Corso di Sicurezza dei Sistemi Prof. Salvatore D'Antonio

AES structure

- Data block of 4 columns of 4 bytes is state
- Key is expanded to array of words
- Has 9/11/13 rounds in which state undergoes:
- byte substitution (1 S-box used on every byte)
, shift rows (permute bytes between columns)
- mix columns (subs using matrix multiply of groups)
b add round key (XOR state with key material)

Public key cryptography

- Two keys
- Private key known only to individual
- Public key available to anyone
- Idea
- Confidentiality: encipher using public key, decipher using private key
- Integrity/authentication: encipher using private key, decipher using the public one

Requirements

- A public key encryption algorithm has to meet the following requirements:
- It must be computationally easy to encipher or decipher a message given the appropriate key
- It must be computationally infeasible to derive the private key from the public key
- It must be computationally infeasible to determine the private key from a chosen plaintext attack

Public-Key Cryptography

Modular Arithmetic

- Public key algorithms are based on modular arithmetic.
- Modular addition.
- Modular multiplication.
- Modular exponentiation.

Modular Addition

- Addition modulo (mod) K
- $\left(d_{k}+d_{m}\right) \bmod K$, e.g., if $K=10$ and d_{k} is the key

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2

Additive inverse: addition mod K yields 0 .

Modular Multiplication

- Multiplication modulo K

\star	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7

- Multiplicative inverse: multiplication mod K yields I
- Only some numbers have inverse

Modular Multiplication

- Only the numbers relatively prime to n will have mod n multiplicative inverse
- x, m are relatively prime: no other common factor than 1
- Eg. 8 and 15 are relatively prime - factors of 8 are $1,2,4,8$ and of 15 are $1,3,5,15$ and 1 is the only common factor

Totient Function

- Totient function $\varnothing(n)$: number of integers less than n relatively prime to n
- if n is prime,
- $\varnothing(n)=n-1$
> if $n=p * q$, and p, q are primes, $\mathrm{p}!=\mathrm{q}$
- $\varnothing(n)=(p-1)(q-1)$
-E.g.,
$\boldsymbol{\varnothing}(37)=36$
$\boldsymbol{\varnothing}(21)=(3-1) \times(7-1)=2 \times 6=12$

Modular Exponentiation

- Modular exponentiation calculates the remainder when an integer b (the base) raised to the e th power (the exponent), b^{e}, is divided by a positive integer m (the modulus)
- $\mathrm{c}=\mathrm{b}^{\mathrm{e}} \bmod \mathrm{m}$
- From the definition of c , it follows that $0 \leq \mathrm{c}$ < m

Modular Exponentiation

x^{y}	0	1	2	3	4	5	6	7	8	9
0		0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	6	2	4	8	6	2
3	1	3	9	7	1	3	9	7	1	3
4	1	4	6	4	6	4	6	4	6	4
5	1	5	5	5	5	5	5	5	5	5
6	1	6	6	6	6	6	6	6	6	6
7	1	7	9	3	1	7	9	3	1	7
8	1	8	4	2	6	8	4	2	6	8
9	1	9	1	9	1	9	1	9	1	9

RSA (Rivest, Shamir, Adleman)

- The most popular one.
- Support both public key encryption and digital signature.
- Assumption/theoretical basis:
- Factoring a big number is hard.
- Variable key length (usually 512 bits).
- Variable plaintext block size.
" Plaintext must be "smaller" than the key.
- Ciphertext block size is the same as the key length.

What Is RSA?

- To generate key pair:
- Pick large primes (>= 256 bits each) p and q
- Let $n=p^{*} q$, keep your p and q to yourself!
- For public key, choose e that is relatively prime to $\varnothing(n)=(p-1)(q-1)$, let pub $=<e, n>$
- For private key, find d that is the multiplicative inverse of $e \bmod \varnothing(n)$, i.e., $e^{*} d=1 \bmod \varnothing(n)$, let priv $=$ $<d, p, q>$

RSA Example

1. Select primes: $p=17$ \& $q=11$
2. Compute $n=p q=17 \times 11=187$
3. Compute $\varnothing(n)=(p-1)(q-1)=16 \times 10=160$
4. Select $e: \operatorname{gcd}^{\star}(e, 160)=1$; choose $e=7$
5. Determine d : $d e=1 \bmod 160$ and $d<160$; Value is $d=23$ since $23 \times 7=161=10 \times 160+1$
6. Publish public key $\mathrm{KU}=\{7,187\}$
7. Keep secret private key $\mathrm{KR}=\{23,17,11\}$
*gcd = greatest common divisor

How Does RSA Work?

- Given pub $=<e, n>$ and priv $=<d, n>$
- encryption: $c=m^{e} \bmod n, m<n$
, decryption: $m=c^{d} \bmod n$
, given message $M=88$ (nb. $88<187$)
- encryption:
$\mathrm{C}=88^{7} \bmod 187=11$
- decryption:
$\mathrm{M}=11^{23} \bmod 187=88$

Why Does RSA Work?

Given pub $=<e, n>$ and priv $=\langle d, n\rangle$

- $n=p^{*} q, \varnothing(n)=(p-1)(q-1)$
- $e^{*} d=1 \bmod \varnothing(n)$
- $x^{e * d}=x \bmod n$
b encryption: $c=m^{e} \bmod n$
- decryption: $m=c^{d} \bmod n=m^{e * d} \bmod n=m \bmod n=m$ (since $m<n$)
- digital signature (similar)

Lab exercise - Input

- Message

- Public key
- File my.pub
- To get public key info
- Launch openssl
- rsa -inform PEM -text -noout -pubin -in my.pub
- You will get the information that this is a 256 bit key. You will also get the modulus (just remove the colons) and the exponent e.

Lab exercise

- The structure of the RSA private key is
- RSAPrivateKey ::= SEQUENCE \{
version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime 1 INTEGER, -- p
prime2 INTEGER, -- q
exponent 1 INTEGER, -- d mod $(p-1)$
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p otherPrimeInfos OtherPrimeInfos OPTIONAL \}

Lab exercise

- Factorization of the public key modulus to get p and q
- Use the online factorization tool available at https://www.alpertron.com.ar/ECM.HTM
- Modulus is

0x00b59956b45ff72a0e0f86f9c33f379a97db05 a22e20b7d4f9e3e67dd13f578b59

- p and q are
p p=INTEGER:2839164679594846170114515014418 21706737
- q=INTEGER:2893088667871366232551474478407 35195113

Lab exercise

- Once we get p and q, we need to calculate:
$\phi(n)=(p-1)^{*}(q-1)$
- $d=\operatorname{modinv}(e, \varnothing)$
- $d p=d \bmod (p-1)$
- $d q=d \bmod (q-1)$
- $q i=\operatorname{modinv}(q, p)$

Lab exercise

- for the modinv you can just use a script similar to this python-script:
- def egcd(a,b):
if $\mathrm{a}==0$:
return (b, 0,1)
else:

$$
\begin{aligned}
& g, y, x=\operatorname{egcd}(b \% a, a) \\
& \text { return }(g, x-(b / / a) * y, y)
\end{aligned}
$$

- def modinv(a,m):
$\operatorname{gcd}, \mathrm{x}, \mathrm{y}=\operatorname{egcd}(\mathrm{a}, \mathrm{m})$
if gcd != 1:
return None
else:
return x \% m

Keyfile generation

- You will use a config-file and the openssl asn1parse generator
- The config-file needs to have the following structure:
- asn1=SEQUENCE:rsa_key
- [rsa_key]
- version=INTEGER:0
- modulus=INTEGER: $x x x x$
- pubExp=INTEGER: $x x x x$
p privExp=INTEGER: $x x x x x$
p $\mathrm{p}=$ INTEGER: $x \times x x$
p $\mathrm{q}=$ INTEGER: $x x x x$
- e1=INTEGER: $x x x x$
- e2=INTEGER: $x x x x x$
- coeff=INTEGER: $x x x x$

Keyfile generation

- To generate a DER encoded key
- Launch openssl
b asn1parse -genconf conf.cnf -out newkey.der
- You can check whether you have generated a RSA key with the right values using the following command
p rsa -in newkey.der -inform der -text -check

Decryption

- Now that you have your private key you can use it to decrypt the message
- cat message | openssl rsautl -decrypt -keyform DER -inkey newkey.der
- Alternatively you can also generate a private key in PEM form from the DER encoded key using the following command in openssl
- rsa -inform der -outform pem -in newkey.der -out new.key
- To decrypt the message
- cat message | openssl rsautl -decrypt -inkey new.key
, \{AREyouKIDDINGme\}

