
Corso di Sicurezza dei Sistemi

Prof. Salvatore D’Antonio

Message Authentication

Message Authentication

 Message authentication is a procedure to verify that

received messages come from the alleged source

and have not been altered

 Message authentication assures that data received

are exactly as sent by (i.e., contain no modification,

insertion, deletion, or replay) and that the

purported identity of the sender is valid

 Message authentication may also verify sequencing

and timeliness

 A digital signature is an authentication technique

that also includes measures to counter repudiation

by the source

Message authentication functions (1/2)

 Any message authentication mechanism has
two levels of functionality
 At the lower level, there must be some sort of

function that produces an authenticator: a value to
be used to authenticate a message

 This lower-level function is then used as a primitive
in a higher-level authentication protocol that
enables a receiver to verify the authenticity of a
message

 Three classes of functions that may be used to
generate an authenticator:

 Hash function

 Message encryption

 Message Authentication Code (MAC)

Message authentication functions (2/2)

 Hash function: A function that maps a message

of any length into a fixed length hash value,

which serves as the authenticator

 Message encryption: The ciphertext of the entire

message serves as its authenticator

 Message authentication code (MAC): A function

of the message and a secret key that produces

a fixed-length value that serves as the

authenticator

Hash function

 A hash function H accepts a variable-length

block of data M as input and produces a fixed-

size hash value h=H(M)

 A “good” hash function has the property that

the results of applying the function to a large

set of inputs will produce outputs that are

evenly distributed and apparently random

 Hash function and data integrity

 A change to any bit or bits in M results, with high

probability, in a change to the hash code

Cryptographic hash function (1/2)

 A cryptographic hash function is an algorithm

for which it is computationally infeasible

(because no attack is significantly more efficient

than brute force) to find either (a) a data object

that maps to a pre-specified hash result (the

one-way property) or (b) two data objects that

map to the same hash result (the collision-free

property)

 Because of these characteristics, hash

functions are often used to determine whether

or not data has changed

Cryptographic hash function (2/2)

 General operation of a cryptographic hash

function

 The input is padded out to an integer multiple of

some fixed length (e.g., 1024 bits), and the padding

includes the value of the length of the original

message in bits

 The length field is a security measure to increase

the difficulty for an attacker to produce an

alternative message with the same hash value

 The hash value h is h=H(M)

Applications of cryptographic hash

functions

 When a hash function is used to provide message

authentication, the hash function value is often

referred to as a message digest

 Possible ways in which a hash code can be used to

provide message authentication

 The message plus concatenated hash code is encrypted

using symmetric encryption

 Because only A and B share the secret key, the message

must have come from A and has not been altered

 The hash code provides the structure or redundancy

required to achieve authentication. Because encryption

is applied to the entire message plus hash code,

confidentiality is also provided

Applications of cryptographic hash

functions

 Another method consists in encrypting only the
hash code, using symmetric encryption.

 This reduces the processing burden for those
applications that do not require confidentiality

 The third option is to use a hash function but no
encryption for message authentication.

 The technique assumes that the two communicating
parties share a common secret value S.

 A computes the hash value over the concatenation of M
and S and appends the resulting hash value to M.

 Because B possesses S, it can recompute the hash value
to verify. Because the secret value itself is not sent, an
opponent cannot modify an intercepted message and
cannot generate a false message

Applications of cryptographic hash

functions

 Confidentiality can be added to the approach of

the previous method by encrypting the entire

message plus the hash code

 There is a growing interest in techniques that

avoid encryption for the following reasons

 Encryption software is relatively low

 Encryption hardware costs are not negligible

 Encryption hardware is optimized towards large data

sizes. For small blocks of data, a high proportion of

the time is spent in initialization/invocation overhead.

Encryption

 A message transmitted from source A to destination

B is encrypted using a secret key K shared by A and

B. If no other party knows the key, then

confidentiality is provided

 No other party can recover the plaintext of the

message

 In addition, B is assured that the message was

generated by A

 The message must have come from A, because A is

the only other party that possesses K and therefore

the only other party with the information necessary

to construct ciphertext that can be decrypted with K

Encryption

 Furthermore, if M is recovered, B knows that

none of the bits of M have been altered

 This is because an opponent that does not

know K would not know how to alter bits in

the ciphertext to produce the desired changes

in the plaintext

Message Authentication Code
 Message authentication is achieved using a message

authentication code (MAC), also known as a keyed hash
function

 Typically, MACs are used between two parties that share a
secret key to authenticate information exchanged between
those parties

 A MAC function takes as input a secret key and a data
block and produces a hash value, referred to as the MAC

 This can then be transmitted with or stored with the protected
message

 If the integrity of the message needs to be checked, the MAC
function can be applied to the message and the result
compared with the stored MAC value

 An attacker who alters the message will be unable to alter
the MAC value without knowledge of the secret key

 Note that the verifying party also knows who the sending
party is because no one else knows the secret key

Message Authentication Code

 The combination of hashing and encryption
results in an overall function that is, in fact, a
MAC (also said cryptographic checksum)

 T =E(K, H(M)) is a function of a variable-length
message M and a secret key K, and it produces a
fixed-size output that is secure against an opponent
who does not know the secret key

 T is the fixed-length authenticator, sometimes
called a tag

 The tag is appended to the message at the source at
a time when the message is assumed or known to
be correct. The receiver authenticates that message
by recomputing the tag

Security of MACs

 When an entire message is encrypted for
confidentiality, using either symmetric or
asymmetric encryption, the security of the
scheme generally depends on the bit length of
the key

 For a k-bit key a brute-force attack using all
possible keys will require 2k-1 attempts until a
decryption result is produced that matches the
form of acceptable plaintext

 In the case of a MAC, the considerations are
entirely different. In general, the MAC function
is a many-to-one function, due to the many-to-
one nature of the function

Security of MACs
 If confidentiality is not employed, the opponent has

access to plaintext messages and their associated MACs.
Suppose k>n, that is, suppose that the key size is
greater than the MAC size

 Given a known M1 and T1 with T1=MAC(k , M1) the
cryptanalist can perform Ti=MAC(ki , M1) for all possible
key values ki

 At least one key is guaranteed to produce a match of Ti =
T1

 Note that a total of 2k tags will be produced, but there
are only 2n < 2k different tag values

 This means that a number of keys will produce the
correct tag and the opponent has no way of knowing
which is the correct key.

 On average a total of 2k/ 2n keys will produce a match
and therefore the opponent must iterate the attack

HMAC

 Incorporation of a secret key into an existing

hash algorithm

 HMAC has been issued as RFC 2104, has been

chosen as the mandatory-to-implement MAC

for IP security, and is used in other Internet

protocols, such as SSL

 HMAC has also been issued as a NIST standard

HMAC design objectives (RFC 2104)

 To use, without modifications, available hash
functions. In particular, to use hash functions that
perform well in software and for which code is freely
and widely available.

 To allow for easy replaceability of the embedded
hash function in case faster or more secure hash
functions are found or required

 To preserve the original performance of the hash
function without incurring a significant degradation

 To use and handle keys in a simple way

 To have a well understood cryptographic analysis of
the strength of the authentication mechanism
based on reasonable assumptions about the
embedded hash function

HMAC structure
 H = embedded hash function

 IV = Initial value input to hash function

 M = message input to HMAC (including the padding specified
in the embedded hash function)

 L = number of blocks in M

 Yi = i block of M

 b = number of bits in a block

 n = length of hash code produced by embedded hash function

 K = secret key; recommended length is >= n; if key length is
greater than b, the key is input to the hash function to
produce an n-bit key

 K+ = K padded with zeros on the left so that the result is b bits
in length

 ipad = 00110110 (36 in hexadecimal) repeated b/8 times

 opad = 01011100 (5C in hexadecimal) repeated b/8 times

HMAC structure

HMAC algorithm

 1. Append zeros to the left end of K to create a
b-bit string (e.g., if K is of length160 bits and
b= 512, then will be appended with 44 zeroes).

 2. XOR (bitwise exclusive-OR) K+ with ipad to
produce the b-bit block Si.

 3. Append M to Si.

 4. Apply H to the stream generated in step 3.

 5. XOR K+ with opad to produce the b-bit block
S0.

 6. Append the hash result from step 4 to S0.

 7. Apply H to the stream generated in step 6
and output the result.

