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Overview
• Python tools for machine learning

• First application

• Unsupervised learning
• K-Means

• Agglomerative Clustering and DBSCAN

• Principal Component Analysis
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Agglomerative Clustering 
• The algorithm starts by declaring each point its own cluster

• The two most similar clusters are merged until only the specified
number of clusters are left

• There are several linkage criteria
• ward picks the two clusters to merge such that the variance within all

clusters increases the least
• average linkage merges the two clusters that have the smallest
average distance between all their points
• complete linkage merges the two clusters that have the smallest
maximum distance between their points
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Agglomerative Clustering 



www.meim.uniparthenope.it

Agglomerative Clustering 
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Agglomerative Clustering 
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Agglomerative Clustering: dendogram
• Another tool to visualize hierarchical clustering is called a

dendrogram (scikit-learn currently does not draw dendrograms)

• SciPy provides a function that takes a data array X and
computes a linkage array, which encodes hierarchical cluster
similarities

• We can then feed this linkage array into the scipy dendrogram
function to plot the dendrogram
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Agglomerative Clustering: dendogram
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Agglomerative Clustering: dendogram
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DBSCAN
• DBSCAN stands for “density-based spatial clustering of applications
with noise”

• DBSCAN does not require the user to set the number of clusters a
priori

• DBSCAN works by identifying points that are in “crowded” regions
of the feature space, where many data points are close together

• If there are at least min_samples many data points within a distance
of eps to a given data point, that data point is classified as a core
sample
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DBSCAN
• Clusterings obtained

with different
parameters
• Points in clusters are
solid, while noise
points are in white
• Core samples are
large markers, while
boundary points are
smaller markers
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DBSCAN
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DBSCAN



www.meim.uniparthenope.it

Evaluating clustering with ground truth:
adjusted rand index
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Evaluating clustering without ground truth:
Silhouette
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Overview
• Python tools for machine learning

• First application

• Unsupervised learning
• K-Means

• Agglomerative Clsutering and DBSCAN

• Principal Component Analysis
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Preprocessing
• A common practice is to adjust the features so that the data

representation is more suitable

• Often this is a simple per-feature rescaling and shift of the data

• A synthetic two-class classification dataset with two features

• The first feature (the x-axis value) is between 10 and 15 while the
second feature (the y-axis value) is between around 1 and 9
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Preprocessing
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Dimensionality reduction
• Transforming data using unsupervised learning can have many

motivations

• The most common motivations are visualization, compressing
the data, and finding a representation that is more informative
for further processing

• One of the simplest and most widely used algorithms is Principal
Component Analysis
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Principal Component Analysis
• Principal component analysis is a method that rotates the

dataset in a way such that the rotated features are statistically
uncorrelated

• This rotation is often followed by selecting only a subset of the
new features, according to how important they are for
explaining the data
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Principal Component Analysis
• The first plot (top left) shows the

original data points
• The algorithm proceeds by first finding

the direction of maximum variance,
that contains most of the information
• The second plot (top right) shows the

same data, but now rotated so that
the first principal component aligns
with the x-axis and the second
principal component aligns with the y-
axis
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Principal Component Analysis
• One of the most common applications of PCA is visualizing high-

dimensional data

• It is difficult to create scatter plots of data that has more than
two features

• There is an even simpler visualization, that is computing
histogram of each feature for each class
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Principal Component Analysis
• Execute cell: Different Kinds of Preprocessing

• Execute cell: Applying PCA to the cancer dataset for
visualization



www.meim.uniparthenope.it

Principal Component Analysis
• Histogram for each of the features,

counting how often a data point
appears with a feature in a certain
range

• Each plot overlays two histograms,
one for all of the points in the
benign class and one for all the
points in the malignant class
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Principal Component Analysis
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Principal Component Analysis
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Principal Component Analysis
• It is important to note that PCA is an unsupervised method, and

does not use any class information when finding the rotation

• It simply looks at the correlations in the data

• A drawback of PCA is that the two axes in the plot are often not
very easy to interpret

• The principal components correspond to directions in the
original data, so they are combinations of the original features
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Try different datasets...

https://scikit-learn.org/stable/modules/classes.html?highlight=dataset#module-sklearn.datasets

https://scikit-learn.org/stable/modules/classes.html?highlight=dataset

