
Corpora and text processing

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 4

Natural Language Processing

What is a Corpus?

• NLP algorithms are most useful when they apply across many languages

• A corpus (plural corpora), is a body of utterances, as words or
sentences, assumed to be representative of and used for lexical,
grammatical, or other linguistic analysis

Corpora in NLP

• To understand and model how language works, we need empirical evidence
• Ideally, natural-occurring corpora serve as realistic samples of a language

• Aside from linguistic utterances, corpus datasets include metadata
• Collateral information about where the language comes from, such as author, date, topic,

publication

• Of particular interest are corpora with linguistic annotations, where humans
have read the text and marked categories or structures describing their syntax
and/or meaning

Example of corpora

• Focusing on English; most released by the Linguistic Data Consortium (LDC):
• Brown: 500 texts, 1M words in 15 genres. POS-tagged. SemCor subset (234K words)

labelled with WordNet word senses

• WSJ: 6 years of Wall Street Journal; subsequently used to create Penn Treebank,
PropBank, and more! Translated into Czech for the Prague Czech-English Dependency
Treebank

• ECI: European Corpus Initiative, multilingual

• BNC: 100M words; balanced selection of written and spoken genres.
• Redwoods: Treebank aligned to wide-coverage grammar; several genres.

• Gigaword: 1B words of news text.
• AMI: Multimedia (video, audio, synchronized transcripts).
• Google Books N-grams: 5M books, 500B words (361B English).
• Flickr 8K: images with NL captions
• English Visual Genome: Images, bounding boxes ⇒ NL descriptions

Markup

• There are several common markup formats for structuring linguistic data,
including XML, JSON, CoNLL-style (one token per line, annotations in tab-
separated columns)

• Some datasets, such as WordNet and PropBank, use custom file formats
• Many libraries (such as NLTK) provides friendly Python APIs for reading many corpora so

one doesn’t have to worry about this

Corpus size

• How large the corpus should be?
• There is no specific answer to this question

• The size of the corpus depends upon the purpose for which it is intended as well as on some
practical considerations as follows

• Kind of query anticipated from the user
• The methodology used by the users to study the data

• Availability of the source of data
• With the advancement in technology, the corpus size also increases

Year Name of the Corpus Size (in words)

1960s - 70s Brown and LOB 1 Million words

1980s The Birmingham corpora 20 Million words

1990s The British National corpus 100 Million words

Early 21
st

century The Bank of English corpus 650 Million words

Sources of variability in corpora

• Language: 7097 languages in the world

• Variety, like African American Language varieties
• AAE Twitter posts might include forms like "iont" (I don’t)

• Genre
• Newswire, fiction, scientific articles, Wikipedia

• Author Demographics: writer's age, gender, ethnicity, SES

• Code switching
• E.g., Spanish/English

• Por primera vez veo a @username actually being hateful! It was beautiful:)

[For the first time I get to see @username actually being hateful! it was beautiful:)]

Text Normalization

Text Normalization

• Text normalization is the process of transforming a text into some
predefined standard form, and could consist of several tasks

• There is no all-purpose normalization procedure rather, it depends on
• What type of text is being normalized
• What type of NLP task needs to be carried out afterwards

• Text normalization is also important for applications other than NLP,
such as text mining and WEB search engines

Text normalization

• Tokenization
• Separating out (tokenizing) words from running text

• Lemmatization
• Determining that two words have the same root, despite their surface

differences

• Stemming
• A simpler lemmatization in which we just strips suffixes from the end of the

words

• Sentence segmentation
• Breaking up a text into individual sentences

Words

• Before any text processing takes place, one must agree on what counts as a
word

• Let’s consider the following sentence from Brown Corpus
• “He stepped out into the hall, was delighted to encounter a water brother.”

• 13 words not considering punctuation marks as words, 15 otherwise
• It depends on the task. Punctuation is critical for finding boundary of things (commas, period, colons) and

for identifying some aspects of meaning (?, !, “”)
• For part-of-speech tagging, parsing or speech synthesis, punctuation marks treated as separate words

• Other corpora (spoken language) don’t have punctuation but further
complicate defining what is a word …

How many words in a sentence?

• Let’s look at one sample utterance (the spoken correlate of a sentence)
• "I do uh main- mainly business data processing”
• Fragments (main-), filled pauses (uh) (disfluencies)

• Words or not?

• They and they are the same word?
• Yes, in some applications (speech recognition) no in others (e.g., POS tagging, NER)

• "Seuss’s cat in the hat is different from other cats!"
• cat and cats same lemma (cat) but different wordforms
• Lemma: set of lexical forms with same stem, part of speech, word sense
• Wordform: the full inflected or derived surface form of a word

How many words in a corpus?

• N = number of tokens (i.e., number of running words)

• V = vocabulary = set of types, |V| is size of vocabulary
• Types = number of different words in a corpus

• Heaps Law = Herdan's Law = where often .67 < β < .75
• vocabulary size grows faster than square root of the number of word tokens

Tokens = N Types = |V|

Switchboard phone conversations 2.4 million 20 thousand

Shakespeare 884,000 31 thousand

COCA 440 million 2 million

Google N-grams 1 trillion 13+ million

2.2 • WORDS 11

duce other complications with regard to defining words. Let’s look at one utterance
from Switchboard; an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment
filled pause we consider these to be words? Again, it depends on the application. If we are

building a speech transcription system, we might want to eventually strip out the
disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.

How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma
the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform
languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token
punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.11 Rough numbers of types and tokens for some English language corpora. The
largest, the Google N-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger.

Fig. 2.11 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and b are positive constants, and 0 < b < 1.

|V | = kNb (2.1)

Text Normalization

Word Tokenization

• Space-based tokenization is a very simple way to tokenize
• For languages that use space characters between words

• Arabic, Cyrillic, Greek, Latin, etc., based writing systems

• Segment off a token between instances of spaces

• Unix tools for space-based tokenization
• The "tr" command
• Inspired by Ken Church's UNIX for Poets
• Given a text file, output the word tokens and their frequencies

Issues in Tokenization

• Can't just blindly remove punctuation:
• m.p.h., Ph.D., AT&T, cap’n
• prices ($45.55)
• dates (01/02/06)
• URLs (http://www.stanford.edu)
• hashtags (#nlproc)
• email addresses (someone@cs.colorado.edu)

• Clitic: a word that doesn't stand on its own
• "are" in we're, French "je" in j'ai, "le" in l'honneur

• When should multiword expressions (MWE) be words?
• New York, rock ’n’ roll

Tokenization in languages without spaces

• Many languages (like Chinese, Japanese, Thai) don't use spaces to
separate words!

• How do we decide where the token boundaries should be?

Word tokenization in Chinese

• Chinese words are composed of characters called "hanzi" (or
sometimes just "zi")
• Each one represents a meaning unit called a morpheme
• Each word has on average 2.4 of them

• But deciding what counts as a word is complex and not agreed
upon

How to do word tokenization in Chinese

• Example
• Consider the following Chinese sentence and possible tokenizations

姚明进入总决赛
“Yao Ming reaches the finals”

姚 明 进入 总 决赛
Yao Ming reaches overall finals

姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

Character tokenization

So, in Chinese it's common to just treat each character (zi) as a
token

• the segmentation step is very simple

• For Japanese and Thai the character is too small a unit, and
algorithms for word segmentation are required

• Standard segmentation algorithms for these languages use neural
sequence models
• This is related to sequence labelling

Another option for text tokenization

• Use the data to tell us how to tokenize instead of

• white-space segmentation

• single-character segmentation

• Subword tokenization (because tokens can be parts of words as
well as whole words)

Subword tokenization

• Subword tokenization schemes have two parts
• the token learner takes a raw training corpus and induces a set of tokens,

called vocabulary
• the token segmenter takes a raw test sentence and segments it into the

tokens in the vocabulary

• Three algorithms are widely used
• byte-pair encoding (BPE) tokenization
• unigram tokenization
• WordPiece tokenization

Byte Pair Encoding (BPE) token learner

• Let vocabulary be the set of all individual characters
= {A, B, C, D,…, a, b, c, d….}

• Repeat:
• Choose the two symbols that are most frequently adjacent in the training

corpus (say 'A', 'B')
• Add a new merged symbol 'AB' to the vocabulary
• Replace every adjacent 'A' 'B' in the corpus with 'AB'

• Until k merges have been done
• k is a hyperparameter

BPE token learner algorithm
2.4 • TEXT NORMALIZATION 19

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization
ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma

Byte Pair Encoding (BPE) Addendum

• Most subword algorithms are run inside space-separated tokens
• a special end-of-word symbol '__' before space in training corpus is first

added
• Next, separate into letters

BPE token learner

• A very simple corpus
• low low low low low lowest lowest newer newer newer newer newer newer

wider wider wider new new
• Add end-of-word tokens, resulting in the following vocabulary:

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

representation

BPE token learner

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Merge e r to er

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE token learner

Merge er _ to er_

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE token learner

Merge n e to ne

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE token learner

• The next merges are:

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE token segmenter algorithm

• On the test data, run each merge learned from the training data:
• Greedily
• In the order we learned them
• (test frequencies don't play a role)

• E.g., merge every e r to er, then merge er _ to er_, etc.
• Result:

• Test set "n e w e r _" would be tokenized as a full word
• Test set "l o w e r _" would be two tokens: "low er_"

Properties of BPE tokens

• Usually includes frequent words

• And frequent subwords
• Which are often morphemes like -est or –er

• A morpheme is the smallest meaning-bearing unit of a language
• unlikeliest has 3 morphemes un-, likely, and -est

Word Normalization

• Putting words/tokens in a standard format
• U.S.A. or USA
• uhhuh or uh-huh
• Fed or fed
• am, is, be, are

Case folding

• Applications like IR
• Reduce all letters to lower case

• Since users tend to use lower case
• Possible exception: upper case in mid-sentence?

• e.g., General Motors

• Fed vs. fed
• SAIL vs. sail

• Sometimes it might be useful to keep both versions of the text data
• Case is helpful (US versus us is important) for sentiment analysis, MT,

Information extraction

Stop words

• Stop words removal includes getting rid of
• common articles
• pronouns
• prepositions
• Coordinations (and, or, but)

• Stop word removal heavily depends on the task at hand, since it
can wipe out relevant information

Lemmatization

• Lemmatization has the objective of reducing a word to its base
form, also called lemma, therefore grouping together different
forms of the same word

• Example
• Am, are, is -> be
• Car, cars, car’s, cars’ -> car
• Italian voglio (‘I want’), vuoi (‘you want’) -> volere (‘want’)
• He is reading detective stories -> He be read detective story

Lemmatization is done by Morphological Parsing

• Morphemes:
• The small meaningful units that make up words
• Stems: The core meaning-bearing units
• Affixes: Parts that adhere to stems, often with grammatical functions

• Morphological Parsers:
• Parse cats into two morphemes cat and s
• Parse Spanish amaren (‘if in the future they would love’) into morpheme

amar ‘to love’

Stemming
• Stemming refers to the process of slicing a word with the intention of

removing affixes

• Stemming is problematic in the linguistic perspective, since it
sometimes produces words that are not in the language, or else words
that have a different meaning
• Much more commonly used in IR than NLP. Porter and Snowball stemmers

very popular (rule based)
• For low-resource languages statistical stemmers are also an option

• Example
• Arguing -> argu, flies -> fli
• Playing -> play, caring-> car
• News -> new

Stemming

• Reduce the terms to stems, coarsely cutting the affixes

This was not the map we found in Billy
Bones’s chest, but an accurate copy,
complete in all things-names and
heights and soundings-with the single
exception of the red crosses and the
written notes.

Thi wa not the map we found in Billi
Bone s chest but an accur copi complet
in all thing name and height and sound
with the singl except of the red cross
and the written note
.

Porter Stemmer

• Based on a series of rewrite rules run in series
• A cascade, in which output of each pass fed to next pass

• Some sample rules:

20 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

be; the words dinner and dinners both have the lemma dinner. Lemmatizing each of
these forms to the same lemma will let us find all mentions of words in Russian like
Moscow. The lemmatized form of a sentence like He is reading detective stories
would thus be He be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem
pheme of the word, supplying the main meaning— and affixes—adding “additional”affix
meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or parses a Spanish word like amaren (‘if in the future
they would love’) into the morpheme amar ‘to love’, and the morphological features
3PL and future subjunctive.

The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make use
of a simpler but cruder method, which mainly consists of chopping off word-final
affixes. This naive version of morphological analysis is called stemming. One ofstemming

the most widely used stemming algorithms is the Porter (1980). The Porter stemmerPorter stemmer
applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but
an accurate copy, complete in all things-names and heights
and soundings-with the single exception of the red crosses
and the written notes.

produces the following stemmed output:
Thi wa not the map we found in Billi Bone s chest but an
accur copi complet in all thing name and height and sound
with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade
which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

ATIONAL ! ATE (e.g., relational ! relate)
ING ! ✏ if stem contains vowel (e.g., motoring ! motor)

SSES ! SS (e.g., grasses ! grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity

Languages’ complex morphology

• Handling complex morphology is necessary for many languages
• e.g., the Turkish word:

• Uygarlastiramadiklarimizdanmissinizcasina
• `(behaving) as if you are among those whom we could not civilize’

• Uygar `civilized’ + las `become’
+ tir `cause’ + ama `not able’
+ dik `past’ + lar ‘plural’
+ imiz ‘p1pl’ + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

Sentence segmentation
• Text normalization also includes sentence segmentation: breaking up a text

into individual sentences

• This can be done using cues like periods, question marks, or exclamation
points

• Period is very ambiguous
• Sentence boundary
• Abbreviations like Inc. or Dr.
• Numbers like .02% or 4.3

• Common algorithms tokenize first using rules or ML to classify a period as
either (a) part of the word or (b) a sentence-boundary
• An abbreviation dictionary can help

• Sentence segmentation can then often be done by rules based on this
tokenization

