RICHIAMI DI TRIGONOMETRIA

Università degli studi di Napoli - Parthenope

TABELLA DEI SIMBOLI FONDAMENTALI

IN QUESTA TABELLA ELENCHIAMO ALCUNI SIMBOLI CHE SARANNO LARGAMENTE UTILIZZATI NEL SEGUITO:

SIMBOLO	SI LEGGE
---------	----------

∀ "PER OGNI"

∃ "ESISTE (ESISTONO)"

‡ "NON ESISTE (NON ESISTONO)"

∃! "ESISTE UNO ED UNO SOLO "

← "APPARTIENE"

† "NON APPARTIENE"

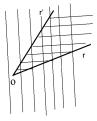
⇒ "IMPLICA"

⇔ "SE E SOLTANTO SE"

L. : "TALE CHE"

MISURA IN RADIANTI DI UN ANGOLO

Consideriamo nel piano un punto O e due semirette r ed r' uscenti da O.



Consideriamo l'angolo di vertice O individuato dalle due semirette. Consideriamo la circonferenza di centro il punto O e raggio 1 (detta anche circonferenza unitaria).

Definizione

SI CHIAMA MISURA IN RADIANTI DELL'ANGOLO, LA LUNGHEZZA DELL'ARCO DI CIRCONFERENZA UNITARIA INTERCETTATO DALLE DUE SEMIRETTE.

MISURA IN RADIANTI DI UN ANGOLO

Dalla definizione, l'angolo giro misura 2π radianti (lunghezza della circonferenza di raggio 1) e dunque

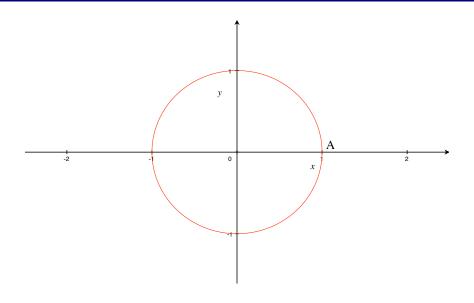
$$rac{ ext{MISURA IN GRADI}}{180^{\circ}} = rac{ ext{MISURA IN RADIANTI}}{\pi}.$$

Dalla relazione precedente si ottiene la seguente tabella.

GRADI	0°	30°	45°	60°	90°	180°	270°	360°
RADIANTI	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

NEL SEGUITO GLI ANGOLI VERRANNO MISURATI ESCLUSIVAMENTE IN RADIANTI.

FISSIAMO UN SISTEMA DI RIFERIMENTO CARTESIANO ORTOGONALE AVENTE ORIGINE IN *O* E CONSIDERIAMO LA CIRCONFERENZA DI CENTRO *O* E RAGGIO 1 DETTA (CIRCONFERENZA GONIOMETRICA). SIA *A* IL PUNTO DI INTERSEZIONE DELLA CIRCONFERENZA GONIOMETRICA CON IL SEMIASSE POSITIVO DELLE *X*.



IMMAGINANDO DI PERCORRERE LA CIRCONFERENZA GONIOMETRICA A PARTIRE DAL PUNTO

F

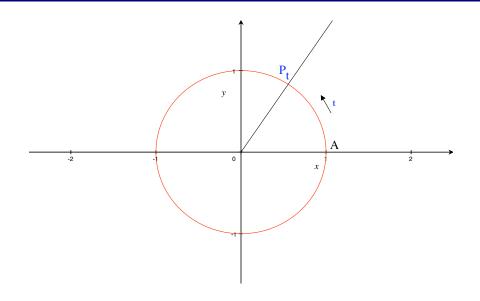
NEL VERSO ANTIORARIO (VERSO POSITIVO), AD OGNI NUMERO REALE $t\geqslant 0$ È POSSIBILE ASSOCIARE IN MANIERA UNIVOCA IL PUNTO

 P_t

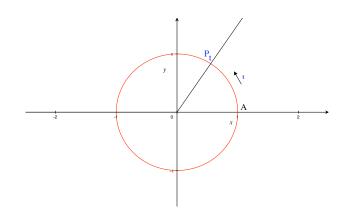
a cui si arriva percorrendo un arco di lunghezza t. Inoltre, ad ogni $t < \mathbf{0}$ si può associare il punto

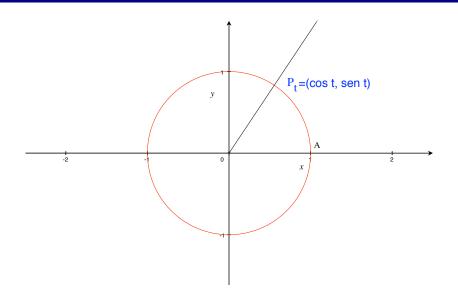
 P_t

OTTENUTO PERCORRENDO UN CAMMINO DI LUNGHEZZA -t, NEL VERSO ORARIO (VERSO NEGATIVO).



Dunque, se $t\in\mathbb{R}$, P_t è il punto sulla circonferenza, che sottende un arco di lunghezza |t|, arco percorso in senso antiorario se t>0, orario se t<0. La misura in radianti dell' angolo $\widehat{AOP_t}$ è uguale a t.





SI DEFINISCONO SENO E COSENO DEL NUMERO REALE t, COME ORDINATA E ASCISSA DEL PUNTO P_t DELLA CIRCONFERENZA GONIOMETRICA CHE SOTTENDE UN ANGOLO ORIENTATO DI MISURA t. DUNQUE:

 $\sin t = \text{ORDINATA DEL PUNTO } P_t,$

 $\cos t = \text{ASCISSA DEL PUNTO } P_t.$

Dalla definizione seguono immediatamente le seguenti proprietà:

- $\sin t \in [-1, 1], \cos t \in [-1, 1],$
- $-\sin^2 t + \cos^2 t = 1$,
- $\sin t = \sin(t + 2k\pi)$, $\cos t = \cos(t + 2k\pi)$, $\forall k \in \mathbb{Z}$.

L'ULTIMA UGUAGLIANZA SEGUE DALLA SEGUENTE OSSERVAZIONE. SE PERCORRO SULLA CIRCONFERENZA UN ARCO DI LUNGHEZZA t O $t+2\pi$ RESTA INDIVIDUATO LO STESSO PUNTO SULLA CIRCONFERENZA GONIOMETRICA, CIOÈ

$$P_t = P_{t+2\pi}$$
.

PIÚ IN GENERALE, PER OGNI $k \in \mathbb{Z}$ VALE

$$P_t = P_{t+2k\pi}$$
.

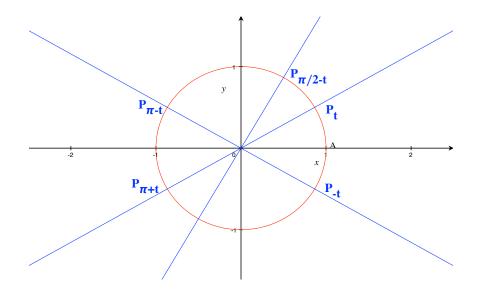
Dalla definizione seguono inoltre le seguenti identità:

$$(1) \sin(-t) = -\sin t, \cos(-t) = \cos t,$$

(2)
$$\sin(\pi - t) = \sin t$$
, $\cos(\pi - t) = -\cos t$,

(3)
$$\sin(\pi + t) = -\sin t$$
, $\cos(\pi + t) = -\cos t$,

(4)
$$\sin\left(\frac{\pi}{2}-t\right)=\cos t$$
, $\cos\left(\frac{\pi}{2}-t\right)=\sin t$.



VALORI DI SENO E COSENO IN ALCUNI ANGOLI NOTEVOLI

NELL'INTERVALLO $\left[0,\frac{\pi}{2}\right]$ ALCUNI VALORI DI $\sin t$ e $\cos t$ possono essere ricavati con semplici considerazioni geometriche.

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin t	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos t	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

Dalle proprietà (1), (2), (3) si possono ottenere valori di

 $\sin t$, $\cos t$

PER ALCUNI VALORI DI $t\in\left]rac{\pi}{2},2\pi
ight[.$

DEFINIZIONE DI TANGENTE

Si definisce la tangente di $t\in\mathbb{R}$ la quantità ottenuta tramite l'espressione

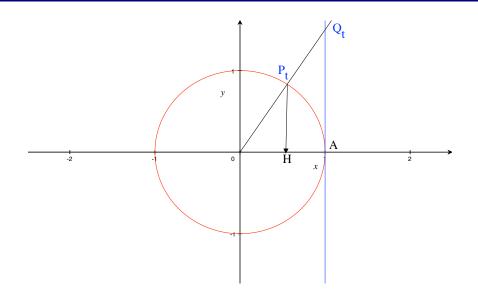
$$\tan t = \frac{\sin t}{\cos t}.$$

tan t È DEFINITA PER $t \in \mathbb{R} \setminus \bigcup_{k \in \mathbb{Z}} \{ \frac{\pi}{2} + k\pi \}$, POICHÉ

$$\cos t = 0$$

PER
$$t=rac{\pi}{2}+k\pi, k\in\mathbb{Z}$$
.

DEFINIZIONE DI TANGENTE



DEFINIZIONE DI TANGENTE

Sia P_t è il punto sulla circonferenza goniometrica che corrisponde al numero reale t.

tan t

RAPPRESENTA L'ORDINATA DEL PUNTO Q_t INTERSEZIONE TRA LA RETTA PARALLELA ALL'ASSE DELLE ORDINATE E PASSANTE PER A E LA RETTA PASSANTE PER O E P_t .

Dalla similitudine dei triangoli OP_tH e OQ_tA , se $t \in \left[0, \frac{\pi}{2}\right[$ si ha

$$\tan t = \frac{\sin t}{\cos t} = \frac{|\overline{P_t H}|}{|\overline{OH}|} = \frac{|\overline{Q_t A}|}{|\overline{OA}|} = \frac{|\overline{Q_t A}|}{1} = |\overline{Q_t A}|.$$

PROPRIETÀ DELLA TANGENTE

Dalla definizione, per $t \in \mathbb{R} \setminus \bigcup_{k \in \mathbb{Z}} \{ \frac{\pi}{2} + k\pi \}$, seguono inoltre le seguenti proprietà.

-
$$an(-t) = - an t$$
 E $an t = an(t+k\pi), \ k \in \mathbb{Z}$.

BASTA INFATTI OSSERVARE CHE $Q_t = Q_{t+k\pi}$.

Dai valori del seno e del coseno in corrispondenza di alcuni angoli nell'intervallo $\left[0,\frac{\pi}{2}\right[$ si ottengono i seguenti valori noti.

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
tan t	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

FORMULE DI ADDIZIONE

LE SEGUENTI ESPRIMONO IL SENO, IL COSENO E LA TANGENTE DI UN ANGOLO SOMMA MEDIANTE IL SENO, IL COSENO E LA TANGENTE DEGLI ANGOLI ADDENDI.

FORMULE DI ADDIZIONE

- 1) $\sin(x_1 + x_2) = \sin x_1 \cos x_2 + \sin x_2 \cos x_1$.
- II) $\sin(x_1 x_2) = \sin x_1 \cos x_2 \sin x_2 \cos x_1$.
- III) $\cos(x_1 + x_2) = \cos x_1 \cos x_2 \sin x_2 \sin x_1$.
- IV) $\cos(x_1 x_2) = \cos x_1 \cos x_2 + \sin x_2 \sin x_1$.
- V) $tan(x_1 + x_2) = \frac{tan x_1 + tan x_2}{1 tan x_1 tan x_2}$.
- VI) $tan(x_1 x_2) = \frac{tan x_1 tan x_2}{1 + tan x_1 tan x_2}$.

FORMULE DUPLICAZIONE

PER $x_1 = x_2 = x$ da i), iii) e v) si ottengono le seguenti formule.

FORMULE DI DUPLICAZIONE

- $-\sin(2x) = 2\sin x \cos x.$
- $cos(2x) = cos^2 x sin^2 x = 1 2 sin^2 x = 2 cos^2 x 1$.
- $\tan(2x) = \frac{2 \tan x}{1 \tan^2 x}.$

FORMULE BISEZIONE

Dalle formule duplicazione si ottengono le seguenti identità.

FORMULE DI BISEZIONE

$$- \sin^2(\frac{y}{2}) = \frac{1-\cos y}{2}.$$

$$-\cos^2(\frac{y}{2}) = \frac{1+\cos y}{2}.$$

$$\tan^2(\frac{y}{2}) = \frac{1-\cos y}{1+\cos y}.$$

ESERCIZI

- SPECIFICARE GLI ANGOLI ASSOCIATI AI PUNTI SULLA CIRCONFERENZA:

$$P_1 = \left(rac{1}{2}, -rac{\sqrt{3}}{2}
ight), \quad ext{(SOL. } -\pi/3);$$
 $P_2 = \left(-rac{\sqrt{3}}{2}, -rac{1}{2}
ight), \quad ext{(SOL. } 7\pi/6);$ $P_3 = \left(rac{\sqrt{2}}{2}, -rac{\sqrt{2}}{2}
ight), \quad ext{(SOL. } -\pi/4).$

- TRASFORMARE IN RADIANTI I SEGUENTI ANGOLI

20, 15, 45, 135, 120, 5, 35
$$(\text{SOL. } \pi/9, \quad \pi/12, \quad \pi/4, \quad 3\pi/4, \quad 2\pi/3, \quad \pi/36, \quad 7\pi/36).$$

ESERCIZI

- Specificare per quali $x\in \left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ le seguenti equazioni sono verificate

$$\tan(x) = -1$$
, $\tan(x) = \sqrt{3}$, $|\sin(x)| = \frac{1}{2}$, $4|\sin(x)\cos(x)| = \sqrt{3}$; (SOL. $x = -\pi/4$, $x = \pi/3$, $x = \pm \pi/6$, $x = \pm \pi/6$ E $\pm \pi/3$).

- Se $\sin(x)=a\in]-1,1[$, allora specificare le seguenti quantità

$$\sin(-x), \qquad \Big|\sin\Big(x+\frac{\pi}{2}\Big)\Big|, \qquad |\sin(x+\pi)|, \qquad |\tan(x)|;$$

$$(\text{SOL. } -a, \qquad \sqrt{1-a^2}, \qquad |a|, \qquad \frac{|a|}{\sqrt{1-a^2}}).$$