
Corso di Sicurezza dei Sistemi 

Prof. Salvatore D’Antonio 

RSA 





AES structure 

 Data block of 4 columns of 4 bytes is state 

 Key is expanded to array of words 

 Has 9/11/13 rounds in which state undergoes:  

 byte substitution (1 S-box used on every byte)  

 shift rows (permute bytes between columns)  

 mix columns (subs using matrix multiply of groups)  

 add round key (XOR state with key material) 



Public key cryptography 

 Two keys 

 Private key known only to individual 

 Public key available to anyone 

 Idea 

 Confidentiality: encipher using public key, decipher 

using private key 

 Integrity/authentication: encipher using private 

key, decipher using the public one 



Requirements 

 A public key encryption algorithm has to meet 

the following requirements: 

 It must be computationally easy to encipher or 

decipher a message given the appropriate key 

 It must be computationally infeasible to derive the 

private key from the public key 

 It must be computationally infeasible to determine 

the private key from a chosen plaintext attack 

 



Public-Key Cryptography 



Modular Arithmetic 

 Public key algorithms are based on modular 

arithmetic. 

 Modular addition.  

 Modular multiplication. 

 Modular exponentiation. 



Modular Addition 

 Addition modulo (mod) K 
 (dk+dm) mod K, e.g., if K=10 and dk is the key 

 

 

 

 

 

 

 

 

 

 

 Additive inverse: addition mod K yields 0. 

 

+ 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 0 

2 2 3 4 5 6 7 8 9 0 1 

3 3 4 5 6 7 8 9 0 1 2 



Modular Multiplication 

 Multiplication modulo K 

 

 

 

 

 

 

 

 

 Multiplicative inverse: multiplication mod K yields 1 

 Only some numbers have inverse 

* 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 4 6 8 0 2 4 6 8 

3 0 3 6 9 2 5 8 1 4 7 



Modular Multiplication 

 Only the numbers relatively prime to n will have 

mod n multiplicative inverse  

 x, m are relatively prime: no other common factor 

than 1 

 Eg. 8 and 15 are relatively prime - factors of 8 are 

1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only 

common factor 



Totient Function 

 Totient function ø(n): number of integers less than 

n relatively prime to n  

 if n is prime,  

 ø(n)=n-1 

 if n=pq, and p, q are primes, p != q   

 ø(n)=(p-1)(q-1) 

 E.g., 

 ø(37) = 36 

 ø(21) = (3–1)×(7–1) = 2×6 = 12 



Modular Exponentiation 

 Modular exponentiation calculates the 

remainder when an integer b (the base) 

raised to the eth power (the exponent), be, is 

divided by a positive integer m (the modulus) 

 c = be mod m 

 From the definition of c, it follows that 0 ≤ c 

< m 



Modular Exponentiation 

xy 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 

2 1 2 4 8 6 2 4 8 6 2 

3 1 3 9 7 1 3 9 7 1 3 

4 1 4 6 4 6 4 6 4 6 4 

5 1 5 5 5 5 5 5 5 5 5 

6 1 6 6 6 6 6 6 6 6 6 

7 1 7 9 3 1 7 9 3 1 7 

8 1 8 4 2 6 8 4 2 6 8 

9 1 9 1 9 1 9 1 9 1 9 



RSA (Rivest, Shamir, Adleman) 

 The most popular one. 

 Support both public key encryption and digital 
signature. 

 Assumption/theoretical basis: 
 Factoring a big number is hard. 

 Variable key length (usually 512 bits). 

 Variable plaintext block size. 
 Plaintext must be “smaller” than the key. 

 Ciphertext block size is the same as the key length. 



What Is RSA? 

 To generate key pair: 

 Pick large primes (>= 256 bits each) p and q 

 Let n = p*q, keep your p and q to yourself! 

 For public key,  choose e that is relatively prime to 

ø(n) =(p-1)(q-1), let pub = <e,n> 

 For private key, find d that is the multiplicative 

inverse of e mod ø(n), i.e., e*d = 1 mod ø(n), let priv = 

<d,p,q> 



RSA Example 

1. Select primes: p=17 & q=11 

2. Compute n = pq =17×11=187 

3. Compute ø(n)=(p–1)(q-1)=16×10=160 

4. Select e : gcd*(e,160)=1; choose e=7 

5. Determine d: de=1 mod 160 and d < 160; Value 

is d=23 since 23×7=161= 10×160+1 

6. Publish public key KU={7,187} 

7. Keep secret private key KR={23,17,11} 

 *gcd =  greatest common divisor 



How Does RSA Work? 

 Given pub = <e, n> and priv = <d, n> 

 encryption: c = me mod n, m < n 

 decryption: m = cd mod n 

 given message M = 88 (nb. 88<187) 

 encryption: 

C = 887 mod 187 = 11  

 decryption: 

M = 1123 mod 187 = 88  



Why Does RSA Work? 

 Given pub = <e, n> and priv = <d, n> 

 n =p*q, ø(n) =(p-1)(q-1)  

 e*d = 1 mod ø(n) 

 xed = x mod n 

 encryption: c = me mod n 

 decryption: m = cd mod n = med mod n = m mod n = m 

(since m < n) 

 digital signature (similar)  



Lab exercise - Input 

 Message 

 ��N,���MWNf3z�Q�q�O2���З'5��'tc 

 Public key 

 File my.pub 

 To get public key info 

 Launch openssl 

 rsa -inform PEM -text -noout -pubin -in my.pub 

 You will get the information that this is a 256 bit 

key. You will also get the modulus (just remove the 

colons) and the exponent e. 

 



Lab exercise 

 The structure of the RSA private key is 

 RSAPrivateKey ::= SEQUENCE { 

version           Version, 

modulus           INTEGER,  -- n 

publicExponent    INTEGER,  -- e 

privateExponent   INTEGER,  -- d 

prime1            INTEGER,  -- p 

prime2            INTEGER,  -- q 

exponent1         INTEGER,  -- d mod (p-1) 

exponent2         INTEGER,  -- d mod (q-1) 

coefficient       INTEGER,  -- (inverse of q) mod p 

otherPrimeInfos   OtherPrimeInfos OPTIONAL 

} 



Lab exercise 

 Factorization of the public key modulus to get p 
and q 

 Use the online factorization tool available at 
https://www.alpertron.com.ar/ECM.HTM 

 Modulus is 
0x00b59956b45ff72a0e0f86f9c33f379a97db05
a22e20b7d4f9e3e67dd13f578b59 

 p and q are 
 p=INTEGER:2839164679594846170114515014418

21706737 

 q=INTEGER:2893088667871366232551474478407
35195113 

https://www.alpertron.com.ar/ECM.HTM
https://www.alpertron.com.ar/ECM.HTM


Lab exercise 

 Once we get p and q, we need to calculate: 

 ø(n)= (p-1)*(q-1) 

 d = modinv(e, ø) 

 dp = d mod(p-1) 

 dq = d mod(q-1) 

 qi = modinv(q,p) 

 



Lab exercise 
 for the modinv you can just use a script similar to this python-script: 

 

 def egcd(a,b): 

     if a == 0: 

         return (b,0,1) 

     else: 

         g,y,x=egcd(b % a, a) 

         return (g,x - (b // a) * y, y) 

 

 def modinv(a,m): 

     gcd, x, y = egcd(a,m) 

     if gcd != 1: 

         return None  

     else:  

         return x % m 



Keyfile generation 
 You will use a config-file and the openssl asn1parse generator 

 The config-file needs to have the following structure: 

 

 asn1=SEQUENCE:rsa_key 

 

 [rsa_key] 

 version=INTEGER:0 

 modulus=INTEGER:xxxx 

 pubExp=INTEGER:xxxx 

 privExp=INTEGER:xxxx 

 p=INTEGER:xxxx 

 q=INTEGER:xxxx 

 e1=INTEGER:xxxx 

 e2=INTEGER:xxxx 

 coeff=INTEGER:xxxx 



Keyfile generation 

 To generate a DER encoded key 

 Launch openssl 

 asn1parse -genconf conf.cnf -out newkey.der 

 You can check whether you have generated a 

RSA key with the right values using the 

following command 

 rsa -in newkey.der -inform der -text –check 



Decryption 

 Now that you have your private key you can use 
it to decrypt the message 
 cat message  | openssl rsautl -decrypt -keyform 

DER -inkey newkey.der 

 Alternatively you can also generate a private 
key in PEM form from the DER encoded key 
using the following command in openssl  
 rsa -inform der -outform pem -in newkey.der -out 

new.key 

 To decrypt the message  
 cat message  | openssl rsautl -decrypt -inkey 

new.key 

 {AREyouKIDDINGme} 

 


