Natural Language Processing

Corpora and text processing

LESSON 4

What is a Corpus?

- NLP algorithms are most useful when they apply across many languages
- A corpus (plural corpora), is a body of utterances, as words or sentences, assumed to be representative of and used for lexical, grammatical, or other linguistic analysis

Corpora in NLP

- To understand and model how language works, we need empirical evidence
- Ideally, natural-occurring corpora serve as realistic samples of a language
- Aside from linguistic utterances, corpus datasets include metadata
- Collateral information about where the language comes from, such as author, date, topic, publication
- Of particular interest are corpora with linguistic annotations, where humans have read the text and marked categories or structures describing their syntax and/or meaning

Example of corpora

- Focusing on English; most released by the Linguistic Data Consortium (LDC):
- Brown: 500 texts, 1M words in 15 genres. POS-tagged. SemCor subset (234K words) labelled with WordNet word senses
- WSJ: 6 years of Wall Street Journal; subsequently used to create Penn Treebank, PropBank, and more! Translated into Czech for the Prague Czech-English Dependency Treebank
- ECI: European Corpus Initiative, multilingual
- BNC: 100M words; balanced selection of written and spoken genres.
- Redwoods: Treebank aligned to wide-coverage grammar; several genres.
- Gigaword: 1B words of news text.
- AMI: Multimedia (video, audio, synchronized transcripts).
- Google Books N-grams: 5M books, 500B words (361B English).
- Flickr 8K: images with NL captions
- English Visual Genome: Images, bounding boxes \Rightarrow NL descriptions

Markup

- There are several common markup formats for structuring linguistic data, including XML, JSON, CoNLL-style (one token per line, annotations in tabseparated columns)
- Some datasets, such as WordNet and PropBank, use custom file formats
- Many libraries (such as NLTK) provides friendly Python APIs for reading many corpora so one doesn't have to worry about this

Corpus size

- How large the corpus should be?
- There is no specific answer to this question
- The size of the corpus depends upon the purpose for which it is intended as well as on some practical considerations as follows
- Kind of query anticipated from the user
- The methodology used by the users to study the data
- Availability of the source of data
- With the advancement in technology, the corpus size also increases

Year	Name of the Corpus	Size (in words)
1960s - 70s	Brown and LOB	1 Million words
1980s	The Birmingham corpora	20 Million words
1990s	The British National corpus	100 Million words
Early 21 ${ }^{\text {st }}$ century	The Bank of English corpus	650 Million words

Sources of variability in corpora

- Language: 7097 languages in the world
- Variety, like African American Language varieties
- AAE Twitter posts might include forms like "iont" (I don't)
- Genre
- Newswire, fiction, scientific articles, Wikipedia
- Author Demographics: writer's age, gender, ethnicity, SES
- Code switching
- E.g., Spanish/English
- Por primera vez veo a @username actually being hateful! It was beautiful:) [For the first time I get to see @username actually being hateful! it was beautiful:)]

Text Normalization

Text Normalization

- Text normalization is the process of transforming a text into some predefined standard form, and could consist of several tasks
- There is no all-purpose normalization procedure rather, it depends on
- What type of text is being normalized
- What type of NLP task needs to be carried out afterwards
- Text normalization is also important for applications other than NLP, such as text mining and WEB search engines

Text normalization

- Tokenization
- Separating out (tokenizing) words from running text
- Lemmatization
- Determining that two words have the same root, despite their surface differences
- Stemming
- A simpler lemmatization in which we just strips suffixes from the end of the words
- Sentence segmentation
- Breaking up a text into individual sentences

Words

- Before any text processing takes place, one must agree on what counts as a word
- Let's consider the following sentence from Brown Corpus
- "He stepped out into the hall, was delighted to encounter a water brother."
- 13 words not considering punctuation marks as words, 15 otherwise
- It depends on the task. Punctuation is critical for finding boundary of things (commas, period, colons) and for identifying some aspects of meaning (?, !,"")
- For part-of-speech tagging, parsing or speech synthesis, punctuation marks treated as separate words
- Other corpora (spoken language) don't have punctuation but further complicate defining what is a word ...

How many words in a sentence?

- Let's look at one sample utterance (the spoken correlate of a sentence)
- "I do uh main- mainly business data processing"
- Fragments (main-), filled pauses (uh) (disfluencies)
- Words or not?
- They and they are the same word?
- Yes, in some applications (speech recognition) no in others (e.g., POS tagging, NER)
- "Seuss's cat in the hat is different from other cats!"
- cat and cats same lemma (cat) but different wordforms
- Lemma: set of lexical forms with same stem, part of speech, word sense
- Wordform: the full inflected or derived surface form of a word

How many words in a corpus?

- $N=$ number of tokens (i.e., number of running words)
- V = vocabulary = set of types, $\mid \bar{V}$ is size of vocabulary
- Types = number of different words in a corpus
- Heaps Law = Herdan's Law $=|V|=k N^{\beta}$ where often $.67<\beta<.75$
- vocabulary size grows faster than square root of the number of word tokens

| | Tokens = N | Types = \|V| |
| :--- | :--- | :--- |
| Switchboard phone conversations | 2.4 million | 20 thousand |
| Shakespeare | 884,000 | 31 thousand |
| COCA | 440 million | 2 million |
| Google N-grams | 1 trillion | $13+$ million |

Text Normalization

Word Tokenization

- Space-based tokenization is a very simple way to tokenize
- For languages that use space characters between words
- Arabic, Cyrillic, Greek, Latin, etc., based writing systems
- Segment off a token between instances of spaces
- Unix tools for space-based tokenization
- The "tr" command
- Inspired by Ken Church's UNIX for Poets
- Given a text file, output the word tokens and their frequencies

Issues in Tokenization

- Can't just blindly remove punctuation:
- m.p.h., Ph.D., AT\&T, cap'n
- prices (\$45.55)
- dates (01/02/06)
- URLs (http://www.stanford.edu)
- hashtags (\#nlproc)
- email addresses (someone@cs.colorado.edu)
- Clitic: a word that doesn't stand on its own
- "are" in we're, French "je" in j'ai, "le" in l'honneur
- When should multiword expressions (MWE) be words?
- New York, rock 'n' roll

Tokenization in languages without spaces

- Many languages (like Chinese, Japanese, Thai) don't use spaces to separate words!
- How do we decide where the token boundaries should be?

Word tokenization in Chinese

- Chinese words are composed of characters called "hanzi" (or sometimes just "zi")
- Each one represents a meaning unit called a morpheme
- Each word has on average 2.4 of them
- But deciding what counts as a word is complex and not agreed upon

How to do word tokenization in Chinese

－Example
－Consider the following Chinese sentence and possible tokenizations

```
姚明进入总决赛
"Yao Ming reaches the finals"
姚 明 进入 总 决赛
Yao Ming reaches overall finals
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game
```


Character tokenization

So, in Chinese it's common to just treat each character (zi) as a token

- the segmentation step is very simple
- For Japanese and Thai the character is too small a unit, and algorithms for word segmentation are required
- Standard segmentation algorithms for these languages use neural sequence models
- This is related to sequence labelling

Another option for text tokenization

- Use the data to tell us how to tokenize instead of
- white-space segmentation
- single-character segmentation
- Subword tokenization (because tokens can be parts of words as well as whole words)

Subword tokenization

- Subword tokenization schemes have two parts
- the token learner takes a raw training corpus and induces a set of tokens, called vocabulary
- the token segmenter takes a raw test sentence and segments it into the tokens in the vocabulary
- Three algorithms are widely used
- byte-pair encoding (BPE) tokenization
- unigram tokenization
- WordPiece tokenization

Byte Pair Encoding (BPE) token learner

- Let vocabulary be the set of all individual characters

$$
=\{A, B, C, D, \ldots, a, b, c, d \ldots\}
$$

- Repeat:
- Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
- Add a new merged symbol 'AB' to the vocabulary
- Replace every adjacent ' A ' ' B ' in the corpus with ' $A B$ '
- Until k merges have been done
- k is a hyperparameter

BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V
$V \leftarrow$ all unique characters in $C \quad$ \# initial set of tokens is characters
for $i=1$ to k do
\# merge tokens til k times
$t_{L}, t_{R} \leftarrow$ Most frequent pair of adjacent tokens in C
$t_{N E W} \leftarrow t_{L}+t_{R} \quad \#$ make new token by concatenating
$V \leftarrow V+t_{N E W} \quad$ \# update the vocabulary
Replace each occurrence of t_{L}, t_{R} in C with $t_{\text {NEW }}$ \# and update the corpus return V

Byte Pair Encoding (BPE) Addendum

- Most subword algorithms are run inside space-separated tokens
- a special end-of-word symbol '_.' before space in training corpus is first added
- Next, separate into letters

BPE token learner

- A very simple corpus
- low low low low low lowest lowest newer newer newer newer newer newer wider wider wider new new
- Add end-of-word tokens, resulting in the following vocabulary:

```
corpus representation vocabulary
5 l o w _
_, d, e, i, l, n, o, r, s, t, w
2 l o w e s t _
6 n e w e r _
3 w i d e r _
2 n e w -
```


BPE token learner

```
corpus
5 l o w _
vocabulary
5 lov w - 
6 n e w e r _
3 w i d e r -
2 n e w _
Merge er to er
corpus
5 O W _
2 l o w e s t _
6 n e w er _
3 w i d er _
2 n e w _
```

vocabulary
_, d, e, i, l, n, o, r, s, t, w, er

BPE token learner

corpus	vocabulary
5 1 o w	_, d, e, i, l, $\mathrm{n}, \mathrm{o}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{w}, \mathrm{er}$
2 l o w e s t -	
6 n e w er _	
3 w i d er _	
2 n e w -	

Merge er _ to er_
corpus
5 l o w -
2 l o w e s t -
6 n e w er_
3 w i d er_
2 n e w -
vocabulary
$\ldots, d, e, i, l, n, o, r, s, t, w, e r, e r _$

BPE token learner

```
corpus
5 l O W _
vocabulary
_, d, e, i, l, n, o, r, s, t, w, er, er__
2 l o w e s t _
n n e w er_
w w i d er_
2 n e W _
Merge n e to ne
```


corpus

5 l o W -
2 l o w e s t -
6 ne w er_
3 w i d er_
2 ne w _

vocabulary

, d, e, i, l, n, o, r, s, t, w, er, er, ne

BPE token learner

- The next merges are:

Merge (ne, w)	Current Vocabulary _, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new
(1,0)	_, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo
(lo, w)	-, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo, low
(new, er_)	_, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo, low, newer
(low, _)	_, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo, low, newer_, low

BPE token segmenter algorithm

- On the test data, run each merge learned from the training data:
- Greedily
- In the order we learned them
- (test frequencies don't play a role)
- E.g., merge every e r to er, then merge er _ to er_, etc.
- Result:
- Test set "n e w e r _" would be tokenized as a full word
- Test set "I o wer_" would be two tokens: "low er_"

Properties of BPE tokens

- Usually includes frequent words
- And frequent subwords
- Which are often morphemes like -est or -er
- A morpheme is the smallest meaning-bearing unit of a language
- unlikeliest has 3 morphemes un-, likely, and -est

Word Normalization

- Putting words/tokens in a standard format
- U.S.A. or USA
- uhhuh or uh-huh
- Fed or fed
- am, is, be, are

Case folding

- Applications like IR
- Reduce all letters to lower case
- Since users tend to use lower case
- Possible exception: upper case in mid-sentence?
- e.g., General Motors
- Fed vs. fed
- SAIL vs. sail
- Sometimes it might be useful to keep both versions of the text data
- Case is helpful (US versus us is important) for sentiment analysis, MT, Information extraction

Stop words

- Stop words removal includes getting rid of
- common articles
- pronouns
- prepositions
- Coordinations (and, or, but)
- Stop word removal heavily depends on the task at hand, since it can wipe out relevant information

Lemmatization

- Lemmatization has the objective of reducing a word to its base form, also called lemma, therefore grouping together different forms of the same word
- Example
- Am, are, is -> be
- Car, cars, car's, cars' -> car
- Italian voglio ('I want'), vuoi ('you want') -> volere ('want')
- He is reading detective stories -> He be read detective story

Lemmatization is done by Morphological Parsing

- Morphemes:
- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Parts that adhere to stems, often with grammatical functions
- Morphological Parsers:
- Parse cats into two morphemes cat and s
- Parse Spanish amaren ('if in the future they would love') into morpheme amar 'to love'

Stemming

- Stemming refers to the process of slicing a word with the intention of removing affixes
- Stemming is problematic in the linguistic perspective, since it sometimes produces words that are not in the language, or else words that have a different meaning
- Much more commonly used in IR than NLP. Porter and Snowball stemmers very popular (rule based)
- For low-resource languages statistical stemmers are also an option
- Example
- Arguing -> argu, flies -> fli
- Playing -> play, caring-> car
- News -> new

Stemming

- Reduce the terms to stems, coarsely cutting the affixes

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes.

Thi wa not the map we found in Billi Bone s chest but an accur copi complet in all thing name and height and sound with the singl except of the red cross and the written note

Porter Stemmer

- Based on a series of rewrite rules run in series
- A cascade, in which output of each pass fed to next pass
- Some sample rules:

ATIONAL \rightarrow ATE (e.g., relational \rightarrow relate)
ING $\rightarrow \epsilon \quad$ if stem contains vowel (e.g., motoring \rightarrow motor)
SSES \rightarrow SS (e.g., grasses \rightarrow grass)

Languages' complex morphology

- Handling complex morphology is necessary for many languages
- e.g., the Turkish word:
- Uygarlastiramadiklarimizdanmissinizcasina
- `(behaving) as if you are among those whom we could not civilize'
- Uygar `civilized' + las `become'
+ tir `cause' + ama `not able'
+ dik 'past' + lar 'plural'
+ imiz 'p1pl' + dan 'abl'
+ mis 'past' + siniz '2pl' + casina 'as if'

Sentence segmentation

- Text normalization also includes sentence segmentation: breaking up a text into individual sentences
- This can be done using cues like periods, question marks, or exclamation points
- Period is very ambiguous
- Sentence boundary
- Abbreviations like Inc. or Dr.
- Numbers like .02\% or 4.3
- Common algorithms tokenize first using rules or ML to classify a period as either (a) part of the word or (b) a sentence-boundary
- An abbreviation dictionary can help
- Sentence segmentation can then often be done by rules based on this tokenization

