UNIVERSITA DEGLI STUDI DI NAPOLI

') PARTHENOPE

Natural Language Processing

Corpora and text processing

LESSON 4

prof. Antonino Staiano

M.Sc. In "Machine Learning e Big Data" - University Parthenope of Naples

What is a Corpus?

* NLP algorithms are most useful when they apply across many languages

A corpus (plural corpora), is a body of utterances, as words or
sentences, assumed to be representative of and used for lexical,
grammatical, or other linguistic analysis

Corpora in NLP

 To understand and model how language works, we need empirical evidence

* |deally, natural-occurring corpora serve as realistic samples of a language

* Aside from linguistic utterances, corpus datasets include metadata

* Collateral information about where the language comes from, such as author, date, topic,
publication

 Of particular interest are corpora with linguistic annotations, where humans
have read the text and marked categories or structures describing their syntax
and/or meaning

Example of corpora

* Focusing on English; most released by the Linguistic Data Consortium (LDC):

* Brown: 500 texts, TM words in 15 genres. POS-tagged. SemCor subset (234K words)
labelled with WordNet word senses

« WSJ: 6 years of Wall Street Journal; subsequently used to create Penn Treebank,
PropBank, and more! Translated into Czech for the Prague Czech-English Dependency
Treebank

» ECI: European Corpus Initiative, multilingual

« BNC: 100M words; balanced selection of written and spoken genres.

* Redwoods: Treebank aligned to wide-coverage grammar; several genres.
« Gigaword: 1B words of news text.

« AMI: Multimedia (video, audio, synchronized transcripts).

* Google Books N-grams: 5M books, 500B words (361B English).

* Flickr 8K: images with NL captions

 English Visual Genome: Images, bounding boxes = NL descriptions

Markup

* There are several common markup formats for structuring linguistic data,
including XML, JSON, CoNLL-style (one token per line, annotations in tab-
separated columns)

« Some datasets, such as WordNet and PropBank, use custom file formats

* Many libraries (such as NLTK) provides friendly Python APIs for reading many corpora so
one doesn't have to worry about this

Corpus size

* How large the corpus should be?
« There is no specific answer to this question

* The size of the corpus depends upon the purpose for which it is intended as well as on some
practical considerations as follows

* Kind of query anticipated from the user
* The methodology used by the users to study the data

* Availability of the source of data
« With the advancement in technology, the corpus size also increases

Year Name of the Corpus Size (in words)
1960s - 70s Brown and LOB 1 Million words
1980s The Birmingham corpora 20 Million words
1990s The British National corpus 100 Million words

Early 21" century The Bank of English corpus 650 Million words

Sources of variability in corpora

 Language: 7097 languages in the world

* Variety, like African American Language varieties
« AAE Twitter posts might include forms like "iont" (I dont)

* Genre
* Newswire, fiction, scientific articles, Wikipedia
 Author Demographics: writer's age, gender, ethnicity, SES

* Code switching
« E.g., Spanish/English
* Por primera vez veo a @username actually being hateful! It was beautiful:)

[For the first time | get to see @username actually being hateful! it was beautiful:)]

Text Normalization

Text Normalization

* Text normalization is the process of transforming a text into some
predefined standard form, and could consist of several tasks

* There is no all-purpose normalization procedure rather, it depends on
* What type of text is being normalized
* What type of NLP task needs to be carried out afterwards

* Text normalization is also important for applications other than NLP,
such as text mining and WEB search engines

Text normalization

» Tokenization

 Separating out (tokenizing) words from running text

* Lemmatization

* Determining that two words have the same root, despite their surface
differences

* Stemming

* A simpler lemmatization in which we just strips suffixes from the end of the
words

* Sentence segmentation

* Breaking up a text into individual sentences

Words

« Before any text processing takes place, one must agree on what counts as a
word

* Let’s consider the following sentence from Brown Corpus

» “He stepped out into the hall, was delighted to encounter a water brother.”
* 13 words not considering punctuation marks as words, 15 otherwise

* It depends on the task. Punctuation is critical for finding boundary of things (commas, period, colons) and
for identifying some aspects of meaning (?, !, ")

* For part-of-speech tagging, parsing or speech synthesis, punctuation marks treated as separate words

 Other corpora (spoken language) don’t have punctuation but further
complicate defining what is a word ...

How many words in a sentence?

* Let’s look at one sample utterance (the spoken correlate of a sentence)
* "I do uh main- mainly business data processing”
« Fragments (main-), filled pauses (uh) (disfluencies)
* Words or not?
* They and they are the same word?
* Yes, in some applications (speech recognition) no in others (e.g., POS tagging, NER)

e "Seuss’s cat in the hat is different from other cats!"
e cat and cats same lemma (cat) but different

* Lemma: set of lexical forms with same stem, part of speech, word sense
. : the full inflected or derived surface form of a word

How many words in a corpus?

* N = number of tokens (i.e., number of running words)

 V = vocabulary = set of types, |V is size of vocabulary

« Types = number of different words in a corpus

* Heaps Law = Herdan's Law = ‘V’ — kNﬁ where often .67 <3 < .75

* vocabulary size grows faster than square root of the number of word tokens

I e TR

Switchboard phone conversations 2.4 million 20 thousand
Shakespeare 884,000 31 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13+ million

Text Normalization

Word Tokenization

* Space-based tokenization is a very simple way to tokenize

 For languages that use space characters between words
* Arabic, Cyrillic, Greek, Latin, etc., based writing systems
« Segment off a token between instances of spaces

* Unix tools for space-based tokenization

* The "tr" command
* Inspired by Ken Church's UNIX for Poets
 Given a text file, output the word tokens and their frequencies

Issues in Tokenization

» Can'tjust blindly remove punctuation:
 m.p.h., Ph.D., AT&T, cap’n

prices ($45.55)

dates (01/02/06)

URLs (http://www.stanford.edu)

hashtags (#nlproc)

email addresses (someone@cs.colorado.edu)

e Clitic: a word that doesn't stand on its own

« "are" inwe're, French "je" inj'ai, "le" in ['honneur

* When should multiword expressions (MWE) be words?
* New York, rock 'n’ roll

Tokenization in languages without spaces

* Many languages (like Chinese, Japanese, Thai) don't use spaces to
separate words!

* How do we decide where the token boundaries should be?

Word tokenization in Chinese

* Chinese words are composed of characters called "hanzi" (or
sometimes just "zi")
* Each one represents a meaning unit called a morpheme
« Each word has on average 2.4 of them

* But deciding what counts as a word is complex and not agreed
upon

How to do word tokenization in Chinese

* Example
 Consider the following Chinese sentence and possible tokenizations

Wk ARH A SRR
“Yao Ming reaches the finals”

% BB EA = IREE

Yao Ming reaches overall finals

e BB # A = R =

Yao Ming enter enter overall decision game

Character tokenization

So, in Chinese it's common to just treat each character (zi) as a
token

* the segmentation step is very simple

* For Japanese and Thai the character is too small a unit, and
algorithms for word segmentation are required

* Standard segmentation algorithms for these languages use neural
sequence models
* This is related to sequence labelling

Another option for text tokenization

* Use the data to tell us how to tokenize instead of
* white-space segmentation

* single-character segmentation

« Subword tokenization (because tokens can be parts of words as
well as whole words)

Subword tokenization

* Subword tokenization schemes have two parts

* the token learner takes a raw training corpus and induces a set of tokens,
called vocabulary

* the token segmenter takes a raw test sentence and segments it into the
tokens in the vocabulary

* Three algorithms are widely used
* byte-pair encoding (BPE) tokenization
* unigram tokenization
* WordPiece tokenization

Byte Pair Encoding (BPE) token learner

* Let vocabulary be the set of all individual characters
={A, B, C,D,...,ab,c d..}

* Repeat:
* Choose the two symbols that are most frequently adjacent in the training
corpus (say ‘A', 'B')
* Add a new merged symbol 'AB' to the vocabulary
* Replace every adjacent 'A' 'B' in the corpus with 'AB'

 Until k merges have been done
* kis a hyperparameter

BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V
V<—all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens til k times

11, g <—Most frequent pair of adjacent tokens in C

Inpw <t + IR # make new token by concatenating

VeV + tyew # update the vocabulary

Replace each occurrence of 17, tg in C with tyzy # and update the corpus
return V

Byte Pair Encoding (BPE) Addendum

* Most subword algorithms are run inside space-separated tokens

* a special end-of-word symbol '__' before space in training corpus is first

added

* Next, separate into letters

BPE token learner

* A very simple corpus

e low low low low low lowest lowest newer newer newer newer newer newer
wider wider wider new new

* Add end-of-word tokens, resulting in the following vocabulary:

corpus representation vocabulary

l ow _ ., d, e, 1,1, n, o, r, s, t, w
west_
Wwer _
der _
W

O LW O\ DD DN
S, = B8
™ H- M O

BPE token learner

corpus vocabulary

5 l ow _ ., d, e, 1, 1, n, o, r, s, t, w
2 l owest _

6 newer _

3 wider _

2 new_

Merge e rto er

corpus vocabulary

5 l ow _ ., d, e, i, 1, n, o, r, s, t, w, er
2 l owest_

6 newer _

3 wilder _

2 new_

BPE token learner

corpus vocabulary

5 l ow _ ., d, e, i, 1, n, o, r, s, t, w, er
2 l owest_

6 newer _

3 wider _

2 new_

Merge er toer

corpus vocabulary

5 low _ _,d,e,i,1,n,0,r,s, t,w, er, er_
2 l owest_

6 newer_

3 wilder_

2 new_

BPE token learner

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0, 1, s, t,w, er, er__
2 lowest_

6 newer_

3 wilder_

2 new_

Merge n e to ne

corpus vocabulary

low _ _,d,e,1,1,n,0,r,s, t,w, er, er_, ne
l owest_

ne w er_

wider_

ne w _

O LW AN D

BPE token learner

* The next merges are:

Merge

(ne, w)

(1, o)
(lo, w)
(new, er_)
(low, _)

Current Vocabulary
_,d,e,1,1,n,0, 1, s, t,w, er,

—,d,
—,d,
—,d,
—,d,

e

e
e
e

9

b

9

9

1,1,n, o, r,
1,1,n, o, r,
1,1,n, o, r,
1,1,n,0, r,

s, t, W, er,
s, t, W, er,
s, t, W, er,
s, t, W, er,

er__, ne, new

er__, ne, new, lo

er__, ne, new, lo, low

er__, ne, new, lo, low, newer__

er__, ne, new, lo, low, newer__, low__

BPE token segmenter algorithm

* On the test data, run each merge learned from the training data:

* Greedily
* In the order we learned them
* (test frequencies don't play a role)

* E.g., merge every e r to er, then merge er _ to er_, etc.

* Result:
* Testset "newer " would be tokenized as a full word
 Testset "lower " would be two tokens: "low er_"

Properties of BPE tokens

* Usually includes frequent words

* And frequent subwords
« Which are often morphemes like -est or —er

* A morpheme is the smallest meaning-bearing unit of a language

* unlikeliest has 3 morphemes un-, likely, and -est

Word Normalization

e Putting words/tokens in a standard format

« U.S.A. or USA
e uhhuh or uh-huh
* Fed or fed

* am, is, be, are

Case folding

* Applications like IR

* Reduce all letters to lower case
* Since users tend to use lower case
* Possible exception: upper case in mid-sentence?

* e.g., General Motors
e Fedvs. fed
e SAIL vs. sail

* Sometimes it might be useful to keep both versions of the text data

 Case is helpful (US versus us is important) for sentiment analysis, MT,
Information extraction

Stop words

* Stop words removal includes getting rid of
e common articles
* pronouns
* prepositions
* Coordinations (and, or, but)

* Stop word removal heavily depends on the task at hand, since it
can wipe out relevant information

Lemmatization

* Lemmatization has the objective of reducing a word to its base
form, also called lemma, therefore grouping together different
forms of the same word

* Example
 Am, are, is -> be
 Car, cars, car's, cars’ -> car
e Italian voglio ('l want’), vuoi ('you want') -> volere (‘want’)

: -> He be read detective story

Lemmatization is done by Morphological Parsing

* Morphemes:
* The small meaningful units that make up words
 Stems: The core meaning-bearing units
« Affixes: Parts that adhere to stems, often with grammatical functions

* Morphological Parsers:
* Parse cats into two morphemes cat and s

 Parse Spanish amaren ('if in the future they would love’) into morpheme
amar 'to love’

Stemming

» Stemming refers to the process of slicing a word with the intention of
removing affixes

* Stemming is problematic in the linguistic perspective, since it
sometimes produces words that are not in the language, or else words
that have a different meaning

* Much more commonly used in IR than NLP. Porter and Snowball stemmers
very popular (rule based)

* For low-resource languages statistical stemmers are also an option
* Example

 Arguing -> argu, flies -> fli

* Playing -> play, caring-> car

* News -> new

Stemming

* Reduce the terms to stems, coarsely cutting the affixes

This was not the map we found in Billy
Bones’s chest, but an accurate copy,
complete in all things-names and
heights and soundings-with the single
exception of the red crosses and the
written notes.

Thi wa not the map we found in Billi
Bone s chest but an accur copi complet
in all thing name and height and sound
with the singl except of the red cross
and the written note

Porter Stemmer

 Based on a series of rewrite rules run in series

* A cascade, in which output of each pass fed to next pass

* Some sample rules:

ATIONAL — ATE (e.g., relational — relate)
ING — € 1f stem contains vowel (e.g., motoring — motor)
SSES — SS (e.g., grasses — grass)

Languages’ complex morphology

* Handling complex morphology is necessary for many languages
* e.g., the Turkish word:
* Uygarlastiramadiklarimizdanmissinizcasina
* “(behaving) as if you are among those whom we could not civilize’
* Uygar ‘civilized' + las 'become’
+ tir ‘cause’ + ama ‘not able’
+ dik "past’ + lar ‘plural’
+ imiz ‘p1pl" + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

Sentence segmentation

* Text normalization also includes sentence segmentation: breaking up a text
into individual sentences

* This can be done using cues like periods, question marks, or exclamation
points

* Period is very ambiguous
* Sentence boundary

» Abbreviations like Inc. or Dr.
 Numbers like .02% or 4.3

« Common algorithms tokenize first using rules or ML to classify a period as
either (a) part of the word or (b) a sentence-boundary

 An abbreviation dictionary can help

« Sentence segmentation can then often be done by rules based on this
tokenization

