
www.meim.uniparthenope. it

Industrial Automation:

The IEC 611131-3 standard

SCADA and Human Machine Interface

MASTER MEIM 2021-2022

Sara Dubbioso

A cura del prof. Lorem Ipsum

Prof. Di Economia e Management all’Università degli Studi di Napoli Parthenope



Lecture overview

• Introduction to Programmable Logic Controllers (PLCs)

• Brief history of PLCs

• PLC components and operation mode

• The IEC-61131-3 standard

• Constant, variables and types

• Main components

• Programming Languages

• SCADA

• Human Machine-Interface (HMI)



Software overview

CODESYS

• Integrated development environment for programming 
controller applications according to the standard 
IEC 61131-3

• Download: https://store.codesys.com/en/

FACTORY IO

• 3D factory simulation for learning automation 
technologies

• offers scenes inspired by typical industrial applications

• Download (30 days trial): https://factoryio.com/start-trial

https://store.codesys.com/en/
https://factoryio.com/start-trial


Control System
• The input devices 

(SENSORS) sense what is 
happening in the process

• The controller decides 
what to do about it

• The output devices 
(ACTUATORS) manipulate 
the process to achieve the 
desired resultSensors

CONTROLLER Actuators Plant/Process



Programmable Logic Controller (PLC)

A general-purpose controller, applicable to many different types of process control 
applications

• the end-user can program, or instruct, the PLC to do virtually any control 
function imaginable 

• specialized for logic and sequential control 

PLCs are often used in factories and industrial plants to control motors, pumps, 
lights, fans, circuit breakers and other machinery. 

• They can connect to IT network and implement complex functionalities

• Can be seen as PC manufactured to work in industrial environments



PLC brief history

Before PLCs (the early to mid 1900s) automation was usually 
done using complicated electromechanical relay circuits

• Slow signal processing

• Bulky wired switchboard

• No flexibility 

• High portability cost

• Not easy re-programmability

• Hard trouble shooting 

On a basic level, 

electromechanical 

relays function by 

magnetically 

opening or closing 

their electrical 

contacts when the 

coil of the relay is 

energized. Can be 

used to represent 

logic variables



PLC brief history

The raising of digital electronics comes with new requirements for controllers

• Easley re-programmable

• Scalability and easy maintainability (modular architecture)

• Robust design

• Low dimension, consumption and cost

In1968 the first programmable logic controller came along to 

replace complicated relay circuitry in industrial plants

• Modicon 084 from Bedford Associates (now Schneider 

Electric)



PLC brief history

In the mid‘70 came out the first PLC based on a microprocessor (the 8080 from         
Allen-Bradley)

• Dimension reduction 

• Increase memory size

• Higher number of I/Os 

• Introduction of higher-level programming languages

• Comunnication network with peripheral devices and computers

• I/O modules for analog variables 



PLC brief history

The legacy of PLCs as relay-
replacements is probably most evident in 
their traditional programming language: 
Ladder Diagram. 

• Mimics the control circuit 
schematics

• Easily programmable by plant 
engineers and technicians that 
were already familiar with relay 
logic and control schematics



The IEC 61131 standard

No-standard for PLC manifacture and programming

• Programming terminals were single purpose

• Programming software were developed by third party companies (not from PLC 
manufacturer themselves)

• Custom and hardware-based programming languages were used by 
developers

1993:  International Electrotechnical Commission (IEC) published the IEC 61131 
standard for PLC hardware and software requirements

• It is composed by several parts 



The IEC 61131 standard

• 1st part: General information [IEC 61131-1]

• 2nd part: Equipment requirements and tests [IEC 61131-2]

• 3rd part: Programming languages [IEC 61131-3]

• 4th part: User guidelines [IEC 61131-4]

• 5th part: Communications [IEC 61131-5]

• 6th part: Fuzzy control programming [IEC 61131-7]

• 7th part: Guidelines for the application and implementation of programming 
languages for programmable controllers [IEC 61131-8]



The IEC 61131-3 standard

• 1st part: General information [IEC 61131-1]

• 2nd part: Equipment requirements and tests [IEC 61131-2]

• 3rd part: Programming languages [IEC 61131-3]

• 4th part: User guidelines [IEC 61131-4]

• 5th part: Communications [IEC 61131-5]

• 6th part: Fuzzy control programming [IEC 61131-7]

• 7th part: Guidelines for the application and implementation of programming 
languages for programmable controllers [IEC 61131-8]

It specifies the syntax,

semantics and display

for a suite of five PLC

programming languages:

• Instruction List (IL)

• Structured Text (ST)

• Ladder Diagram (LD)

• Function Block 

Diagram (FBD)

• Sequential Functional 

Chart (SFC)



Components of a PLC

Input 

Module

Output 

Module

CPU

Processor

Memory

Power SupplyRack



The IO modules

Input 

Module

Output 

Module

CPU

Processor

Memory

Power SupplyRack

Information



Plant

The IO modules

Input 

Module

Output 

Module

CPU

Processor

Memory

Power Supply
Rack

Sensors Actuators



Central Processing Unit (CPU)

Input 

Module

Output 

Module

CPU

Processor

Memory

Power SupplyRack

Operating System Application Program



Central Processing Unit (CPU)

Input 

Module

Output 

Module

CPU

Processor

Memory

Power SupplyRack

Operating System Application Program

• Software required in order to 

run application programs and 

utilities

• A bridge between application 

programs and hardware

• Supports computers basic 

functions, such as scheduling 

tasks and controlling 

peripherals

• Permanently stored in the 

system memory

• Comprehensive, self-

contained program that 

performs a particular 

function directly for the 

user

• Word processors, media 

players, and accounting 

software are examples



Rack and power supply

Input 

Module

Output 

Module

CPU

Processor

Memory

Power SupplyRack

Holds everything 

together



Components of a PLC Rack



Components of a PLC

• Increase the number of I/O channels 

• Span distances between the plant and the 

PLC



Components of a PLC



Components of a PLC



PLC operation

Execution mode

• Periodic

(e.g., every 20 ms)

• Cyclic
(the program restart when finished)

• Event driven 
(instructions executed when a specific even occurs)



PLC operation

The scan cycle is the cycle in which the PLC 

• gathers the inputs

• runs your PLC program

• and then updates the outputs.

The scan time is amount of time it takes for the 

PLC to make one scan cycle

• often measured in milliseconds (ms)

Check value of 

Inputs

Run PLC program

Update value of 

Outputs



PLC operation

Memory matrix

.   .  . I0.1 I0.0

.   .  . 
O1.0

Input

Output

Byte Bit



PLC operation

Memory matrix

.   .  . I0.1 I0.0

.   .  . 
O1.0

Input

Output

Byte Bit



The IEC 61131-3 standard

PLC programming is regulated by the IEC 61131 standard, 3rd part. It aimed at a 
software design:

• Comprehensible

• Modular

• Well structured

• Portable 

The standard provides a benchmark for both manufacturers and user

• describes the PLC programming languages

• comprehensive concepts and guidelines for creating PLC projects.



The IEC 61131-3 standard

Texual languages: 

• Instruction List (IL)

• Structured Text (ST)

Graphic laguages:

• Function Block Diagram (FBD)

• Ladder Diagram (LD)

• Sequential Functional Chart (SFC)



Variables, Data Types and Common Elements

Data inside a PLC program can be represented by means of 
variables

Variables are declared in textual form

• Declarations essentially consist of an identifier as well as 
information about the data type used

• The standard defines some predefined types

VAR

Start : BYTE;       (*declaration of variable "Start" with data type BYTE *)

END_VAR

What is a variable? 

A variable is any 

characteristic, 

number, or 

quantity that can 

be measured or 

counted.



Predefined data type

Integers:

• INT     integers (16 bits, from -215 to 215 )

• UINT   unsigned integers (16 bits, from 0 to 216 -1)

Reals

• REAL    reals (32 bit, from - 1038 to 1038 )

• LREAL   long real (64 bits) 

Time variables

• TIME                          duration (e.g., T#1d3h5m12s50ms)

• DATE, TIME_OF_DAY   date and time of the day

• DATE_AND_TIME         date and time together



Predefined data type

Integers:

• INT     integers (16 bits, from -215 to 215 )

• UINT   unsigned integers (16 bits, from 0 to 216 -1)

Reals

• REAL    reals (32 bit, from - 1038 to 1038 )

• LREAL   long real (64 bits) 

Time variables

• TIME                          duration (e.g., T#1d3h5m12s50ms)

• DATE, TIME_OF_DAY   date and time of the day

• DATE_AND_TIME         date and time together

128 64 32 16 8 4 2 1

27 26 25 24 23 22 21 20

0 0 1 1 0 0 1 0

1 𝑥 32 + 1 𝑥 16 + 1 𝑥 2 = 50



Predefined data type

String:

• STRING   string of characters

String of bits

• BOOL      single bit or logic variable

• BYTE        8 bits

• WORD    16 bits

• DWORD  32 bits

• LWORD   64 bits



Predefined data type

Generic data type:

• ANY                any type

• ANY_NUM    any numeric type

• ANY_INT        any types of integer (signed and unsigned)

• ANY_REAL     any types of real

• ANY_DATE     any time variables

• ANY_BIT      any string of bits



Attributes to variables

VAR                    RETAIN

RetainVar :                       BYTE                      :=                     61; 

END_VAR

Variable declaration Attribute (qualifier)

Variable name Data type

End of variable declaration

Initial value



Declaration and initialization

Declarations

Variables are declared at the beginning of programs, functions and function blocks

• Key words: VAR . . . END_VAR

Initialization

Non ambiguity principle is fundamental: a variable must always be declared with an 
initial value. Can be a default one:

• 0 for numeric variables

• Null string

• 01/01/0001 for date variables



Attributes to variables

Attributes, or qualifiers, are additional properties can be assigned to variables

• RETAIN the values are to be retained during a loss of power

• CONSTANT the values are not allowed to be changed during program 
execution

• AT specifies the memory location

Comments (* this is a comment *)



Function declaration is ST

FUNCTION RealAdd: REAL                                              (* function heading *)

VAR_INPUT                                                                           (* variable type "input" *)

Inp1, Inp2: REAL;                                                               (* variable declaration *)

END_VAR                                                                               (* end of variable type *)

RealAdd := Inp1 + Inp2 + 7.456E-3;                          (* ST statement *)

END_FUNCTION                                                                  (* end of the function *)



Types of variables

Inputs
Typically associated with the state of a sensor (read-only) or inputs to a POU

• Key words: VAR_INPUT. . .  END_VAR

Output
Typically associated with actuators or return variables from POU

• Key words: VAR_OUTPUT. . . END_VAR

Input/Output
Refers to POU external variable but that is still editable

• Key words: VAR_IN_OUT. . . END_VAR

Internals
Refers to temporary data or support variable 



Global variables

A variable is accessible only internally to the POU in which it was declared (apart 
from I/O ones)

Global variables

• Key words: VAR_GLOBAL. . . END_VAR

It is accessible by the POUs internal to the one where they were declared. To be 
used it must be declared:

• Key words: VAR_EXTERNAL. . . END_VAR



Directly represented variables

Is possible to specify the memory areas. They come with a specific notation

• %ABxxx

– A is the location prefix

• I for input 

• Q for output

• M for generic memory area

– B is the data size

• X (or no specified) for one bit

• B for a byte (8 bit)

• W for a word (16 bit)

• D for a double word (32 bit)

• L for a long word (64 bit)

– xxx multi-digit hierarchical address (are 

dependent on the manufacturer)



Directly represented variables

Is possible to specify the memory areas. They come with a specific notation

• %ABxxx

– A is the location prefix

• I for input 

• Q for output

• M for generic memory area

– B is the data size

• X (or no specified) for one bit

• B for a byte (8 bit)

• W for a word (16 bit)

• D for a double word (32 bit)

• L for a long word (64 bit)

– xxx multi-digit hierarchical address (are 

dependent on the manufacturer)

• %IX01.1

– Input area

– one bit

– 1st byte

– 1st bit

• %MB04

– Memory 

area

– one byte

– 4th byte



Derived data type

Is possible to create new data types derived from the predefined ones 

• Key words: TYPE . . . END_TYPE

Initial value The variable is given a particular initial value

Enumeration
The variable can assume one of a specified list of names as a 

value

Range The variable can assume values within the specified range

Array 
Several elements of the same data type are combined into an 

array

Structure Several data types are combined to form one data type



Derived data type

TYPE

Temperature : REAL := 20;                                 (*initial value*)

Color : (red, yellow, green);                                (* enumeration *)

Sensor : INT (-56..128);                                        (* range *)

Measure : ARRAY [1..45] OF Sensor;                 (* array *)

. . .



Derived data type

Testbench : STRUCT (* structure *)

Place : UINT;                                    (* elementary data type *)

Light : Color:= red;                       (* enumerated data type with initial value *)

Meas1 : Measure;                           (* array type *)

Meas2 : Measure;                           (* array type *)

END_STRUCT;

END_TYPE



Arrays and structures

Arrays are directly consecutive data elements of the same data type in memory

• Can be access by index → Meas1[2]

TYPE

Meas_1Dim : ARRAY [1..45] OF Sensor; 

Meas_2Dim : ARRAY [1..10,1..45]OF Sensor; 

END_TYPE



Arrays and structures

Data structures can be built up hierarchically

• Key words: STRUCT . . . END_STRUCT

• Can be access by field → Testbench.Place

TYPE

temperature_sensor: STRUCT

value : temperature;

last_calibration: DATE;

calibration_interval: TIME;

max_value: REAL := 100.0;

diagnostic : BOOL;

END_STRUCT

END_TYPE



The IEC 61131-3 standard

Texual languages: 

• Instruction List (IL)

• Structured Text (ST)

Graphic laguages:

• Function Block Diagram (FBD)

• Ladder Diagram (LD)

• Sequential Functional Chart (SFC)

The standard is just a 

reference. It is not 

mandatory. Remember 

that you can find PLC 

programmed with 

languages not compliant 

with the standard 

(especially if old PLC) 



Instruction List (IL)

Instruction List IL is a convenient assembler-like programming language.

IL is a line-oriented language: An instruction, which is an executable command for 
the PLC, is described in exactly one line

• An instruction consists of an operator (or a function) plus a number of 
operands (parameters)

• Can come with a label or a modifier

The operators implicitly refer to an accumulator called the “Current Result” (CR), in 
addition to the indicated operand



Instruction List (IL)

Label :                  Operator/Function      Modifier               Operand (list)

IL operator or 

function name

Jump label in order to 

reach this instruction

None, one or several constants or 

variables for the operator

Operator extension



IL operators

• LD load (operand -> accumulator)

• ST store (accumulator -> operand)

• S set (set a logic variable to 1)

• R reset (reset a logic variable to 0)

• AND/&, OR, XOR (logic operators)

• ADD, SUB, MUL, DIV (math operators)

• GT, GE, EQ, NE, LE, LT (comparison operators)

• JMP (jump to the label specified by the operand)

• CAL (function/function block call)

• RET (return from a function/function block)



IL example

Cyclic AND between two Boolean variables

MRun: LD %IX3.0 (* Load bit from I/O in the accumulator*)

AND a (* AND of the accumulator with the variable a*)

ST r (* Store value of the accumulator in the variable r*)

JMP MRun (* Jump to the instruction labeled with MRun *)



IL modifiers

• N Negation of operand (the operand is negated before carrying out the

instruction)

• ( Nesting levels by parenthesis

• C Conditional execution of operator (if CR = TRUE, or CR = FALSE if

combined with N). Can be used with JMP, CAL, RET



IL example

XOR between two Boolean variables + conditional jump

MRun: LD a (* load the value of a in the accumulator *)

ANDN b (* AND of the accumulator with the negation of b *)

OR ( b (* OR of the accumulator with the result

ANDN a of the expression between brackets *)

)

ST e (* store the value of the accumulator in e*)

JMPC MRun (*jump if the result in the accumulator is 1*)



Structured Text (ST)

ST is called a High-Level language (similar to Pascal)

An ST algorithm is divided into several ST statements.

• Statements are separated by semicolons (;)

• A statement is used to compute and assign values,  control the command 
flow, and call or leave a POU

The part of a statement that combines several variables and/or function calls to 
produce a value is called an expression

• An expression consists of operands and associated ST operators



ST operators

• Assignment :=

• Terminator ;

• Math operators

– + (Addition) 

– - (Subtraction)

– * (Multiplication) 

– / (Division) 

– MOD (Modulo) 

– ** (Exponentiation)

• Logic operators

– AND or &

– OR 

– XOR (exclusive OR)

– NOT (complement)

• Relational operators

– < and <=

– > and >=

– = (equality)

– <> (inequality)



ST statements

• Selection

– IF

– CASE (Multi-selection) 

• Iteration

– FOR

– WHILE

– REPEAT

– EXIT (Premature termination of 

an iteration statement)

• Call of a FB 

• RETURN  (Leave the current POU and 

return to the calling POU)

ST does not include a jump 

instruction (GOTO). All 

conditional jumps can also 

be programmed via an IF 

structure



Selection statements

These two statement types are used to execute specific statements depending on a

Boolean condition.

• Selection • Multi-selection



Selection statement IF

IF Condition1 THEN

Statements1;           (* Execute Statements1, if Condition1 is TRUE,                     
continue after End_IF otherwise: *)

ELSIF Condition2 THEN

Statements2;           (* Execute Statements2, if Condition2 is TRUE,  
continue after End_IF otherwise: *)

ELSIF Condition3 THEN

...

ELSE Statements;         (* Execute Statements if no previous condition 

evaluates to TRUE *)

END_IF; (* End of IF *)



Selection statement IF

Types definition

TYPE

impulse : UINT(0..1000);

state : (stop, run, fault, wait);

temperature : REAL := 20.0;

temperature_sensor: STRUCT

• value : temperature;

• last_calibration: DATE;

• calibration_interval: TIME;

END_STRUCT

END_TYPE



Selection statement IF

Variables definition

VAR

enable : BOOL;

count : impulse;

valve_state : state;

thermometer : temperature := 0.0;

thermocouple1, thermocouple2 : temperature_sensor;

END_VAR



Selection statement IF

IF selection

IF enable & (count < 100) THEN

count := 100;

END_IF

IF enable THEN

thermocouple1.value := thermocouple2.value;

ELSE

thermocouple1.value := 0.0;

END_IF;



Selection statement IF

IF selection

IF count <= 1 THEN

valve_state := stop;

ELSEIF conteggio < 6 THEN

valve_state := run;

ELSEIF conteggio < 50 THEN

valve_state := wait;

ELSE (* count >= di 50 *)

valve_state := fault;

END_IF;



Multi-selection statement CASE

CASE VarInteger OF

1:      Statements1; (* Execute Statements1, if VarInteger is TRUE,              

continue after End_CASE otherwise: 
*)

2,3:    Statements2; (* Execute Statements2, if VarInteger is 2 or 3, 

continue after End_CASE otherwise: *)

10..20: Statements3; (* Execute Statements3, if VarInteger is between 

10 and 20, continue after End_CASE otherwise: 
*)

ELSE Statements; (* Execute Statements if no comparison 

succeeded *)

END_CASE; (* End_of_CASE *)



Multi-selection statement CASE

CASE selection

CASE count OF

1 : valve_state := stop;

2, 3, 4, 5 : valve_state := run;

6..50 : valve_state:= wait;

ELSE

valve_state := fault;

END_CASE;



The Program Organisation Unit (POU)

A POU is an encapsulated unit

• It can be compiled independently of other program parts

• It can be re-used inside the program 

• It facilitates modularization of tasks

POU type Keyword Meaning

Program PROGRAM Main program. It can include assignment to 

I/O, global variables, and access paths

Function 

Block

FUNCTION_BLOCK Block with input and output variables; can 

have static variables (with memory)

Function FUNCTION Has no static variables (without memory)



Components of a POU

POU consists of the 
following elements:

• POU type and name 
(and data type in 
the case of 
functions)

• Declaration part 
with variable 
declarations

• POU body with 
instructions



Components of a POU

Function block in IL



Functions

Functions have any number of input and output parameters and exactly one function 
(return) value

• It can be of any data type, including derived data types

• It is the name of the function itself, and can be used in expressions

A function works without memory 

• It always return the same result when provided with the same input 
parameters (does not depend on internal variables) 

Function can only call other function (recursion is not allowed)



Functions declaration

Declarations and instructions can be programmed in graphical or textual form

Textual declaration

FUNCTION function_name: type      (* type of the function *)

VAR_INPUT                      (* input variable definition *)

....;

END_VAR

...                (* other variables definitions *)

...                (* function body *)

(* a value must be assigned to function_name *)

END_FUNCTION



Functions declaration

FUNCTION threshold_saturated: REAL

VAR_INPUT 

data, lim_threshold, lim_saturation: REAL;

END_VAR

IF ABS(data) < lim_threshold THEN

threshold_saturated:= 0.0;

ELSE

threshold_saturated:= 

MIN(MAX(data, - lim_saturation), lim_saturation);

END_IF

END_FUNCTION



Functions declaration

Textual declaration

• The body of the function can be programmed in any language of the standard 
(except SFC)

• Only local and input and output variables are permitted (no external, no global, 
no retain, no direct access)



Functions declaration

Graphical declaration

• The function interface is a 
rectangular block 

• Internal variable must be 
declared 

• The function body programmed in 
one of the standard language 

FUNCTION

REAL

REAL REAL

REAL

(* function body*)

END_FUNCTION

Function_name

Input1

Input2

InputN



Functions declaration

Graphical declaration

FUNCTION

REAL

REAL REAL

REAL

(* function body*)

END_FUNCTION

Threshold_saturated

data

lim_threshold

lim_saturation



Functions declaration

Graphical declaration

In the ladder diagram LD, functions have a special feature 

• Boolean input EN (Enable In) 

• Boolean output ENO (Enable Out)

Can be used in 

concatenated 

functions call



Functions

• There are some 
predefined 
functions (ADD, 
SUB, MAX, 

MIN, MUX, 

LIM, 

GT/LT/GE/LE

/EQ/NE, 

AND/OR/NOT/

XOR, LN, 

INSERT…)



Function Block

FBs can be assigned parameters and has static variables (work with memory). 

• When invoked with the same input parameters, will yield values which depend 
also on an internal state

• The value of its internal (VAR) and external (VAR_EXTERNAL) variables are 
retained from one execution of the function block to the next

Declarations and instructions can be programmed in graphical or textual form

• Keywords: FUNCTION_BLOCK … END_FUNCTION_BLOCK

• The body of the function can be programmed in any language of the standard 
(except SFC)

FBs can call functions and other FBs (recursion is not allowed)



Function Blocks declaration

Textual declaration

FUNCTION_BLOCK function_block_name:

VAR_INPUT                      (* input variable definition *)

....;

END_VAR

...                 (* other variables definitions *)

...                 (* function body *)

END_FUNCTION_BLOCK



Functions block declaration

Graphical declaration

• The function block interface is a rectangular block

FUNCTION_BLOCK NextState

BOOL BYTE

BOOL

END_FUNCTION_BLOCK

VarIn

VarOut1

VarOut2



Functions block instances

When a function block is defined also an instance is 
create (like variables)

• After instantiation an FB can be used (as an 
instance) and called within the POU in which it is 
declared

• Can have GLOBAL and RETAIN attribute 

Instantiation is the 

creation of variables 

by the programmer by 

specifying the 

variable’s name and

data type in the 

declaration.

Names of FB 

instances

FB type (user-defined)

Motor1, Motor2    :      MotorType;      (* FB instance *)



Functions block instances

The concept of instantiation results in structured variables

• describe the FB calling interface like a data structure

• the user can only access to the input/output parameters

• local or external variables are kept hidden.

Declaration of an up counter (standard FB)

VAR

Counter : CTU;      (* up counter *)

END_VAR



Functions block instances

Data structure of an FB instance of FB type CTU 

TYPE CTU :

STRUCT

(* inputs *)

CU : BOOL;    (* count up *) 

R  : BOOL;    (* reset *)

PV : INT;     (* preset value *)

(* outputs *)

Q  : BOOL;    (* output up *) 

CV : INT;     (* current value *)

END_STRUCT;

END_TYPE

BOOLBOOL

BOOL

INT INT



Functions block instances

Up counter, FB type CTU

FUNCTION_BLOCK CTU

VAR_INPUT 

CU : BOOL R_TRIG;  (* rising edge trigger*)

R : BOOL;          (* reset signal *)

PV : INT;          (* max counting value *)

END_INPUT_VAR

VAR_OUTPUT

Q : BOOL;         (* end of count *)

CV : INT;      (* counter courrent value*)

END_VAR

…

BOOLBOOL

BOOL

INT INT



Functions block instances

Up counter, FB type CTU

VAR_RETAIN

AUX : BOOL := 0;

END_VAR

IF R THEN

CV := 0;

ELSEIF CU AND (CV < PV) THEN

CV : = CV + 1;

ENDIF

Q = (CV = PV);

END_FUNCTION_BLOCK

BOOLBOOL

BOOL

INT INT



Functions block instances

Up counter, FB type CTU 

BOOLBOOL

BOOL

INT INT



Functions block instances

Parameterization and invocation of the up counter in IL 

LD 34

ST Counter.PV (* preset count value *) 

LD %IX7.1

ST Counter.CU    (* count up *)

LD %M3.4

ST Counter.R (* reset counter *)

CAL Counter       (* invocation of FB *)

LD Counter.CV    (* get current count value *)

BOOLBOOL

BOOL

INT INT



Programs

The main program

• All variables of the whole program that are assigned to physical I/O addresses 
of the PLC (%Q, %I, %M) can be access and must be declared in this POU 

• In all other aspects it behaves like an FB

Program declaration

PROGRAM name

VAR_INPUT...END_VAR

VAR_OUTPUT...END_VAR

...(* other variables and body*)

END_PROGRAM



Mutual calls of POUs

Recursive calls are invalid

• it would not be possible for the programming system to calculate the maximum 
memory space needed



Function Block Diagram (FBD)

The graphical elements of an FBD network include rectangular boxes and control 
flow statements connected by horizontal and vertical lines

Each box can be seen as a black box

• Processes some inputs and returns some outputs

• Can be implemented in different language

Signals travel along the connections between the boxes (from left to right)



Function Block Diagram (FBD)



Function Block Diagram (FBD)

The value of an output parameter can flow back to an input parameter of the same 
network

• lines are called feedback paths

• the associated variables are called feedback variables



Sequential Function Chart (SFC)

SFC is born for implementing sequential control algorithms. It was defined to 

• break down a complex program into smaller manageable units 

• describe the control flow between these units

SFC has been derived from well-known techniques like Petri-net (discrete-event 
system)

• it is possible to design sequential and parallel processes

Main advantage → the implementation of a control system matches the description 
of the desired process behavior 



SFC elements 

• Steps

• Transitions

• Actions

S0!

S1

T1

T2

boolean_conditionT1

boolean_conditionT2

action1 

<instructions>
Transition condition may be 

programmed in IL, ST, LD or FBD, but 

must produce a Boolean value. When 

evaluated to TRUE

• stops the step that was active

• activates the next successor step(s).



Ladder Diagram (LD)

The language comes from the field of electromechanical relay systems

• Transition from wired logic to programmable logic controller

• designed for processing Boolean signals

The name comes from the ladder network shape

• bounded by so-called power rails on the left and on the right

• describes the power flow through the network from left to the right and 
instructions are executed from top to bottom



Ladder Diagram (LD)

REMEMBER: 

• From left (test area) to the right 
(action area) 

• From top to bottom 

A coil, in the saving area (right 
side), is fed if a combination of 
contacts in the computing area 
(left side) allows the passing of 
network power



Ladder Diagram (LD)

REMEMBER: 

• From left (test area) to the right 
(action area) 

• From top to bottom 

NOT ALLOWED FLUX



Ladder Diagram (LD)

Execution control with labels

• Jump to a target rung 

• Split long rung



LD principal components

Contacts

Can be associated with Boolean variables (bits)

• Internal

• External (e.g., sensor)

Are used to evaluate the value of the variables with which they are associated 
(usually positioned on the top)

A closing contact in the evaluation area (left side) allows the power flow to the 
saving area (right side)  

variable_name



LD contacts

• | | normally open

– is closed if the associated bit is 1 (TRUE)

• |/| normally closed

– is closed if the associated bit is 0 (FALSE)

• |P| positive transition sensing

– is closed when the associated bit goes from 0 to 1 (FALSE → TRUE)

• |N| negative transition sensing

– is closed when the associated bit goes from 1 to 0 (TRUE → FALSE)



LD contacts

• | | normally open

– is closed if the associated bit is 1 (TRUE)

• |/| normally closed

– is closed if the associated bit is 0 (FALSE)

• |P| positive transition sensing

– is closed when the associated bit goes from 0 to 1 (FALSE → TRUE)

• |N| negative transition sensing

– is closed when the associated bit goes from 1 to 0 (TRUE → FALSE)



LD contacts

Transition sensing contacts

Scan cycle
During a scan cycle, the PLC is ‘blind’



LD principal components

Coils

Can be associated with Boolean variables (bits)

• Internal

• External (e.g., actuator)

Are used to operate on the value of the variables with which they are associated 
(usually positioned on the top)

• When the coil is fed it can change the value of the associated variable

variable_name

( )



LD coils

• ( ) coils

– if fed the associated bit is set to 1, otherwise is 0 

• (/) negated coil

– if fed the associated bit is set to 0, otherwise is 1 

• (S) SET coil 

– if fed the associated bit is set to 1 and retains the value 1 even when 
the coil is not fed anymore 

• (R) RESET coil

– if fed the associated bit is set to 0 and retains the value 0 even when 
the coil is not fed anymore 



LD coils

• (P) positive transition sensing

– the associated bit is set to 1 when the coil goes from fed to unfed (for one
scan cycle)

• (N) negative transition sensing

– the associated bit is set to 1 when the coil goes from unfed to fed (for one
scan cycle)

• (M) (SM) (RM) with retain

– As ( ), (S), (R) but the variable value is retained in case of power loss

– Similar to defining the associated variable RETAIN



LD coils

SET and RESET coils

After a SET coil, there must be a RESET 

coil associated with the same variable 



SCADA 

Supervisory Control And Data Acquisition

A SCADA system is a collection of both hardware and software components that 
allows supervision and control of plants, both locally and remotely  

• Examines, collects and processes data in real-time

They facilitate the interaction of the operator of the process with the field devices 
through Human Machine Interface (HMI)

• Dashboard that allows an operator to communicate with a machine, 
computer program, or system



SCADA

Industrial automation 

hierarchy 

Where SCADA 

system are 

positioned



SCADA
01001

11010

11010

The communication 

data is routed from 

the PLC to the SCADA 

computers, where 

the software 

interprets and 

display the data 



SCADA

SCADA simple system 



SCADA functionalities

Data representation

A SCADA system can show the 
collected data to the plant 
operator using HMI

• Synoptic chart with static or 
dynamic elements

• Control panel to interact with 
the field devices



SCADA functionalities

Data history

The SCADA system stores the data 
collected from the plant, into a 
type of time-series database 

The stored data can then be used 
to 

• display trends of process data 
on charts

• create reports

• perform data analysis



SCADA functionalities

Alarms handling

A SCADA system allows programming the conditions in which an alarm
should be activated 

• It notifies the operator about the occurrence of the alarms (flashing 
lights, sirens, email,...) 

Alarms can be

• system defined or user defined alarms

• discrete or analog alarms



SCADA functionalities

Alarms handling

When an alarm is raised, it is possible to acknowledge it 

• Register the alarm

• Reset the alarm 

• Silence alarm notification 



SCADA functionalities

Recipes management

A SCADA system can execute a predefined 
sequence of operations called ‘recipe’

• Can be used in batch production 
systems.

The recipes can be executed:

• cyclically

• triggered by an event (e.g., an alarm) 

• after an operator request 



www.meim.uniparthenope. it

Thank you

MASTER MEIM 2021-2022


