MASTER MEIM 2021-2022

Programming exercises

Sara Dubbiosa

A cura del prof. Lorem Ipsum
Prof. Di Economia e Management all'Università degli Studi di Napoli Parthenope

Lecture overview

- Ladder Diagram (LD) language
- Boolean operators
- Logic functions
- Programming exercises (CODESYS and FACTORY IO)

Software overview

CODESYS

- Integrated development environment for programming controller applications according to the standard IEC 61131-3
- Download: https://store.codesys.com/en/

FACTORY IO

- 3D factory simulation for learning automation technologies
- offers scenes inspired by typical industrial applications
- Download (30 days trial): https://factoryio.com/start-trial

Boolean algebra

Boolean algebra is the branch of algebra in which the values of the variables are the truth values true and false

- usually are represented with the bits (or binary digits), namely 1 and 0
- logic sentences have an equivalent expression in Boolean algebra

From George Boole, an English mathematician of the 1800s

- Introduced in his first book "The Mathematical Analysis of Logic", in 1847

Boolean operators

The truth of logic sentences can be systematically proven by logic equation

The basic operations of Boolean algebra are conjunction, disjunction, and negation

- expressed with the corresponding binary operators AND, and OR and the unary operator NOT

Logical operation	Operator	Notations		
Conjunction	AND	a AND b	$\mathrm{a} \wedge \mathrm{b}$	$\mathrm{a} \cdot \mathrm{b}$
Disjunction	OR	a OR b	$\mathrm{a} \vee \mathrm{b}$	$\mathrm{a}+\mathrm{b}$
Negation	NOT	NOT a	$\neg \mathrm{a}$	-a

Boolean operators

Negation, NOT, ᄀ

Takes a single Boolean value, either true or false, and negates it

- Flips true to false, and false to true

Boolean operators

Negation, NOT, ᄀ

Takes a single Boolean value, either true or false, and negates it

- Flips true to false, and false to true

Logic Table
a
NOT a
0

Boolean operators

Negation, NOT, ᄀ

Takes a single Boolean value, either true or false, and negates it

- Flips true to false, and false to true

Ladder Diagram

Logic Table
a
NOT a
0

Boolean operators

Negation, NOT, ᄀ

Takes a single Boolean value, either true or false, and negates it

- Flips true to false, and false to true

Ladder Diagram

(b)

(c)

Logic Table

a	NOT a
0	1
1	0

Boolean operators

Conjunction, AND, \wedge,

Takes two inputs but still has a single output

- the output is true only if both inputs are true

In a logical sentence, you are telling the truth only when you are never lying

Boolean operators

Conjunction, AND, \wedge,

Takes two inputs but still has a single output

- the output is true only if both inputs are true

In a logical sentence, you are telling the truth only when you are never lying

My name is Sara AND I'm wearing pants

My name is Sara AND I'm wearing a dress

Boolean operators

Conjunction, AND, \wedge,

Takes two inputs but still has a single output

- the output is true only if both inputs are true

In a logical sentence, you are telling the truth only when you are never lying

My name is Sara AND I'm wearing pants

My name is Sara AND I'm wearing a dress

Boolean operators

Conjunction, AND, \wedge,

Takes two inputs but still has a single output

- the output is true only if both inputs are true

Boolean operators

Conjunction, AND, ^,

Takes two inputs but still has a single output

- the output is true only if both inputs are true

Logic Table		
\mathbf{a}	\mathbf{b}	\mathbf{a} AND b
0	0	0
1	0	0
0	1	0
1	1	1

Boolean operators

Conjunction, AND, ^,

Takes two inputs but still has a single output

- the output is true only if both inputs are true

Ladder Diagram

\mathbf{a}	\mathbf{b}	\mathbf{a} AND \mathbf{b}
0	0	0
1	0	0
0	1	0
1	1	1

Boolean operators

Conjunction, AND, \wedge, .

Takes two inputs but still has a single output

- the output is true only if both inputs are true

Ladder Diagram: coils series

(a)

\mathbf{a}	\mathbf{b}	\mathbf{a} AND \mathbf{b}
0	0	0
1	0	0
0	1	0
1	1	1

Boolean operators

Disjunction, OR, V , +

Takes two inputs but still has a single output

- the output is false only if both inputs are false

Boolean operators

Disjunction, OR, V , +

Takes two inputs but still has a single output

- the output is false only if both inputs are false

Just one sentence needs to be true for the whole sentence to be true

My name is Dua Lipa OR I'm wearing pants

Boolean operators

Disjunction, OR, V , +

Takes two inputs but still has a single output

- the output is false only if both inputs are false

Boolean operators

Disjunction, OR, V , +

Takes two inputs but still has a single output

- the output is false only if both inputs are false

Logic Table

\mathbf{a}	\mathbf{b}	\mathbf{a} OR \mathbf{b}
0	0	0
1	0	1
0	1	1
1	1	1

Boolean operators

Disjunction, OR, V , +

Takes two inputs but still has a single output

- the output is false only if both inputs are false

Ladder Diagram

a	b	a OR b
0	0	0
1	0	1
0	1	1
1	1	1

Boolean operators

Disjunction, OR, V , +

Takes two inputs but still has a single output

- the output is false only if both inputs are false

Ladder Diagram (coils parallel)
(a)

(c)

Logic Table

\mathbf{a}	\mathbf{b}	\mathbf{a} OR \mathbf{b}
0	0	0
1	0	1
0	1	1
1	1	1

Logic function

NAND

An AND operator followed by a NOT operator

- The NOT operator inverts the output of the AND
- NAND \rightarrow NOT (A AND B)

Logic function

NAND

An AND operator followed by a NOT operator

- The NOT operator inverts the output of the AND
- An alternative is to put a NOT on each input, then follow by an OR

Logic function

NAND

An AND operator followed by a NOT operator

- The NOT operator inverts the output of the AND

a	b	a AND b	NOT (a AND b)
0	0	0	1
1	0	0	1
0	1	0	1
1	1	1	0

Logic function

NAND

An AND operator followed by a NOT operator

- An alternative is to put a NOT on each input, then follow by an OR

Ladder Diagram

a	b	a NAND b
0	0	1
1	0	1
0	1	1
1	1	0

Logic function

NAND

An AND operator followed by a NOT operator

- An alternative is to put a NOT on each input, then follow by an OR

Ladder Diagram

a	b	a NAND b
0	0	1
1	0	1
0	1	1
1	1	0

Logic function

NOR
Combination of a OR and an NOT operator

- The output is 1 when neither inputs is 1

Logic function

NOR

Combination of a OR and an NOT operator

- The output is 1 when neither inputs is 1

a	b	a OR b	NOT (a OR b)
0	0	0	1
1	0	1	0
0	1	1	0
1	1	1	0

Logic function

NOR

Combination of a OR and an NOT operator

- The output is 1 when neither inputs is 1
- An alternative is to put a NOT on each input, then follow by an AND

Logic function

NOR

Combination of a OR and an NOT operator

- An alternative is to put a NOT on each input, then follow by an AND

Ladder Diagram

a	b	a NOR b
0	0	1
1	0	0
0	1	0
1	1	0

Logic function

NOR

Combination of a OR and an NOT operator

- An alternative is to put a NOT on each input, then follow by an AND

Ladder Diagram

a	b	a NOR b
0	0	1
1	0	0
0	1	0
1	1	0

Logic function

XOR, exclusive OR

The output is 1 when either of the inputs is 1 but not when both are 1

- ((NOT A) AND B) OR (A AND (NOT B))

Logic function

XOR, exclusive OR

The output is 1 when either of the inputs is 1 but not when both are 1

- ((NOT A) AND B) OR (A AND (NOT B))

\mathbf{a}	\mathbf{b}	NOT \mathbf{a}	NOT b	(NOT A) AND B	A AND (NOT B)	a XOR b
0	0	1	1	0	0	0
1	0	0	1	0	1	1
0	1	1	0	1	0	1
1	1	0	0	0	0	0

Logic function

XOR, exclusive OR

The output is 1 when either of the inputs is 1 but not when both are 1

- ((NOT A) AND B) OR (A AND (NOT B))

((NOT A) AND B) OR (A AND (NOT B))

```
( a OR (NOT b)) AND ((NOT a) OR B)
```


Logic function

XOR, exclusive OR

The output is 1 when either of the inputs is 1 but not when both are 1

- ((NOT A) AND B) OR (A AND (NOT B))

Ladder Diagram

\mathbf{a}	\mathbf{b}	\mathbf{a} XOR \mathbf{b}
0	0	0
1	0	1
0	1	1
1	1	0

Logic function

XOR, exclusive OR

The output is 1 when either of the inputs is 1 but not when both are 1

- ((NOT A) AND B) OR (A AND (NOT B))

Ladder Diagram

\mathbf{a}	\mathbf{b}	\mathbf{a} XOR \mathbf{b}
0	0	0
1	0	1
0	1	1
1	1	0

Logic function

Rising edge detection

- Input \rightarrow the signal a
- Output \rightarrow should be 1 when a has a rising edge (goes from 0 to 1)

Logic function

Rising edge detection

```
FUNCTION rising_edge : BOOL
    INPUT VAR
    a : BOOL;
```

Positive / Rising Edges

0

```
    END_VAR
```

 VAR
 aux : BOOL;
 END_VAR
 rising_edge := NOT (aux) AND a;
 aux : = a;
 END_FUNCTION
in collaboration with Mit SLOAN
in

Logic function

Rising edge detection

Logic function

Rising edge detection

Equivalent to use a positive transition sensing contact

Ladder logic exercises

Exercise 1)

A start and a stop button is used for starting and stopping a motor. But make sure that the buttons can only start and stop the motor on a positive or rising edge.

Ladder logic exercises

Exercise 1)

A start and a stop button is used for starting and stopping a motor. But make sure that the buttons can only start and stop the motor on a positive or rising edge.

You may want to use

- (S) SET coil
- if fed the associated bit is set to 1 and retains the value 1
- (R) RESET coil
- if fed the associated bit is set to 0 and retains the value 0

LD coils

SET and RESET coils

After a SET coil, there must be a RESET coil associated with the same variable

Ladder logic exercises

Exercise 2)

A start and two stop buttons turn on and off a heating element and a fan. When the heating element turns off, a second fan has to start. The second fan will turn off as soon as the heating element and the first fan turn on.

Ladder logic exercises

Exercise 2)

A start and two stop buttons turn on and off a heating element and a fan. When the heating element turns off, a second fan has to start. The second fan will turn off as soon as the heating element and the first fan turn on.

You may want to use

- (/) negated coil
- if fed the associated bit is set to 0 , otherwise is 1

Ladder logic exercises

Exercise 3)

Start / stop of 3 motors, but only 2 motors can run simultaneously. For example, if motor 2 and motor 3 is running, you cannot start motor 1.

Ladder logic exercises

Exercise 3)

Start / stop of 3 motors, but only 2 motors can run simultaneously. For example, if motor 2 and motor 3 is running, you cannot start motor 1.

You may want to use

- A parallel of coils (OR)
(a)

(c)

a	b	a OR b
0	0	0
1	0	1
0	1	1
1	1	1

Ladder logic exercises

Exercise 4)

Implement the following logic for a valve and a motor output:

Operators
precedence:
NOT
AND
OR XOR
NOR

START_V AND NOT SENSOR1 OR VALVE AND NOT STOP_V AND NOT MOTOR

MOTOR
START1_M OR MOTOR AND START2_M OR NOT VALVE AND NOT STOP_M

Ladder logic exercises

Exercise 4)

Implement the following logic for a valve and a motor output:
operators
precedence:
NOT
AND
OR
XOR
NOR
(START_V AND (NOT SENSOR1)) OR (VALVE AND (NOT STOP_V) AND (NOT MOTOR))

MOTOR
START1_M OR (MOTOR AND START2_M) OR ((NOT VALVE) AND (NOT STOP_M))

FACTORY IO

Exercise 5)

From A to B

- Transport the box until it reaches the sensor

FACTORY IO

Exercise 5)

From A to B

- Transport the box until it reaches the sensor

Retroreflective Sensor and Reflector

When an object is intercepted, the light is interrupted: the sensor goes from $1 \rightarrow 0$

Tag	I/O	Type	Description
Sensor	Input	BOOL	Light beam interrupted

FACTORY IO

Exercise 5)

From A to B

- Transport the box until it reaches the sensor
- Add a panel with START and STOP buttons

FACTORY IO

Exercise 5)

From A to B

- Transport the box until it reaches the sensor
- Add a panel with START and STOP buttons

NB: The stop button is normally closed

Tag	I/O	Type	Description
Start/Stop Button	Input (Sensor)	BOOL	Pressed
Start/Stop Button Light	Output (Actuator)	BOOL	Led on/off

FACTORY IO

Exercise 6)

Queue of Items

- Load and unload the boxes
- Count the number of unloaded boxes

Functions block instances

CTU, Counter UP

```
TYPE CTU :
    STRUCT
    (* inputs *)
    CU : BOOL; (* count up *)
    R : BOOL; (* reset *)
    PV : INT; (* preset value *)
    (* outputs *)
    Q : BOOL; (* output up *)
    CV : INT; (* current value *)
    END_STRUCT;
END TYPE
```


FACTORY IO

Exercise 6)

Queue of Items

- Load and unload the boxes
- Count the number of unloaded boxes

Tag	I/O	Type	Description
Reset Button	Input (Sensor)	BOOL	Pressed
Reset Button Light	Output (Actuator)	BOOL	Led on/off
Digital Display	Output	INT	Display numerical values

MASTER MEIM 2021-2022

Thank you

