HUMAN-COMPUTER INTERACTION

a.a 2021/2022

Prof. Mariacarla Staffa

INFO SUL CORSO

Attività Formativa: A001195 - INGEGNERIA DEL SOFTWARE E INTERAZIONE U0M0-MACCHINA - SOFTWARE ENGINEERING AND HUMAN-COMPUTER INTERFACE

Corso di Studio 0124 - INFORMATICA

CFU: 3

Giovedì dalle 15:30 alle 17:30, Aula 1

codice del team: wvhftr8

CHI SONO

Docente: Mariacarla Staffa

email: mariacarla.staffa@uniparthenope.it

tel.: 081-5476580

Stanza: 428, IV Piano, Lato Nord, Isola C4, Centro Direzionale

Ricevimento: Venerdì 11:00–12:00 (su teams o in presenza previa email)

OBIETTIVI DEL CORSO

- Fornire una introduzione (pratica e teorica) alle problematiche del DESIGN DELL'INTERAZIONE UOMO-MACCHINA, per la progettazione di sistemi interattivi FACILI DA USARE (usabili)
- Studiare i modelli, gli stili e i paradigmi dell'interazione
 - Come avviene l'interazione?
 - Imparare a sviluppare prodotti usabili
- Informalmente, "usabile" significa:
 - facile da apprendere,
 - efficace e pratico da usare
 - il cui uso fornisce un'esperienza piacevole agli utenti
- Imparare a coinvolgere gli utenti nel processo di design
 - Quali sono gli utenti? In che contesto operano?
 - Modelli di sviluppo
- Apprendere tecniche di valutazione dell'usabilità di applicazioni interattive
 - Quali principi di ausilio all'usabilità sono rispettati?
 - F in che misura?

PREREQUISITI E METODI DIDATTICI

- L'insegnamento assume una familiarità con i concetti generali di LINGUAGGIO DI PROGRAMMAZIONE, di MODELLO DI SISTEMA. Una conoscenza di base dell'INGEGNERIA DEL SOFTWARE facilita la comprensione di alcuni aspetti.
- Verranno erogate lezioni frontali in aula. Sarà possibile seguire le lezioni in tempo reale anche da remoto attraverso la piattaforma teams.
- Lo studio e l'approfondimento degli argomenti sarà realizzato anche attraverso esercitazioni in aula e/o compiti a casa.
- Il Materiale Didattico opportunamente predisposto verrà fornito mediante piattaforma di E-LEARNING e condiviso nei files di TEAMS.
- LA FREQUENZA IN AULA È FORTEMENTE CONSIGLIATA sebbene non obbligatoria per poter sostenere la prova finale

LIBRI DI TESTO

J. PREECE, Y. ROGERS, H. SHARP, "INTERACTION DESIGN", WILEY

A. DIX, J. FINLAY, G. ABOWD, R. BEALE, "INTERAZIONE UOMO MACCHINA", MCGRAW-HILL

BEN SHNEIDERMAN AND CATHERINE PLAISANT, "DESIGNING THE USER INTERFACE - STRATEGIES FOR EFFECTIVE HUMAN-COMPUTER INTERACTION", 5TH EDITION, ADDISON-WESLEY

CONTENUTI

- Introduzione al corso, nascita ed obiettivi della disciplina della Human Computer Interaction.
- Interfacce d'uso e usabilità. Progettazione centrata sull'utente. Scenari d'uso, casi d'uso.
- Conoscere l'utente: cenni su memoria e attenzione, visione e sistema motorio, con particolare enfasi sugli aspetti di interesse per l'interaction design.
- Evoluzione dei paradigmi in interazione uomo-macchina: linguaggi di comando, menu e forms, manipolazione diretta, point&click. Caratteristiche e peculiarità delle interfacce di sistemi mobili. Mobile websites, responsive websites, apps. Discussione di esempi.
- L'ingegneria della usabilità: progettazione iterativa centrata sull'utente. Requisiti. Ruolo dei prototipi, ruolo dell'utente durante la progettazione. Ingegneria e creatività: interaction design pattern, ibridazioni, metafore. Esempi.
- Valutazione del l'usabilità dei sistemi interattivi: ispezioni e test di usabilità.
- Principii e linee guida per la progettazione di interfacce usabili. Lo standard ISO 9241–110. L'usabilità della grafica e dei testi. La gestione dell'errore umano. Discussione di esempi da sistemi di vario tipo.
- Interazione Uomo-Robot, Theory of Mind, Social and Ethical Aspects, Accettabilità di nuove Interfacce.

INDICE DELLE LEZIONI

- 1. Intro
- 2. Sistemi interattivi e interfacce d'uso ed evoluzione dei paradigmi d'interazione
- 3. Usabilità
- 4. Conoscere l'utente Progettare per l'utente
- 5. L'ingegneria della usabilità
- 6. I requisiti
- 7. Ingegneria e creatività
- 8. I prototipi
- 9. Principi e linee guida
- 10. Progettare per l'errore Progettare la grafica Progettare il testo
- 11. Valutare l'usabilità
- 12. Interazione Uomo-Robot

VERIFICA DELL'APPRENDIMENTO

- CIASCUNO STUDENTE PRENDERÀ PARTE ALLA REALIZZAZIONE DI UN PROGETTO DI GRUPPO (composto da 3 a 5 Studenti), SU CUI VERRANNO ACCERTATE INDIVIDUALMENTE LE CAPACITÀ PRATICHE ACQUISITE. LA VERIFICA SI BASERÀ SU:
 - 1. La COMPILAZIONE DI UN REPORT CHE MIRA A VERIFICARE CHE LO STUDENTE ABBIA ACQUISITO LA CAPACITÀ DI IDEARE, PROGETTARE, SVILUPPARE E VALUTARE PROTOTIPI DI INTERFACCE UTENTE USABILI, ANCHE GRAZIE A UN'OPPORTUNA MODELLAZIONE DEGLI UTENTI IN UN DETERMINATO CONTESTO D'USO.
 - 2. Una PROVA ORALE dove gli studenti presenteranno (anche attraverso delle slides o dei prototipi realizzati durante il corso in android o xml) il proqetto realizzato

L'INTERAZIONE UOMO-MACCHINA

"Si occupa della progettazione, valutazione e implementazione di sistemi di calcolo interattivo per uso umano e dello studio dei principali fenomeni che li circondano "(ACM SIGCHI, 1992, p.6)

I progettisti dell'interazione creano l'interazione in mondi virtuali e la inseriscono nel mondo fisico

INTERFACCE UTENTE «MOBILE»

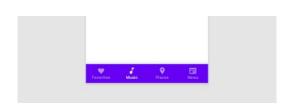
- Quando si parla di interfacce utente in ambito mobile, gli aspetti che si possono toccare sono molti.
 - L'approccio tecnico (aspetti realizzativi dei componenti visuali, gestione degli eventi, definizione del layout, menu, interpretazione dell'input utente, ecc.
 - La progettazzione, che si concentra sull'interazione tra utente e applicazione (dialogo tra utente e la macchina, in questo caso, l'app)

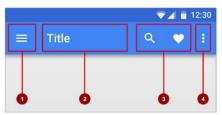
Chi progetta l'interfaccia utente ha un compito molto più complesso del semplice design di un layout. Deve conoscere:

- le necessità dell'utente tipico,
- le *caratteristiche dei dispositivi* più diffusi nel mercato
- e gestire la *contestualizzazione* dell'interfaccia utente nel resto del sistema.

LA FRAMMENTAZIONE DEL PANORAMA TECNOLOGICO

- Ogni interfaccia utente viene visualizzata su un display, e quest'ultimo ha specifiche peculiarità:
 - dimensione in pollici,
 - risoluzione e densità dei pixel,
 - oltre che una gamma di colori piuttosto variabile in relazione al dispositivo.


L'interfaccia proqettata deve essere unica e sapersi adattare al dispositivo su cui viene esequita


LA COERENZA CON IL SISTEMA (ES. APP)

• L'utente deve comprenderne intuitivamente il linguaggio visuale, senza doverla studiare da zero.

- Il primo passo per ottenere ciò è far sì che l'applicazione "assomigli" al resto del sistema, ed in questo senso svolgono un ruolo importante i temi. Per questo motivo, sarà importante volgere l'attenzione soprattutto al Material Design
- L'integrazione nel sistema si realizza anche con l'utilizzo di icone comuni e conosciute, e di pattern di interazione appartenenti al framework (ActionBar, Menu, Navigation Drawer).

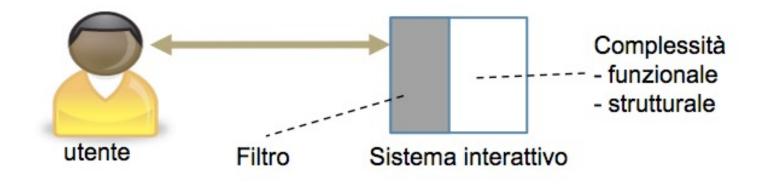
LE GESTURE

- Quando si utilizza un dispositivo dotato di touchscreen, è possibile associare specifici comandi ad opportune combinazioni di movimenti delle dita sul display.
- Le *gestures* più comuni sono ormai ben note agli utenti che utilizzano smartphone e tablet, e rappresentano un linguaggio universale per l'interazione con i dispositivi mobile.
- Si pensi ai vari *touch, swipe e pinch*

ORIGINALITA' DELL'INTERFACCIA

- L'interfaccia deve essere integrata e coerente con il resto del contesto, del sistema
- Ma non deve diventare una replica di un'altra interfaccia
- Il progettista deve curare l'Originalità:
 - aggiungendo elementi innovativi, immaginando una disposizione diversa degli oggetti all'interno dell'interfaccia, aggiungendo una gesture personalizzata ecc.

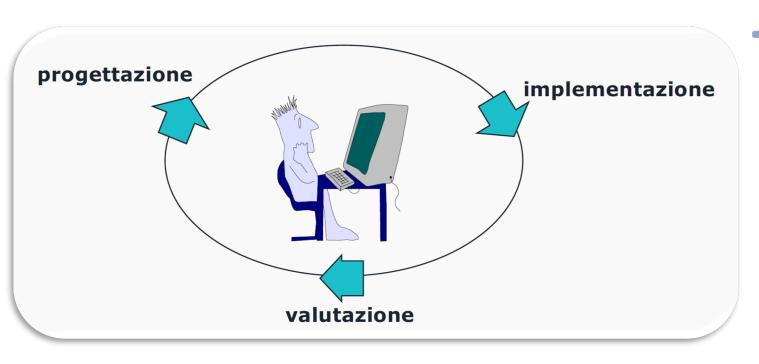
USABILITA' E USERS EXPERIENCE


- Tutti i precedenti aspetti vanno curati in modo molto attento per poter consentire una esperienza di interazione positiva.
- lale esperienza di interazione viene «misurata» attraverso una metrica detta «usabilità»

'IT'S SURPRISINGLY COMPLICATED TO MAKE AN INTERACTION THAT WILL BE SIMPLE' M. ZUCKERBERG

INTERFACCIA COME FILTRO DELLA COMPLESSITÀ

- L'Interfaccia ha il compito di "filtrare" la complessità, presentando all'utente un'immagine semplificata del prodotto, e congruente con i compiti che egli deve svolgere
- Una buona interfaccia non solo nasconde la complessità interna del sistema, ma ne riduce la complessità funzionale, mettendo a disposizione dell'utente funzioni di più alto livello, in grado di effettuare compiti complessi con un grado di automatismo maggiore.
- Ciò viene realizzato integrando numerose funzionalità semplici in funzionalità più potenti, con il risultato di semplificare il dialogo fra l'utente e il sistema


LA SFIDA DEL PROGETTISTA

- conciliare complessità (strutturale e funzionale) e semplicità d'uso per tutti.
- può essere vinta soltanto a patto di modificare completamente l'approccio tradizionale alla progettazione dei sistemi.

progettazione sistema-centrica

progettazione centrata sull'essere umano

L'INTERAZIONE UOMO-MACCHINA Cos'è?

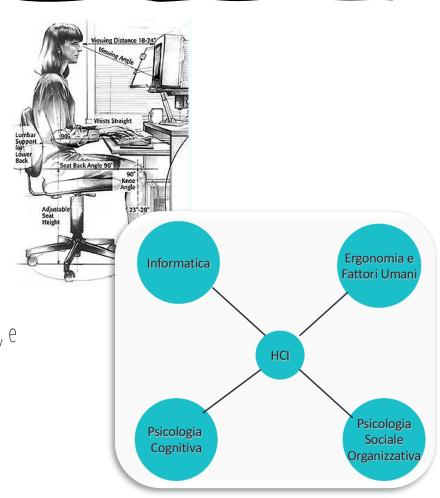
è una disciplina interessata alla:


- progettazione
- implementazione
- validazione

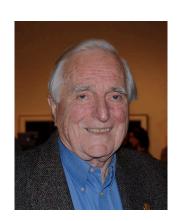
di sistemi informatici interattivi per uso umano

ORIGINI DELL'HCI

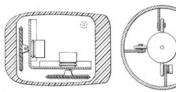
- Nasce negli anni '80
 - diffusione di massa dei personal Computer (1981 IBM PC, 1977 Apple II MAchintosh)
 - Il SIGCHI, lo Special Interest Group on Computer-Human Interaction dell'ACM, l'associazione dei professionisti americani dell'informatica, nasce nel 1982.
 - Computer-Human Interaction Conference CHI ACM (Conferenza Annuale) dal 1983
 - nel 1992 il SIGCHI pubblica un'articolata proposta per un curriculum di studi universitari sulla Human-Computer Interaction, che viene così definita:



HCl è una disciplina che si occupa della progettazione, valutazione e realizzazione di sistemi interattivi basati su computer destinati all'uso umano e dello studio dei principali fenomeni che li circondano


INTERDISCIPLINARITÀ DELL'HCI

- Ha le sue origini in due aree disciplinari molto diverse:
 - l'Ergonomia (ergon:lavoro, nomos: legge)
 - la scienza dei computer (la progettazione delle applicazioni e l'ingegnerizzazione delle interfacce umane),
 - la psicologia (l'applicazione delle teorie dei processi cognitivi e l'analisi empirica dei comportamenti degli utenti),
 - la sociologia e l'antropologia (le interazioni fra la tecnologia, il lavoro e l'organizzazione), e l'industrial design (i prodotti interattivi).



HCI PER AUMENTARE L'INTELLETTO UMANO

• Nel 1962, in un famoso rapporto relativo a una ricerca per "aumentare l'intelletto umano" attraverso gli strumenti dell'informatica, Douglas Enqelbart scriveva: «Aumentare l'intelletto umano significa per noi incrementare le capacità di una persona di affrontare una situazione problematica complessa, di raggiungere la comprensione necessaria a scopi particolari e di trovare soluzioni ai problemi. Non stiamo parlando di trucchi intelligenti e isolati che sono di aiuto in situazioni particolari. Ci riferiamo a un modo di vivere in un dominio integrato dove le intuizioni, i tentativi, le cose intangibili e il "senso della situazione" dell'uomo coesistano utilmente con concetti potenti, con terminologie e notazioni efficienti, con metodi sofisticati e con ausili elettronici di grande potenza.»

Douglas Carl Engelbart (Portland, 30 gennaio 1925 - Atherton, 2 luglio 2013) è stato un <u>inventore</u> e <u>ingegnere</u> <u>statunitense</u>. È stato il fondatore dell'Augmentation Research Center ed è ritenuto l'inventore, in collaborazione con William English, del primo mouse. Pioniere dell'<u>interazione uomo-computer</u>, ha sviluppato con i suoi collaboratori l'<u>ipertesto</u>, le <u>reti di computer</u> ed è stato un precursore dell'<u>interfaccia grafica</u>.



HCI DALLE ORIGINI AD OGGI: Dai progetti pionieristici dei primi anni, molte cose sono successe...

- Il personal computer, da strumento "da scrivania" si è evoluto in strumento portatile, e la successiva evoluzione delle reti ha prodotto una nuova enorme crescita delle *possibilità e della complessità degli strumenti*
- Abbiamo costruito strumenti che ci permettono di *elaborare idee e informazioni enormemente complesse*, e che ci permettono di gestirle e di comunicarle istantaneamente e massivamente a interlocutori sparpagliati negli angoli più remoti del pianeta.
- La diffusione della telefonia mobile (dalla fine degli anni '80) e della rete Internet (dall'inizio degli anni 90) hanno dato
 - un'accelerazione formidabile a questi processi
- Da allora la disciplina della Human-Computer Interaction si è sviluppata in modo considerevole, in molte direzioni

APPROFONDIMENTI E RICERCHE

- Il seguente articolo contiene una sintesi interessante della storia della HCl. S.Bagnara, S.Pozzi, *Fondamenti, Storia e Tendenze dell'HCl,* in A.Soro (ed.), *Human Computer Interaction Fondamenti e prospettive*, pagg. 17–42, Ed.Polimetrica, 2009 (disponibile anche in rete).
- Uno dei principali convegni scientifici nel campo della HCl è il convegno CHl, organizzato annualmente dal SIGCHl dell'ACM. Gli atti di questo convegno sono disponibili in rete, in http://www.acm.org (in questo sito, selezionare Proceedings, poi CHl). Esamina gli atti dell'ultimo convegno, per farti un'idea del tipo di temi affrontati.