Corso di Sicurezza dei Sistemi Prof. Salvatore D'Antonio

Advanced Encryption Standard

AES structure

- Data block of 4 columns of 4 bytes is state
- Key is expanded to array of words
- Has 9/11/13 rounds in which state undergoes:
- byte substitution (1 S-box used on every byte)
, shift rows (permute bytes between columns)
- mix columns (subs using matrix multiply of groups)
b add round key (XOR state with key material)

AES cipher

- Block length is limited to 128 bit (16 bytes)
- The key size can be independently specified to 128,192 or 256 bits

Key size (words/bytes/bits)	$4 / 16 / 128$	$6 / 24 / 192$	$8 / 32 / 256$
Number of rounds	9	11	13
Expanded key size (words/byte)	$44 / 176$	$52 / 208$	$60 / 240$

AES key expansion

- takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words
- start by copying key into first 4 words
- then loop creating words that depend on values in previous 4 places back
- in 3 of 4 cases just XOR these together
- 1 st word in 4 has rotate $+S$-box + XOR round constant on previous, before XOR 4th back

AES key expansion

More details on AES

- has a simple structure
- only AddRoundKey uses key
- key expanded into array of 32-bit words
- four words form round key in each round
- each stage is easily reversible
- decryption uses keys in reverse order
- decryption does recover plaintext
- final round has only 3 stages

Four stages

- Byte substitution
- Shift rows
- Mix columns
- Add round key

Byte substitution

- a simple substitution of each byte
- uses one table of 16×16 bytes containing a permutation of all 2568 -bit values
- each byte of state is replaced by byte indexed by row (left 4-bits) \& column (right 4-bits)
- eg. byte $\{95\}$ is replaced by byte in row 9 column 5 which has value $\{2 \mathrm{~A}\}$
- S-box constructed using defined transformation of values in GF(2^{8})
- designed to be resistant to all known attacks

Substitute bytes

Substitute byte example

EA	04	65	85					
83	45	5 D	96					
5 C	33	98	$\mathrm{B0}$					
F 0	2 D	AD	C 5	\rightarrow	87	F 2	4 D	97
:---:	:---:	:---:	:---:					
EC	6 E	4 C	90					
4 A	C 3	46	$\mathrm{E7}$					
8 C	D 8	95	A 6					

Shift rows

- a circular byte shift
- 1 st row is unchanged
- 2nd row does 1 byte circular shift to left
- 3rd row does 2 byte circular shift to left
, 4th row does 3 byte circular shift to left
- decrypt inverts using shifts to right
- since state is processed by columns, this step permutes bytes between the columns

Shift rows

87	F 2	4 D	97					
EC	6 E	4 C	90					
4 A	C 3	46	E 7					
8 C	D 8	95	A 6	$\quad \rightarrow$	87	F 2	4 D	97
:---:	:---:	:---:	:---:					
6 E	4 C	90	EC					
46	E 7	4 A	C 3					
$\mathrm{A6}$	8 C	D 8	95					

Mix columns

- each column is processed separately
- each byte is replaced by a value dependent on all 4 bytes in the column
- a matrix multiplication in $\mathrm{GF}\left(2^{8}\right)$ using prime poly $m(x)=x^{8}+x^{4}+x^{3}+x+1$
$\left[\begin{array}{llll}02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02\end{array}\right]\left[\begin{array}{llll}s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3}\end{array}\right]=\left[\begin{array}{llll}s_{0,0} & s_{0,1}^{\prime} & \dot{s}_{0,2} & \dot{s}_{0,3} \\ s_{1,0} & s_{1,1}^{\prime} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & \dot{s}_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3}\end{array}\right]$

Mix columns

AES arithmetic

- uses arithmetic in the finite field $\mathrm{GF}\left(2^{8}\right)$
- with irreducible polynomial
($\mathrm{m}(\mathrm{x})=\mathrm{x}^{8}+\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}+1$
- which is (100011011) or $\{11 \mathrm{~B}\}$
- e.g.
- $\{02\} \cdot\{87\} \bmod \{11 \mathrm{~b}\}=(100001110) \bmod \{11 \mathrm{~B}\}$
, = (10000 1110) $\operatorname{xor}(100011011)=(0001$

101)

Add Round Key

- XOR state with 128 -bits of the round key

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$

\oplus

$=$| $s_{0,0}^{\prime}$ | $s_{0,1}^{\prime}$ | $s_{0,2}^{\prime}$ | $s_{0,3}^{\prime}$ |
| :--- | :--- | :--- | :--- |
| $s_{1,0}^{\prime}$ | $s_{1,1}^{\prime}$ | $s_{1,2}^{\prime}$ | $s_{1,3}^{\prime}$ |
| $s_{2,0}^{\prime}$ | $s_{2,1}^{\prime}$ | $s_{2,2}^{\prime}$ | $s_{2,3}^{\prime}$ |
| $s_{3,0}^{\prime}$ | $s_{3,1}^{\prime}$ | $s_{3,2}^{\prime}$ | $s_{3,3}^{\prime}$ |

Lab - AES bit flipping

- Changing the ciphertext to maliciously change the plaintext (attack to data integrity)
- AES Ciphertext:
, B60086CD1E68CEF25BC1BEC429D8F3C01D 45F0196331DA5012B99067A25463A493CCBF 690FD88F850BD5273C5A7D72B6
- Ciphertext 96-char, 48-byte long
- 3 AES 16-byte blocks
- Let's assume that
- First block=username
- Second block=email address
- Third block=from date to date (validity)

AES bit flipping - 1

- Username=B60086CD1E68CEF25BC1BEC429D8F3 C0
- Email=1D45F0196331DA5012B99067A25463A4
, From_to=93CCBF690FD88F850BD5273C5A7D72B6 . FROM=93CCBF690FD88F85 - TO=0BD5273C5A7D72B6
- The expected date format is YYYYMMDD
- In the cases of Counter Mode (CTR), Cipher Feedback Mode (CFB) and Output Feedback Mode (OFB), a bitflip in the ciphertext will lead to a bit-flip in the plaintext at the same position
(0B)5273C5A7D72B6

AES bit flipping - 2

- In the case of CBC, a bit-flip modifies a bit in the plaintext of the following block at the same position
- Email=1D45F0196331DA5012B99067A25463A 4
- Focus is on 12B99067A25463A4
- Format is YYYYMMDD
- Bit-flipping applies to 12

