \\ A A G \end{array}\right\} \text { Lys }$		$\begin{array}{c\|c} \mathrm{U} & \stackrel{\rightharpoonup}{\underset{\sim}{a}} \\ \mathrm{c} \\ \mathrm{~A} \\ \mathrm{~A} & \underset{\mathrm{~A}}{ } \\ \mathrm{G} & \\ \hline \end{array}$
	G	$\begin{aligned} & \left.\begin{array}{l} \text { GUU } \\ \text { GUC } \end{array}\right\} \text { Val } \\ & \left.\begin{array}{l} \text { GUA } \\ \text { GUG } \end{array}\right\} \text { Val } \end{aligned}$	$\left.\begin{array}{l} \left.\begin{array}{l} \mathrm{GCU} \\ \mathrm{GCC} \end{array}\right\} \mathrm{Ala}, \\ \mathrm{GCA}_{\mathrm{GCG}} \end{array}\right\} \mathrm{Ala}$	$\left.\begin{array}{l} \left.\begin{array}{l} \text { GAU } \\ \text { GAC } \end{array}\right\} \text { Asp } \\ \text { GAA } \\ \text { GAG } \end{array}\right\} \text { Glu }$		$\left\|\begin{array}{c} \mathrm{U} \\ \mathrm{C} \\ \mathrm{~A} \\ \mathrm{G} \end{array}\right\|$

Proteins are made by 20 amino acids, different in size and physico-chemical nature:

ACDEFGHIKLMNPQRSTVWY

RNA: current view

The RNA molecule involved in the central dogma is the messenger RNA, mRNA

Traditionally, besides mRNA, the functional role of ribosomal RNA, rRNA, and transfer RNA, tRNA was recognized, both involved in the translation (to proteins) process

Nowadays it is instead recognized that RNA molecules have a variety of complex 3D structures and functions

Ribozymes are RNA
molecules performing a
catalytic activity,
While riboswitches and other
RNAs such small interfering RNA (siRNA), microRNA (miRNA) and piwi-interacting RNA (piRNA) function to control translation

Information transfer from DNA to RNA to polypeptide (protein)

It is all matter of information

- DNA sequence determines protein sequence;
- protein sequence determines protein structure;
- protein structure determines protein function;

In addition, many regulatory mechanisms depend on the binding of proteins to other proteins, DNA, RNA or small molecules

Much of the Bioinformatics activities is focused on the analysis of the data related to the above processes
(We are overlooking by the moment the role of epigenetics, an upcoming field that studies the gene regulation - by modification of histone proteins, methylation of DNA, chromatin modeling, RNA-mediating silencing -, which changes the physiology of cells without altering the DNA sequence)

An efficient technique to sequence DNA, Sanger 1977


```
ATCGCGTACATGACGTA 
```

```
ATCGCGTACATGACGTA L
    gTACTGCAT }
    gCATGTACTGCAT 13
    gCGCATGTACTGCAT 15
TAGCGCATGTACTGCAT }1
```

ATCGCGTACATGACGTA L
aCTGCAT 7
aTGTACTGCAT 11
aGCGCATGTACTGCAT 16
TAGCGCATGTACTGCAT 17
ATCGCGTACATGACGTA L
CTGCAT 6
CATGTACTGCAT 12
CGCATGTACTGCAT 14
TAGCGCATGTACTGCAT 17

The process can be automated...

Although largely substituted by Next Generation Sequencing, it is still actively used in projects requiring high quality outputs, e.g. efforts for public health such as sequencing the spike protein from SARS-CoV-2

"Bioinformatician" problems

Storing DNA sequences

Concatenating DNA sequence fragments

Calculating the sequence complementary to a given DNA strand

Transcribing DNA sequences in RNA sequences

Translating DNA sequences in protein sequences (through the universal genetic code)

BLபEPRINTafthe BロDY

Overview I Genome guide \mid Glossary \mid Related sites \mid Message board
Storyarchive I Q\&A I Chat Series I Video Archive

Genome announcement 'technological triumph'

Milestone in genetics ushers in new era of discovery, responsibility

June 26, 2000
Web posted at: $12: 09 \mathrm{p} . \mathrm{m}$. EDT (1609 GMT)

Ulpthis story:
Knowedge? © oringig treat causes

Advances could come quickly
RELATED STORIES, SITES \downarrow

From statt and wire reports
ATLANTA (CNN) -- Declaring a new era of medical discovery, U.S. President Bill Clinton and British Prime Minister Tony Blair on Monday praised the efforts of an international team of scientists to decode the genetic makeup of humans.
$\approx \mathbf{9 8 . 5 \%}$ of human DNA is non-coding

Where is the gene?

Hay in a haystack (A. Tramontano)
>CD0826Q1_425-22425 Main
ggcataagaatgatacaatggactttggggacctgagaggaaaggtgggagggggcaagg gatactgctcaggtgataggtgcaccaaaatctcacaaatcatcactaaagaacttactc atgtaaccaaatactacctgtaccactataacctacgggggaaaaaagcaacataaccat gaaccaactaataaaaaacaaccttgccttcagtctgcatcctaccctagagacactctc tctgtgtcctcacacttggagctaagcttctgacttttgtctccagtacacccctgagga tcctctcatcacggccatcagaaacctctgtagaaggtcaaatccagtgggttcttgtca gtgcctctgacttgagttactgataatatttgcaccataatccacttctttctaatgagc tactctgtccttatttttctcctatttactgaatcctccttatcatcctttgaaatctcc tcttaattattatgttctctcatcataccctgagatccctgcatttctgatttttggcac tcttcctggaaaagctcatctaacctgcacctatgcttgatgactctcagttctctggct taaactcctctactgagaccacccatcatacaaaaatgtttacatattatttttccttag ataacttttagatattctaagtgcaatagccccacactgaactcagtctcttctctcagt caggctgtcttctctcattaccctttttaatgaatggaatcaagatgtttgcattgggtt ggggagatgttggtcaaaggatacatccatttcatttcatttaggatacatttcaaaaga tacatttcatttagattggaggaataattttaagagttttattgtataacatggactata gttgctaacaatgtattgttgaaaattgctaaaagggtggattttaagtgttctcaccac aaaaaataagtatgtgaggtgagccataagttctttagcttgatgtagccggtccatgat gtacatacatttcaaaacaacatattatacatgataaatataaataatttttgtcaatca aaataatttagaaaagtgacacacacttacacacacacacacaaaagagatgattgcatt ggccagtctaggaataagagttatctgggagttttctaagtcggatgccaccgacatcac tcaccaataatccctttaatgtcaatcaaattaagtcctcttcttccatcattttactcc tatgcccatttcctcactctttgttcaggcactattagtcttgcctcttgaaccaacttc tttcactcatgctgcccactgttgccgtagtgatcttcctaaattgcaaatgcgccatca ctctcctgcttaaaatccttcaatgattccttatgacttccaggacagagtagccactcc tgagctttgcatgtaacatctgtcatgatccagcccctgcctgtctatttttcctttttt cttgctgctgttccacatccaaagctggctccattcatactgaagcagctgaagttcttc agatatgtcattgccacactgggcccacacttttgaacctgcttcctcctgtgtgagaag tggcttctgccctgttttcggactgcctacattgaagccatctgttccccaggaagcctt ccctgatgccttgacagcagcatcttgtgcctgccccatatctgcacttatccatctggg cctgctgttgtcttgtcacttgtgttctcttctgtgaactgtaaacatcaggaggacaag acctatgtcttacttttatttgaatatttagcatctaacaatgttcgacatatagtaggc ttttgatactatttttttactatgacattgtagtatatgttaatatccagtaggacatag gatatattctctctgttttcaatttttcattgtttacacacatttataattctatctata aggatttacaattatttacatgaaatgaatgaaataaatagagaatgttagatattaaga gacagtgtggaaagccaggctgggactagggatgcacttaccttaggtgcaaaatttagg aggataccaaaagaactcagtaataaaagtcaatcatattttaatgaaatatcttaagaa atctaaattaatggaaaatatataatgaacaaaatgtcaaaagagaactattcaaagaaa atggagaagcagagaggcagaagaattagtagaatatactggcacataagccaaggaggt aaagatttccaggaaggaggaagtagagtggagtcagaagttcaacagaagtcatttcag aaatcttaccttggttttgaaatcctttcagagagcagttttacataatgtgagcaatta tttctccttcatccccatcattccagaattgagcttcttctctggcttcagaaatgtggc ccttccccttgtcaggatatgttggcgacatgatgcatgcggatgccctcaaagtcagct ggggtttgggggtgaaattaattgactttagggaactccttgaatgctaagttctgttca cctggaggaccagagagggcacagagatgaccacctagcttctgcctgggacctaaacag ggcagagaaataggaggatcaggtataaagggagcagggaagatgggtctgggcttacag
ggcataagaatgatacaatggactttggggacctgagaggaaaggtgggagggggcaagggatactgctca ggtgataggtgcaccaaaatctcacaaatcatcactaaagaacttactcatgtaaccaaatactacctgta ccactataacctacgggggaaaaaagcaacataaccatgaaccaactaataaaaacaaccttgccttcag tctgcatcctaccctagagacactctctctgtgtcctcacacttggagctaagcttctgacttttgtctcc agtacacccctgaggatcctctcatcacggccatcagaaacctctgtagaaggtcaaatccagtgggttct tgtcagtgcctctgacttgagttactgataatatttqcaccataatccacttctttctaatgagctactct gtccttatttttctcctatttactgaatcc $+\quad$-tttgaaatctcctcttaattattatgttc tctcatcataccctgagatccctgcattt acctatgcttgatgactctcagttctct ttacatattatttttccttagataactt ttctctcagtcaggctgtcttctctcattacccttt + gggagatgttgg c a s atacatccatttca… agattggaggaat at ti acg gt et Agt aattgctaaaagggtggattttaagtgttctce aaaataagcatgtó ggடgagccataagctct ttagcttgatgtagccggtccatgatgtacata saaaacaacatattatacatgataaatataaat aatttttgtcaatcaaaataatttagaaaagtr-… zacttacacacacacacacaaagagatgattg cattggccagtctaggaataagagttatctgg! taatccctttaatgtcaatcaaattaagtcctı =ctaagtcggatgccaccgacatcactcaccaa catcattttactcctatgcccatttcctcact ctttgttcaggcactattagtcttgcctcttgaaccaacttctttcactcatgctgcccactgttgccgta gtgatcttcctaaattgcaaatgcgccatcactctcctgcttaaaatccttcaatgattccttatgacttc caggacagagtagccactcctgagctttgcatgtaacatctgtcatgatccagcccctgcctgtctatttt tccttttttcttgctgctgttccacatccaaagctggctccattcatactgaagcagctgaagttcttcag atatgtcattgccacactgggcccacacttttgaacctgcttcctcctgtgtgagaagtggcttctgccct gttttcggactgcctacattgaagccatctgttccccaggaagccttccctgatgccttgacagcagcatc ttgtgcctgccccatatctgcacttatccatctgggcctgctgttgtcttgtcacttgtgttctcttctgt gaactgtaaacatcaggaggacaagacctatgtcttacttttatttgaatatttagcatctaacaatgttc gacatatagtaggcttttgatactatttttttactatgacattgtagtatatgttaatatccagtaggaca

The DNA length in the human genome is approximately 3.2 billion nucleotides

Such a nucleotide sequence (combination of A, C, G, T) is not random !!!

Information theory (Claude Shannon)

Information is a universal measure of order and can be applied to any structure or system.

Order refers to the structural disposition of a system.

MSKGPAVGIDLGTTYSCVGVFQHG KVEIIANDQGNRTTPSYVAFTDTE RLIGDAAKNQVAMNPTNTVE'DAKR
LIGRRFDDAVVQSDMKHWPEMVVN
DAGRPKVQVEYKGETKSFYPEEVS
SMVLTKMKEIAEAYLGKTVTNAVV
TVPAYFNDSQRQATKDAGTIAGLN
VLRIINEPTAAAIAYGLDKKVGAE RNVLIFDLGGGTFDVSILTIEDGI
FEVKSTAGDTHLGGEDFDNRMVNH
FIAEFKRKHKKDISENKRAVRRLR

Information quantifies the instructions needed to produce a certain organization and can be (parsimoniously) achieved in terms of binary choices expressed in bits

Shannon's informational entropy is the number of binary digits required to encode a message

Let's choose a playing card from a 8-card pack

Let's choose a nucleotide from the 4-letter alphabet

Required information $=2$ bits

How much information is $\begin{cases}A & A \\ A & C \\ A & C\end{cases}$ contained in a dinucleotide sequence, e.g. 'GC' ?

In information theory a GC sequence corresponds to 4 bits

How "ordered" is the human genome

Overlooking spontaneous somatic mutations, we can say that APPROXIMATELY DNA molecules of a given individual feature the same sequence and compute its information content.

The approximate length of DNA in the human genome is $\approx 3.2^{*} 10^{9}$, corrisponding to $6.4^{*} 10^{9}$ bits !!

From a statistical point of view

How high is the probability that the 'GC' nucleotide sequence is spontaneously (randomly) generated?

The success probability of an event is given by:
The ratio between the number of favorable cases and the total number of cases

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

The success probability of an event is given by:
The ratio between the number of favorable cases and the total number of cases

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

Example:
If we throw 2 dices, how high is the probability of the 12 outcome?
Favorable cases:

Total cases:

The success probability of an event is given by:
The ratio between the number of favorable cases and the total number of cases

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

Example:
If we throw 2 dices, how high is the probability of the 12 outcome?
Favorable cases:
Total cases:

$N($ tot $)=n b$ of possible states
$N_{\text {(tot) }}=y^{x}=6^{2} \quad x=n b$ of available positions (dice 1, dice 2)
$y=n b$ of possible choices for each position(6)

The success probability of an event is given by:
The ratio between the number of favorable cases and the total number of cases

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

Example:
If we throw 2 dices, how high is the probability of the 12 outcome?
Favorable cases: 1
Total cases: $\quad 6^{2}=36$

The success probability of an event is given by:
The ratio between the number of favorable cases and the total number of cases

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

Example:
If we throw 2 dices, how high is the probability of the 12 outcome?
Favorable cases: 1
Total cases: $\quad 6^{2}=36$
Probability $=1 / 36=0.027$

The success probability of an event is given by:
The ratio between the number of favorable cases and the total number of cases

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

Example:
If we throw 2 dices, how high is the probability of the 7 outcome?
Favorable cases:
Total cases:

The success probability of an event is given by:
The ratio between the number of favorable cases and the total number of cases

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

Example:
If we throw $\mathbf{2}$ dices, how high is the probability of the $\mathbf{7}$ outcome?
Favorable cases: $6(1+6,6+1,2+5,5+2,3+4,4+3)$
Total cases: $\mathbf{6}^{\mathbf{2}=36}$
Probability $=6 / 36=0.1 \overline{6}$

The success probability of an event is given by:
The ratio between the number of favorable cases and the total number of cases

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

Example:
If we throw $\mathbf{3}$ dices, how high is the probability of the $\mathbf{4}$ outcome?
Favorable cases:
Total cases:

The success probability of an event is given by:
The ratio between the number of favorable cases and the total number of cases

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

Example:
If we throw $\mathbf{3}$ dices, how high is the probability of the $\mathbf{4}$ outcome?
Favorable cases: 3
Total cases: $6^{3}=216$

Probability $=3 / 216=0.013 \overline{8}$

How high is the probability that the sequence of the human genome is spontanously (randomly) generated?

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

How high is the probability that the sequence of the human genome is spontanously (randomly) generated?

$$
\text { probability }=\frac{\text { favorable cases }}{\text { total cases }}
$$

$$
\begin{array}{ll}
\mathrm{N}_{(\text {tot })}=4^{3.200 .000 .000} & \mathrm{x} \mathrm{\cong 3.2*10}^{9} \\
& y=4(\mathrm{~A}, \mathrm{G}, \mathrm{~T}, \mathrm{C})
\end{array}
$$

The number of possibilities N (tot) is larger than the estimated number of atoms in the universe!!!

But nature choses ONLY ONE...

- The information content of the genomes of organisms belonging to the various species is huge
- Nucleotide sequences of genomes are not randomly generated
- Information relative to biological systems in nature gradually accumulates through processes of casual variation of the genotype and natural selection (Charles Darwin, Origin of Species)

The large molecules in living organisms offer the most striking example of information density in the universe

Genotype vs phenotype

The combination of alleles that an individual possesses for a specific gene is their genotype
Phenotype is determined by the genotype, but is also influenced by epigenetic modifications, environmental and lifestyle factors

Molecular basis for genotype vs phenotype

MOLECULAR EVOLUTION

Genotypic mutation neutral or deleterious for the phenotype

* Advantageous mutations are rare as compared to the neutral and deleterious ones

Basic principles of evolution

All living species have evolved from other species
All living species are related to each other at different rates through common ancestors

All living species have a common descent, maybe existed 3.5 to 3.8 billion years ago (L.U.C.A.: Last Universal Common Ancestor)

The process through which a species evolves into another species involves casual mutations, of which those resulting in a survival advantage spread and persist more than the neutral or deleterious ones

Universal phylogenetic tree

 © 2006 Pearson Prentice Hall, Inc.

All living organisms belong to one of the three life kingdoms: bacteria, archaea and eukarya, depicting the "Tree of Life." 'errors' or mutations can occurr

Macro

Substitution

In multicellular organisms, only mutations that occur in the germ cells are relevant to genome evolution

Not all mutations are equally important!

con chi vai nel bus

von chi vai nel bus
coc hiv ain elb us

Not all mutations are equally important !

the hat can fit her

phe hat can fit her

thh atc anf ith er

INsertions/DELetions (INDELs) are usually deleterious mutations, in which case they are removed by negative selection

Not all mutations are equally important!

the hat can fit her

phe hat can fit her

thh atc anf ith er

INsertions/DELetions (INDELs) are usually deleterious mutations, in which case they are removed by negative selection

Not all mutations are equally important !

she can fix the hat

phe can fix the hat

shc anf ixt heh at

INsertions/DELetions (INDELs) are usually deleterious mutations, in which case they are removed by negative selection

Not all mutations are equally important!

she can fix the hat

phe can fix the hat
she anf ixt heh at

Classification of nucleotide substitutions

Synonymous: does not cause a change in the coded amino acid (CGA \Leftrightarrow CGG, both code for an $\operatorname{Arg}(R)$)

Non-synonymous: causes a change in the coded amino acid (AAC \Leftrightarrow AAA A Asn (N) \Leftrightarrow Lys (K))

A synonymous mutation has no effect on the sequence of the coded protein!

Classification of nucleotide substitutions

Classification of nucleotide substitutions

Due to the degeneracy of the genetic code - with codons differing by the $3^{\text {rd }}$ position usually translating into the same amino acid - , nearly 70% of substitutions at the $3^{\text {rd }}$ position are synonymous, while all substitutions at the $2^{\text {nd }}$ position and most of the substitutions at the $1^{\text {st }}$ positions are nonsynonymous

Example of a crucial point mutation

Errors in the copying of genetic material (DNA/RNA)

System	Estimated error rate $\left(\right.$ Mut/N $\left.{ }_{(\text {Pos })}\right)$	
Chemical reaction	$0.05-0.1(5-10 / 100)$	
RNA virus (flu, HIV)	$10^{-2-10^{-5}} \longrightarrow$	RNA-polymerase

Other mutations arise from exposure to excessive UV light, X-rays etc. and for reaction of the DNA with a mutagen chemical

Intra-species variability is responsible for the survival of the species itself

The higher the intra-species variability, the higher the probability that positive mutations occurr and that the species can adapt to novel environmental conditions and survive longer

RNA-viruses (influenza, HIV, polio, SARS-CoV-2) are among the organisms most genetically variable and this is why they are so difficult to be treated pharmacologically

Genetically isolated populations in Europe

Lapps Icelanders Finns Welsh Basque

Genetically isolated populations in Europe

For such populations the intra-species variability is particularly low

This is advantageous for highlighting the effect of specific mutations

Mechanisms of selection

Most life consists of discrete organisms. A population is a group of similar organisms that interact, interbreed and compete for resources

Evolution alters the composition and distribution of the gene pools and phenotypes in populations

Within a population, individuals with different phenotypes show different success at reproduction

Natural selection - i.e. enhanced reproduction by 'fitter' individuals - is the most important mechanism of evolution

Another mechanism of evolution is genetic drift, the random change in allelic frequencies, which is not in response to selection

Processes of natural selection

B

The phenotype here is the body size. Natural selection responds to the environmental conditions

Speciation events

Speciation events

Example of speciation due to geographical isolation

Bioinformatics and evolution

- Bioinformatics searches for and uses the molecular record of evolution, provided by results of the genotypic changes
- The closer are two species evolutionarily, the more similar are the corresponding genomic sequences and their expression products (i.e. proteins)
- Whereas sequences have undergone so large variations that they cannot be detected anymore, the corresponding 3D structures of proteins may have preserved a significant similarity

> Phylogenetic relationship between genes/proteins/ organisms

1. Introduction to bioinformatics. Multidisciplinary science, open to multiple applications.
2. DNA: sequence, structure, replication and translation. Contains complex information, only a small portion of it is translated to proteins. Its 3D structure is crucial for replication.
3. Genomes: evolution and information.

Evolution has collected over time a huge amount of information. Results of evolution thus do not correspond to random probabilities!

