
The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Corso di Sicurezza dei Sistemi Informatici

Basics of Reverse Engineering for Security

Luigi Coppolino

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Contact info

Prof. Luigi Coppolino
luigi.coppolino@uniparthenope.it

Prof. Salvatore D’Antonio
salvatore.dantonio@uniparthenope.it

Prof. Luigi Romano
luigi.romano@uniparthenope.it

Università degli Studi di Napoli "Parthenope"
Dipartimento di Ingegneria

mailto:luigi.coppolino@uniparthenope.it
mailto:salvatore.dantonio@uniparthenope.it
mailto:luigi.romano@uniparthenope.it

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Roadmap

➢ …

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

What is RE?

➢ Reverse engineering is the process of extracting the
knowledge or design blueprints from anything man-
made

o conducted to obtain missing knowledge, ideas, and
design philosophy when such information is
unavailable

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Why Reversing

➢ Security-Related Reversing

o Cryptographic algorithms

o Vulnerability research

o Malware analysis

o Digital Right Management

➢ Reversing in Software Development

o Interoperability with Proprietary Software

o Competing Software

o Evaluating Software Quality and Robustness

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

The Reversing Process

➢ System-level reversing: determine the general structure of the
program and sometimes even locate areas of interest within it

o Look at interaction with external word, mainly the OS:
networking activity, file accesses, registry access, …

o determine areas of special interest

➢ Code-level reversing: extracting design concepts and algorithms
from a program binary

➢ Static VS Dynamic Analysis

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Understanding ELF

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

What about the file…

➢ The file command provides some info about the file

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

The ELF File Format

➢ Executable and Linkable Format: Linux binary format

o Executable

o Object files (relocatable)

o Shared Objects (.so)

ELF

ELF header

File data

Program Header Table Process memory layout

Section 1

Section 2

…

Section n

….

Section Header Table Static organization of the
program

How
properly

interpreting
the file

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

ELF Header

➢ FILE ORGANIZATION

o The magic number
identifies somma as an
ELF file

• 7f followed by :
45=E,4c=L,46=F

o the following byte is the
architecture (01=32bit
02=64 bit)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

File data

Sections

.text = code

.rodata = read only data
(ex. strings)

.bss = uninitialized arrays
and variables

.data = global tables,
variables

Program header presents the program
runtime layout in terms of segments:
a segment can include one or more
sections

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Sections

readelf -S somma

There are 36 section headers, starting at offset 0x1d90:

Section Headers:

[Nr] Name Type Address Offset Size EntSize Flags Link Info Align

[0] NULL 0000000000000000 00000000 0000000000000000 0000000000000000 0 0 0

…

[14] .text PROGBITS 00000000004003e0 000003e0 00000000000001b2 0000000000000000 AX 0 0 16

[15] .fini PROGBITS 0000000000400594 00000594 0000000000000009 0000000000000000 AX 0 0 4

[16] .rodata PROGBITS 00000000004005a0 000005a0 0000000000000004 0000000000000004 AM 0 0 4

…

[25] .data PROGBITS 0000000000601020 00001020 0000000000000010 0000000000000000 WA 0 0 8

[26] .bss NOBITS 0000000000601030 00001030 0000000000000008 0000000000000000 WA 0 0 1

…

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), l (large) I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Segments

readelf -l somma
Elf file type is EXEC (Executable file)

Entry point 0x4003e0

There are 9 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align

PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040 0x00000000000001f8 0x00000000000001f8 R E 8

INTERP 0x0000000000000238 0x0000000000400238 0x0000000000400238 0x000000000000001c 0x000000000000001c R 1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000 0x00000000000006f4 0x00000000000006f4 R E 200000

LOAD 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10 0x0000000000000220 0x0000000000000228 RW 200000

…

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini .rodata …

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

…

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Symbols

$ readelf -s somma | more

…

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Dynamic Linking

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Static vs Dynamic

➢ Static binaries: the linker includes
in the final binary all of the
necessary libraries

o Bigger files, yet more portable

➢ Dynamic binaries: libraries are kept
apart and loaded at runtime on
request

o Smaller files, libraries can be
shared by more binaries

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Dynamic libraries

$ file somma

somma: ELF 64-bit LSB executable, x86-64,

version 1 (SYSV), dynamically linked,

interpreter /lib64/ld-linux-x86-64.so.2, for

GNU/Linux 2.6.32,

BuildID[sha1]=a2a00f667f21ef963f1b896f8a5b3918

db15bbc5, not stripped

$ objdump -p somma | grep NEEDED

NEEDED libc.so.6

PS ldd somma can provide additional info but may execute the program =>
@@@MALWARE!!!

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Static Code Review: starting RE

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

The Compass of the Reverser

➢ The starting point for Static Analysis of binary code is
reconstructing its Control Flow, that is

o The order of instructions execution;

o The logic behind control flow statements

➢ It is determined by conditional blocks:

o If blocks

o Switch blocks

o Loops cycles (including foor)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Control Flow Statements: the Assembly view

//gcc -g -ocontrolFlow

//controlFlow.c

#include <stdio.h>

int main(){

int j, i = 0;

for(j=0;j < 2; j++)

i=i+1;

while(i < 10) i++;

if (i < 10) i++;

else i--;

switch(i){

case 1:

i+=2;

break;

case 2:

i+=3;

break;

default:

i+=1;

}

}

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

objdump -S -d -Mintel controlFlow

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Information Flow and Program Slicing

➢ Program slicing is a method used by experienced computer
programmers for abstracting from programs. Starting from a
subset of a program's behavior, slicing reduces that program to a
minimal form which still produces that behavior. The reduced
program, called a "slice", is an independent program guaranteed
to faithfully represent the original program within the domain of
the specified subset of behavior. [PROGRAM SLICING, Mark
Weiser]

➢ program slicing is the computation of the set of program
statements, the program slice, that may affect the values at
some point of interest. [Wikipedia]

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Program Slicing Example

l BEGIN

2 READ(X,Y)

3 TOTAL := 0.0

4 SUM := 0.0

5 IF X<=1

6 THEN SUM := Y

7 ELSE BEGIN

8 READ(Z)

9 TOTAL := X*Y

lO END

II WRITE(TOTAL,SUM)

12 END.

Slice on Z at 12

BEGIN
READ(X,Y)
IF X < l

THEN
ELSE READ(Z)

END.

Slice on X at 9

BEGIN
READ(X,Y)
END

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Slicing in Reverse Engineering

➢ Focus only on a subset of the code

o Identify a point of interest of the reverser

o Go backward to retrieve the slice on the given PoI

o Identify the point where to operate

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Lab 1

Skip controls…
- understanding a program control flow

- Introduction to dynamic code analysis

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

The binary file: register

➢ Let’s try to execute

$./register

Usage: register <activation code>

➢ Let’s try a random input

$./register AAAA

Given: AAAA

Sorry, the given code is not valid!

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

“register” X-ray

➢ objdump –d register

o gdb register

o set disassembly-flavor intel

o disassemble main

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Building the “register” Control Flow

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Let’s go Dynamic

➢ Let’s start debugging: gdb register

➢ Go to first program instruction: start

➢ Execute instructions one by one: si

➢ There is a comparison of something with 0x2 if not equal a jump to a print
and then exit

o Let’s execute (si … until the print and execute the print with a next)

gdb-peda$ next

Usage: register <activation code>

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Building the “register” Control Flow

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Let’s try a random code

➢ Restart again the program providing an input:

start AAA-BBB-CCC

➢ Let’s go ahead until an output

gdb-peda$ next

Given: AAA-BBB-CCC

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Let’s try a random code

➢ After a comparison there is a jump on not equal to a print and
then exit

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Building the “register” Control Flow

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Let’s Bypass the Control…method 1

➢ We can break execution just
after the strcmp

➢ Just change the result in eax
before the test

Check arguments

!=2 =2

Usage…

Sorry…

OK

!=0 =0

strcmp…
return value in eax

0 means equal

test eax,eax
jne 0x0..

Exit

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Let’s Bypass the Control…method 1

➢ We can break execution just
after the strcmp

➢ Just change the result in eax
before the test

Check arguments

!=2 =2

Usage…

Sorry…

OK

!=0 =0

strcmp…
return value in eax

0 means equal

test eax,eax
jne eax

Exit

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Alternative method: 2

➢ Break @strcmp

➢ strcmp has to compare the provided string against the valid code

➢ The two arguments are provided as pointer to the strings

o Throughout registers RSI, RDI

➢ Let’s check the memory at the two addresses…

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

More alternatives

1. $ strings register

2. $ readelf -x .rodata register

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Binary Patching

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Flipping the controlflow

➢ Inverting the control flow statement condition would
make it …

o JNE->JE

jne 0x0.. je 0x0..

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Flipping the controlflow

➢ Inverting the control flow statement condition would
make it …

o JNE->JE

➢Only 1 bit of distance…

o Short Jump Opcode

• JE= 0x74 JNE=0x75

• JB=0x72 JNB=0x73

o Near Jump Opcode

• JNE=0F 84 JE=0F 85

• …

jne 0x0.. je 0x0..

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Other useful opcode

➢ Relative Jump: EB xx

o If xx in 0x00-0x7f => jump forward (2+xx byte)

o If xx in 0x80-0xff => jump backward (2-2’s cmpl xx byte)

➢ 0x90 (nop) : do nothing

➢ 0xC3 (ret) : return from current function

➢ 0xCC (int3) : trigger a sw breakpoint …more on this next classes

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Patching

➢ Retrieve the control flow…

➢ Identify the point were to alterate the control flow

➢ Identify the control flow statement to change

➢ Patch it …

We need a tool…

plenty of them binary editors/hex editors (gdb –write; HxD:
register_fix)

$./register_fix AAA
Given: AAA
License Activated!

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Lab 2

Fooling registerPlus binary file

- Introduction to radare2

- Patching a binary file

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Installing radare2

➢ radare2 is a complete suite for reverse engineering completely
open source and free

o git clone https://github.com/radare/radare2
cd radare2
./sys/install.sh

➢ It is an open source alternative to expensive alternatives such as
IDA (Windows) or Hopper Disassembler (MacOS)

https://www.youtube.com/redirect?redir_token=PNHcqapDCdgkbWLsdeQ5E9mN8qV8MTU0MDE2NDUxN0AxNTQwMDc4MTE3&v=FPV-uR4HVb8&q=https://github.com/radare/radare2&event=video_description

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

A Brief Intro to Radare2

➢ r2 ./register starts reversing the a.out binary

➢ “?” Allows to view a list of classes of commands

o For every class typing its letter and ? Gives the list of
subcommands

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

disassembling

➢ aaa (analyze all functions and symbols)

➢ afl (list functions)

➢ pdf main to “print disassembled function” main

➢ s main to seek @ main

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

debugging

➢ ood to reopen in debug mode

➢ d? for debugging commands

➢ db ADDRESS places a breakpoint @ADDRESS

➢ dc continue to the breakpoint

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Control Flow: Visual Mode

➢ Switch to visual mode: VV use TAB and
arrows to navigate; +/- to zoom in and out

➢ press p to show addresses and binary

➢ q to return to non visual mode

➢ Note that in visual mode there

is a different set of commands

(try ?)

o normal commands can
still be used after a ":«

• :ood AAA reloads
with argument AAA

o s/S step into/out

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

registerPlus

➢ 10 minutes to bypass the control yourself

➢ … at least describe the approach you would like to follow

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Analyzing the ./registerPlus control flow

➢ r2 ./registerPlus

➢ aaa / afl / s main

➢ VV / p

➢ :ood AAAA

➢ db 0x0… (cmp)

➢ dc

➢ q -> rip@cmp

➢ The cmp compares the memory @local_18h with the immediate
0x2ad

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Solution 1: set the control variable to the expected value

➢ afvd (analyze function variables and display)

o lists the variables in the function

➢ wv 0x2ad @0x7ffff2a11338 (write variable)

➢ check the results with afvd again

➢ dc to the success…

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Solution 2: jump to activation

➢ go to the jne …

➢ dr rip (check the value of rip register)

➢ dr rip=… (set rip with the address of the activation branch)

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Solution 3: invert the control flow statement

➢ go to the jump condition

➢ dr rip (show rip register pointing at the: jne 0x400650)

➢ :wa je 0x400650 @0x00400642 (write opcode) and
finally dc …

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Solution 4: patch registerPlus

➢ cp registerPlus registerPlus_fix (make a copy)
➢ r2 ./registerPlus_fix

➢ aaa / afl / s main

➢ pdf and identify the jne address

➢ s 0x00400642 (seek to the jne)

➢ Vp to switch to visual mode

➢ oo+ to reload the current file in read-write mode

➢ A to invoke the Awasome assembly editor…write the new line «je
0x400650» and double click enter…q to quit the visual mode and q to quit
r2…

➢ try to execute ./registerPlus_fix AAAA

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

References

➢ http://www.skyfree.org/linux/references/ELF_Format.pdf

➢ http://delivery.acm.org/10.1145/810000/802557/p439-
weiser.pdf?ip=192.167.9.86&id=802557&acc=ACTIVE%20SERVIC
E&key=296E2ED678667973%2E3FE349642144B6A6%2E4D4702B
0C3E38B35%2E4D4702B0C3E38B35&__acm__=1540198716_f46
c5ae91721a10aef961a49b5fd85b8

➢ https://radare.gitbooks.io/radare2book/content/

