FITNES S=a

FauLt AND INTRUSION TOLERANT NETWORKED SYSTEMS

+

Anti-debugging techniques

dipartimento [:i

ingegneria ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

41

SYSTEM CALL

printf(“Hello world!”)
write(1, buf, s7) An interface between
— User application and OS kernel
movl eax, SYS_write | Program O Linux int 0x80 (syscall
User mode /' int 0x80 x86_64)
O Win int Ox2e
syscall() { Sysca”S
kernel mode IDT syscalls[€ax 1() table eax = # syscall in syscalls table
/ -, T (e.g. 1= write)
0x80 | Syscall
Gp registers host parameters
sys_write(...) { (syscall dependents)
// do real work
} // sysfile.c
&

SN ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

FITNES S=a

FauLt AND INTRUSION TOLERANT NETWORKED SYSTEMS

-+

Understanding debuggers

dipartimento [:i

ingegneria ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

SW BREAKPOINTS

15

O Break @push rbp

push rbp

mov ebp,esp
mov rax,1
syscall (x86_64)
mov rdi,1

mov rsi,Hello

mov
rdx,len_Hello

syscall
mov esp, ebp

pop rbp

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

SW BREAKPOINTS

4.4

O Break @push rbp
1. Target<-int3

INT 3 (OxCC) is a syscall which generates a

SIGTRAP

Note that with

some

assemblers (like

NASM), int 3 is CD ©3, and you need to
write int3 (no space) to get the @xCC single-byte

opcode.

pushrbp-int 3

mov ebp,esp
mov rax,1
syscall (x86_64)
mov rdi,1

mov rsi,Hello

mov
rdx,len_Hello

syscall
mov esp, ebp

pop rbp

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

SW BREAKPOINTS

45

O Break @push rbp ETP -5
1. Target<-int3

2. When target executed
(EIP=target) a SIGTRAP
raised

pushrbp-int 3

mov ebp,esp
mov rax,1
syscall (x86_64)
mov rdi,1

mov rsi,Hello

mov
rdx,len_Hello

syscall
mov esp, ebp

pop rbp

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

SW BREAKPOINTS

46

O Break @push rbp
1. Target<-int3

2. When target executed
(EIP=target) a SIGTRAP
raised

3. [EIP] substituted with original

EIP ->

push rbp 3
mov ebp,esp
mov rax,1
syscall (x86_64)
mov rdi,1

mov rsi,Hello

mov
rdx,len_Hello

syscall
mov esp, ebp

pop rbp

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

SW BREAKPOINTS

47

O Break @push rbp
1. Target<-int3

2. When target executed
(EIP=target) a SIGTRAP
raised

3. [EIP] substituted with original
. Single step executed

EIP ->

N

5. and target newly prepared

pushrbp-int 3

mov ebp,esp
mov rax,1
syscall (x86_64)
mov rdi,1

mov rsi,Hello

mov
rdx,len_Hello

syscall
mov esp, ebp

pop rbp

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

How THIS IS DONE: PTRACE (MAN PTRACE) 48

O The ptrace() system call provides a mean by which one process (the "tracer")
may observe and control the execution of another process (the "tracee"), and
examine and change the tracee's memory and registers. It is primarily used to
implement breakpoint debugging and system call tracing.

If a tracer is ptracing

a tracee, when the
tracee makes a syscall,
it is stopped and a
signal is sent to the
tracer (keep it in mind:
breakpoint are now
int3)

1
5

= Ll

N

~]

9
10
11
12
13
14

15 |

16
17

int main()

i {

'}

pid_t child;
long orig eaXx;
child = fork();

if(child == 0) {
ptrace (PTRACE TRACEME, 0, NULL, NULL);
execl("/bin/1ls™, "1s", NULL);

} else {

wait (NULL) ;
orig eax = ptrace(PTRACE PEEKUSER,
child, 4 * ORIG EAX, NULL);

mml- L]

printf("The child made a
"system call %1d\n", orig eax);
ptrace (PTRACE CONT, child, NULL, NULL) ;

}

return U ;

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

How THIS IS DONE: PTRACE (MAN PTRACE) 49

O The ptrace() system call provides a mean by which one process (the "tracer")
may observe and control the execution of another process (the "tracee"), and
examine and change the tracee's memory and registers. It is primarily used to

deb ggmg and system call tracing.

willing being monitored and pid_t child;
then executes the actual llcir}cidorlg_eizz)
. chi = for ;
program to be monitored (7) if(child == 0) {
tracee makes a syscall,| ¢ ptrace (PTRACE TRACEME, 0, NULL, NULL);
it is ot d and 7 execl ("/bin/ls"™, "1s", NULL);
it is stopped and a 3 } else {
signal is sent to the 9 wait (NULL) ;
o _ 10 orig eax = ptrace (PTRACE PEEKUSER,
tracer (keep it in mind:| 11 child, 4 * ORIG EAX, NULL);
. 12 printf ("The child made a "
breakpomt are now 13 "system call %1d\n", orig eax);
int3) 14 ptrace (PTRACE CONT, child, NULL, NULL);
15 }
16 return 0;
17 'y

/v\-' ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES
‘ F TNES

How THIS IS DONE: PTRACE (MAN PTRACE)

50

O The ptrace() system call provides a mean by which one process (the "tracer")
may observe and control the execution of another process (the "tracee"), and
examine and change the tracee's memory and registers. It is primarily used to

willing being monitored and
then executes the actual
program to be monitored (7)

tracee makes a syscall,| ¢
it is stopped and a

W o -l

signal is sent to the

In the meanwhile the parent
invokes a wait (9). When the

child invokes a syscall, the
parent wakes it up

17

debugging and system call tracing.

H

At (6) the child “states” NN T main ()

pid_t child;
long orig eaXx;
child = fork();
if(child == 0) {
ptrace (PTRACE TRACEME, 0, NULL, NULL);
execl("/bin/ls™, "ls", NULL);
} else {
walt (NULL) ;
orig eax = ptrace(PTRACE PEEKUSER,
child, 4 * ORIG EAX, NULL);
printf("The child made a "
"system call %1d\n", orig eax);
ptrace (PTRACE CONT, child, NULL, NULL);
}

return U ;

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

How THIS IS DONE: PTRACE (MAN PTRACE) 51

O The ptrace() system call provides a mean by which one process (the "tracer")
may observe and control the execution of another process (the "tracee"), and
examine and change the tracee's memory and registers. It is primarily used to

debugging and system call tracing.

NNt main ()

willing being monitored and pid_t child;
than avariitac tha artiial long Drig_eax;
child = fork();
Once “awake” the parent if(child == 0) {)
retrieves (10) a word at address E;iﬁfﬁzﬁﬁgTRﬁcgE E'm L?.T)JI-'L’ NULL) ;
$*ORIG_EAX, from the tracee's } else { C o '
USER area (PEEKUSER). Then wait (NULL) ;
resume the child (14) orig eax = ptrace (PTRACE PEEKUSER,

child, 4 * ORIG_EAX, NULL) ;
invokes a wait (9). When the printf("The child made a

o "system call %1d\n", orig eax);
child invokes a syspall, the ptrace (PTRACE CONT, child, NULL, NULL);
parent wakes it up }

return U ;

17 'y

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

FOPEN technique

'A' ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES
FITNESS

FOPEN() TECHNIQUE...

53

FILE *fd = fopen("'/tmp', "'r');

it (fileno(fd) > 5) {
printf(""1"m sorry GDB! You are not allowed!\n');
exit(l);

+

fclose(fd);

O FDs O (stdin), 1 (stdout) and 2 (stderr) are always opened...
O gdb opens additional file descriptors (3,4,5) which are inherited ...
O fineno(fd)>5 ...but we never opened files before...gdb detected

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

0xCC technique

'A' ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES
FITNESS

DETECTING BREAK POINTS: LOOK FOR INT3 OPCODE (0xcc) 55

void foo()

1
printf(""Hello\n");

nt main()

-

IT ((*(volatile unsigned *)((unsigned)foo) & OxFF) == 0Oxcc)

1
printf(""BREAKPOINT\n"");

exi1t(l);
+
foo();

}

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

DETECTING BREAK POINTS: LOOK FOR INT3 OPCODE (0xcc) 56

void foo()
{

2l To escape this check, just use a

} near address as break point.

Int main(
t i (O The real difficulty is “finding” the check that could Oxce)
g silently stop the program being debugged:
ori 1) Look for the breakpoint address in the assembly
i1 of the debugged program BUT it could be
calculated
ioo()' 2) Checking for 0xCC in the code (...it could be a
’ symptom)
+
®

./_.-\-. ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

DETECTING BREAK POINTS: LOOK FOR INT3 OPCODE (0xcc) 57
void foo()
{
printf(EHadlada- .
}i’n ¢ maing The program could be looking for
{ a OxCC in the whole assembly not
it (((only at a certain address 0xcc)
{
prin
ex1t(
¥
foo ()

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

PTRACE technique

'/\.' ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES
FITNESS

DETECTING DEBUGGING 59

0 Only one process at time can // antidebug.c
ptrace a program int main()

O If the tracee invokes ptrace it {
will get an error i.e. return
value =-1

if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0)
{

o printf(“Don’t waste your time!\n");
0 The tracee can know if it is

. _ return 1;
being debugged by trying |
itself to invoke ptrace orintf("Hello\n");
return O;

}

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

DETECTING DEBUGGING 60

0 Only one process at time can // antidebug.c
ptrace a program int main()

O If the tracee invokes ptrace it {
will get an error i.e. return
value =-1

00 The trac

if (otrace(PTRACE_TRACEME, 0, 1, 0) < 0)

“Don’t wa Ir time!\n");

sl To patch this and still perform the analysis:
itself to 1)NOP or invert the ptrace()
check before analyzing;
2)Before debugging overwrite

the ptrace function ...

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

HIDING THE CALL TO PTRACE()

61

0 We can hide the call to ptrace() by wripping it in a detection
function such as:

void detect _gdb(void) _ attribute ((constructor));

0 attribute ((constructor[(priority)]))

0 ELF has two sections . CEOrS and .dTtOrsS that are used to store
constructors and destructors

0 .CTOrs functions are executed before main()

0 Thus we can perform this test even before main()thus someway
hiding the call and making it harder to intercept it

0 Also check .in1t and . FiIni

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

OVERWRITING THE PTRACE FUNCTION 62

Create and load a shared

library fakeptrace.c

S gcc -shared -o fakeptrace.so long ptrace(int request, iInt
fakeptrace.c pid, Int addr, Int data)
Sgcc —o ad antidebug.c {

Sgdb ad return O;

(gdb) set environment LD_PRELOAD }
./fakeptrace.so

(gdb) run
Hello

In radare2 you can execute:
r2 —Ad rarun2 program=./ad preload=./fakeptrace.so

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

$ gdb ad
GNU gdb (Ubuntu 7.11.1-@ubuntul~16.5) 7.11.1
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show co
and "show warranty"” for details.
This GDB was configured as "x86 _64-linux-gnu”.
Type "show configuration” for configuration details.
JFor bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

/mnt/c/Users/colui/OneDrive - uniparthenope.it/D/
attico/working/ad
Don't waste your time

(gdb) set environment LD PRELOAD ./fakeptrace.so

(gdb) run

Starting program: /mnt/c/Users/colui/OneDrive - uniparthenope.it/D/
attico/working/ad

...BUT FAKEPTRACE ALWAYS RETURNS 0

64

int main()
{
int offset = 0;
if (otrace(PTRACE_TRACEME, 0, 1, 0) == 0) offset = 2;
if (otrace(PTRACE_TRACEME, 0O, 1, 0) ==-1) offset = offset * 3
if (offset == 2 * 3){
// normal execution
} else {
// don't trace me;

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

...BUT FAKEPTRACE ALWAYS RETURNS 0

65

int main()

{
int offset = 0;

if (ptrace(PTRACE_TRACEME, 0, 1, 0) == 0) offset = 2;

if (ptrace(
It e The fakeptrace can have a state

and reply 0 at first time and -1
for following calls

// norm:
} else {
// don't trace me;

fset * 3

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

Additional techniques

'/\.' ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES
FITNESS

WINDOWS ANTI-DEBUGGING: THE EASY WAY 67

int main()

{
if (IsDebuggerPresent())

{

std::cout << "Stop debugging program!" << std::endl;
exit(-1);
}

return O;

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

ISDEBUGGERPRESENT() 68

ODetermines whether the calling process is being
debugged by a user-mode debugger

11[0)% eax,dword ptr fs:[00000030h] [mov rax,qword ptr gs:[60h]

movzx eax,byte ptr [eax+2] movzx eax,byte ptr [rax+2]
ret ret

OIt checks the second byte of the PEB (Process
Environment Block) structure (fs:30h in x32,

gs:60h in x64)

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

ISDEBUGGERPRESENT()

Windows PEB structure:

typedef struct _PEB {
BYTE Reservedl1[2];
BYTE BeingDebugged;
BYTE Reserved2[21];
PPEB_LDR_DATA LoaderData;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
BYTE Reserved3[520];
PPS_POST_PROCESS _INIT_ROUTINE
PostProcessInitRoutine;

BYTE Reserved4[136];
ULONG SessionId;
} PEB;

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

BYPASSING ISDEBUGGERPRESENT CHECK 70

ONOP the call to isDebuggerPresent()

" To make it difficult the antidebugger programmer will not

invoke the function in the main program (easy to discover
and NOP) but in a TLS Callback (that are called when a
thread starts or exits — cleanly - in the current process)

O Modify the PEB.BeingDebugged value
"E.g.x32

mov eax, dword ptr fs:[0x30]
mov byte ptr ds:[eax+2], O

O Update the value of EAX to O after the call
O...

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

CHECKREMOTEDEBUGGERPRESENT() 71

BOOL WINAPI CheckRemoteDebuggerPresent(
In HANDLE hProcess,
Inout PBOOL pbDebuggerPresent // after the call TRUE if debugged

);

O Patch the comparison of the return value of
CheckRemoteDebuggerPresent() in the malware code

O Patch the malware to jump over the CheckRemoteDebuggerPresent()
check

O Patch the malware to NOP the CheckRemoteDebuggerPresent() check

[0 Set a breakpoint after the NtQueryinformationProcess() call and update
its return value for ProcessDebugPort to O

O Pre-load/hook a DLL that overrides NtQuerylnformationProcess() and
always returns O for ProcessDebugPort

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

CHECKREMOTEDEBUGGERPRESENT()

int main(int argc, char *argv[])
{
BOOL isDebuggerPresent = FALSE;
if (CheckRemoteDebuggerPresent(GetCurrentProcess(), &isDebuggerPresent))

{
if (isDebuggerPresent)

{

std::cout << "Stop debugging program!" << std::endl;
exit(-1);
}
}

return 0;

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

HARDWARE BREAKPOINTS

73

0 Software Breakpoints are easy
to detect and slow

0 Hardware breakpoints

= 8 dedicated registers: DRO-7
DRO-DR3 — breakpoint registers

* contain linear addresses of breakpoints
DR4 & DR5 —reserved
DR6 — debug status

* Indicates, which breakpoint is activated
DR7 — debug control

* defines the breakpoint activation mode
by the access mode: read, write, or
execute

CONTEXT ctx ={};
ctx.ContextFlags = CONTEXT_DEBUG_REGISTERS;
if (GetThreadContext(GetCurrentThread(), &ctx))

{
if (ctx.DrO =0 || ctx.Dr1 !=0 || ctx.Dr2 =0

|| ctx.Dr3 !=0)
{
cout << "Stop debugging program!" <<endl;
exit(-1);
}
}

ANTIREVERSING AND ANTIDEBUGGING TECHNIQUES

