
www.meim.uniparthenope.it

Machine Learning:
Unsupervised techniques

MASTER MEIM 2021-2022

prof. Antonino Staiano

M.Sc. Applied Computer Science of University Parthenope of Naples

LESSON 3

www.meim.uniparthenope.it

Lessons plan
• Clustering algorithms (Lesson 1) - July 21, 09:00 – 13:00

• Prof. Antonino Staiano

• Hands-on Clustering (Lesson 2) - July, 21, 14:00 – 18:00
• Prof. Alessio Ferone

• Dimensionality reduction (Lesson 3) - July 22, 09:00 – 13:00
• Prof. Antonino Staiano

• Hands-on Dimensionality reduction (Lesson 4) - July 22, 14:00 – 18:00
• Prof. Alessio Ferone

www.meim.uniparthenope.it

Unsupervised learning
Dimensionality Reduction

www.meim.uniparthenope.it

Data dimensionality
• The number of features in a dataset determines its data

dimensionality

2D Data 3D Data

Dimensionality of data

www.meim.uniparthenope.it

Unsupervised learning: Dimensionality reduction
• The data used in machine learning processes often have many variables

(features)
• If your dataset has two features, then it is two-dimensional data. If it has three

features, then it has three features and so on

• One aims at using as many features as possible to capture the
characteristics of her data, but she also doesn't want the dimension to
be too high

• Most of these dimensions may or may not matter in the context of our
application with the questions we are asking

• Reducing such high dimensions to a more manageable set of related
and useful variables improves the performance and accuracy of our
analysis

www.meim.uniparthenope.it

Curse of Dimensionality
• Data in only one dimension is

relatively packed

• Adding a dimension “stretch” the
points across that dimension, making
them further apart

• Adding more dimensions will make
the points further apart – high
dimensional data is extremely sparse

• Distance measure becomes
meaningless – due to equidistance

Data gets increasingly sparse

Analysis results degrade

www.meim.uniparthenope.it

Dimensionality reduction

• Data visualization is a further
significant motivation behind
dimensionality reduction

3D -> 2D

www.meim.uniparthenope.it

Goals of data dimensionality reduction
• Preserve as much significant structure or information of the

data present in the high-dimensional data as possible in the
low-dimensional representation

• Increase the interpretability of the data in the lower
dimension

• Minimizing information loss of data due to dimensionality
reduction

www.meim.uniparthenope.it

Dimensionality reduction
Principal Component Analysis

www.meim.uniparthenope.it

Principal Component Analysis
• An unsupervised, deterministic algorithm used for feature

extraction as well as visualization

• Applies a linear dimensionality reduction technique where
the focus is on keeping the dissimilar points far apart in a lower-
dimensional space

• Transforms the original data to a new data by preserving the
variance in the data using eigenvalues

• Outliers impact PCA

www.meim.uniparthenope.it

Principal component analysis (PCA)
• PCA is a mathematical technique for reducing the dimensionality of data

• Goal
• To reduce high-dimensional to low-dimensional data in some way

www.meim.uniparthenope.it

Principal component analysis (PCA)
• Let’s draw a horizontal line on the X axis

• Projection line

• Project each data point to its closest spot on the projection line

• That’s the wrong way to proceed!

www.meim.uniparthenope.it

Principal component analysis (PCA)
¡ Here is how PCA proceeds

www.meim.uniparthenope.it

Principal Component Analysis
• Finds a new coordinate system such that

few new axes captures the greatest variance

• Define lower-dimensional space for data
• Note

• Original dimensions have a natural
interpretation
• E.g., Income, age, occupation, etc

• New dimensions more difficult to
interpret!

• In general, there are as many principal
components as original features

www.meim.uniparthenope.it

PCA algorithm main steps
• Starts by first finding the direction of maximum variance

(Component 1)
• This is the direction (or vector) in the data that contains most of

the information, or in other words, the direction along which
the features are most correlated with each other

• Next, it finds the direction that contains the most information
while being orthogonal to the first direction (Component 2)
• In two dimensions, there is only one possible orientation, but

in higher-dimensional spaces there would be (infinitely) many
orthogonal directions

• The directions found using this process are called principal
components, as they are the main directions of variance in
the data

the top left instead of down to the bottom right. The directions found using this pro‐
cess are called principal components, as they are the main directions of variance in the
data. In general, there are as many principal components as original features.

Figure 3-3. Transformation of data with PCA

The second plot (top right) shows the same data, but now rotated so that the first
principal component aligns with the x-axis and the second principal component
aligns with the y-axis. Before the rotation, the mean was subtracted from the data, so
that the transformed data is centered around zero. In the rotated representation
found by PCA, the two axes are uncorrelated, meaning that the correlation matrix of
the data in this representation is zero except for the diagonal.

We can use PCA for dimensionality reduction by retaining only some of the principal
components. In this example, we might keep only the first principal component, as

Dimensionality Reduction, Feature Extraction, and Manifold Learning | 141

the top left instead of down to the bottom right. The directions found using this pro‐
cess are called principal components, as they are the main directions of variance in the
data. In general, there are as many principal components as original features.

Figure 3-3. Transformation of data with PCA

The second plot (top right) shows the same data, but now rotated so that the first
principal component aligns with the x-axis and the second principal component
aligns with the y-axis. Before the rotation, the mean was subtracted from the data, so
that the transformed data is centered around zero. In the rotated representation
found by PCA, the two axes are uncorrelated, meaning that the correlation matrix of
the data in this representation is zero except for the diagonal.

We can use PCA for dimensionality reduction by retaining only some of the principal
components. In this example, we might keep only the first principal component, as

Dimensionality Reduction, Feature Extraction, and Manifold Learning | 141

www.meim.uniparthenope.it

Dimensionality reduction
Manifold Learning

www.meim.uniparthenope.it

Why Manifold learning ?

www.meim.uniparthenope.it

Manifold learning
• PCA is often a good first approach for transforming your data so that you

might be able to visualize it using a scatter plot

• There is a class of algorithms for visualization called manifold learning
algorithms that allow for much more complex mappings, and often provide
better visualizations

• A particularly useful one is the t-SNE algorithm

www.meim.uniparthenope.it

t-Distributed Stochastic Neighbor Embedding(t-SNE)

• An unsupervised, randomized algorithm, used only for visualization

• Applies a non-linear dimensionality reduction technique where the focus is on
keeping the very similar data points close together in lower-dimensional
space

• Preserves the local structure of the data using student t-distribution to
compute the similarity between two points in lower-dimensional space

• Outliers do not impact t-SNE

www.meim.uniparthenope.it

t-SNE algorithm
• Manifold learning algorithms are mainly aimed at visualization

• rarely used for data transformation

• Manifold learning can be useful for exploratory data analysis but is rarely used if the final goal
is supervised learning

• The idea behind t-SNE is to find a two-dimensional representation of the data that preserves
the distances between points as best as possible
• it starts with a random two-dimensional representation for each data point
• then tries to make points that are close in the original feature space closer, and points that are far apart in the

original feature space farther apart

• t-SNE puts more emphasis on points that are close by, rather than preserving distances
between far-apart points
• it tries to preserve the information indicating which points are neighbors to each other

www.meim.uniparthenope.it

t-SNE main steps
• The t-SNE algorithm can be roughly summarized as two steps:

1. Create a probability distribution capturing the relationships
between points in the high dimensional space

2. Find a low dimensional space that resembles the probability
distribution as well as possible

www.meim.uniparthenope.it

Visualization example
• Let’s apply the t-SNE manifold learning

algorithm on a dataset of handwritten digits

• Each data point is an 8×8 gray-scale image of a
handwritten digit between 0 and 1

• Let’s use PCA to visualize the data reduced to
two dimensions
• We plot the first two principal components, and color

each dot by its class

• Let’s also use t-SNE

Figure 3-20. Example images from the digits dataset

Let’s use PCA to visualize the data reduced to two dimensions. We plot the first two
principal components, and color each dot by its class (see Figure 3-21):

In[44]:

build a PCA model
pca = PCA(n_components=2)
pca.fit(digits.data)
transform the digits data onto the first two principal components
digits_pca = pca.transform(digits.data)
colors = ["#476A2A", "#7851B8", "#BD3430", "#4A2D4E", "#875525",
 "#A83683", "#4E655E", "#853541", "#3A3120", "#535D8E"]
plt.figure(figsize=(10, 10))
plt.xlim(digits_pca[:, 0].min(), digits_pca[:, 0].max())
plt.ylim(digits_pca[:, 1].min(), digits_pca[:, 1].max())
for i in range(len(digits.data)):
 # actually plot the digits as text instead of using scatter
 plt.text(digits_pca[i, 0], digits_pca[i, 1], str(digits.target[i]),
 color = colors[digits.target[i]],
 fontdict={'weight': 'bold', 'size': 9})
plt.xlabel("First principal component")
plt.ylabel("Second principal component")

Here, we actually used the true digit classes as glyphs, to show which class is where.
The digits zero, six, and four are relatively well separated using the first two principal
components, though they still overlap. Most of the other digits overlap significantly.

Dimensionality Reduction, Feature Extraction, and Manifold Learning | 165

Example images from handwritten digit dataset

www.meim.uniparthenope.it

PCS vs t-SNE

Figure 3-21. Scatter plot of the digits dataset using the !rst two principal components

Let’s apply t-SNE to the same dataset, and compare the results. As t-SNE does not
support transforming new data, the TSNE class has no transform method. Instead, we
can call the fit_transform method, which will build the model and immediately
return the transformed data (see Figure 3-22):

In[45]:

from sklearn.manifold import TSNE
tsne = TSNE(random_state=42)
use fit_transform instead of fit, as TSNE has no transform method
digits_tsne = tsne.fit_transform(digits.data)

166 | Chapter 3: Unsupervised Learning and Preprocessing

In[46]:

plt.figure(figsize=(10, 10))
plt.xlim(digits_tsne[:, 0].min(), digits_tsne[:, 0].max() + 1)
plt.ylim(digits_tsne[:, 1].min(), digits_tsne[:, 1].max() + 1)
for i in range(len(digits.data)):
 # actually plot the digits as text instead of using scatter
 plt.text(digits_tsne[i, 0], digits_tsne[i, 1], str(digits.target[i]),
 color = colors[digits.target[i]],
 fontdict={'weight': 'bold', 'size': 9})
plt.xlabel("t-SNE feature 0")
plt.xlabel("t-SNE feature 1")

Figure 3-22. Scatter plot of the digits dataset using two components found by t-SNE

Dimensionality Reduction, Feature Extraction, and Manifold Learning | 167

