
www.meim.uniparthenope.it

Python Programming Course
Lesson 6

MASTER MEIM 2021-2022

Object Oriented Programming

Lesson given by prof. Mariacarla Staffa

Prof. Of Computer Science at the University of Naples Parthenope

www.meim.uniparthenope.it

Object-Oriented Programming
AIM
• using classes to organize programs around modules and data

abstractions

LEARNING OUTCOMES
At the end of the lesson, you are expected:
• To understand the concepts of classes, objects and encapsulation
• To implement instance variables, methods and constructors
• To be able to design, implement, and test your own classes
• To understand the behavior of object references

www.meim.uniparthenope.it

Object-Oriented Programming
• You have learned structured programming

• Breaking tasks into subtasks
• Writing re-usable methods to handle tasks

• We will now study Objects and Classes
• To build larger and more complex programs
• To model objects we use in the world

A class describes objects with the same behavior.
For example, a Car class describes all passenger vehicles that

have a certain capacity and shape.

www.meim.uniparthenope.it

Objects and Programs
• You have learned how to structure your programs by decomposing

tasks into functions
• Experience shows that it does not go far enough
• It is difficult to understand and update a program that consists of a large

collection of functions

• To overcome this problem, computer scientists invented object-
oriented programming, a programming style in which tasks are
solved by collaborating objects
• Each object has its own set of data, together with a set of methods

that act upon the data

www.meim.uniparthenope.it

Objects and Programs
• You have already experienced this programming style when you

used strings, lists, and file objects. Each of these objects has a set
of methods
• For example, you can use the insert() or remove() methods to

operate on list objects

www.meim.uniparthenope.it

INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING
IN PYTHON
Object Oriented Programming is a way of computer programming using the
idea of “objects” to represents data and methods.

It is also, an approach used for creating neat and reusable code instead of a
redundant one.

The program is divided into self-contained objects or several mini-programs.
Every Individual object represents a different part of the application having its
own logic and data to communicate within themselves.

https://www.edureka.co/blog/python-class/

www.meim.uniparthenope.it

Difference between Object-Oriented and
Procedural Oriented Programming

www.meim.uniparthenope.it

Object-Oriented Programming methodologies:

Inheritance

Polymorphism

Encapsulation

Abstraction

www.meim.uniparthenope.it

Inheritance
• From the Programming aspect ‘inheritance’ means “inheriting or
transfer of characteristics from parent to child class without any
modification”.
• The new class is called the derived/child class and the one from
which it is derived is called a parent/base class.

https://www.edureka.co/blog/python-class/

www.meim.uniparthenope.it

Polimorphism
• You all must have used GPS for navigating the route, Isn’t it
amazing how many different routes you come across for the same
destination depending on the traffic, from a programming point of
view this is called ‘polymorphism’. It is one such OOP
methodology where one task can be performed in several
different ways. To put it in simple words, it is a property of an
object which allows it to take multiple forms.

www.meim.uniparthenope.it

Two types of Polimorphism

Run-time Polymorphism: A run-time Polymorphism is also, called as
dynamic polymorphism where it gets resolved into the run time. One
common example of Run-time polymorphism is “method overriding’’

Compile-time Polymorphism: A compile-time polymorphism also called
as static polymorphism which gets resolved during the compilation time
of the program. One common example is “method overloading”

www.meim.uniparthenope.it

Encapsulation
• In a raw form, encapsulation basically means binding up of data in

a single class.
• Python does not have any private keyword, unlike Java.
• A class shouldn’t be directly accessed but be prefixed in an

underscore.

https://www.edureka.co/blog/access-modifiers-in-java/

www.meim.uniparthenope.it

Abstraction
• Suppose you booked a movie ticket from sky using net banking or
any other process. You don’t know the procedure of how the pin is
generated or how the verification is done. This is called
‘abstraction’ from the programming aspect, it basically means you
only show the implementation details of a particular process and
hide the details from the user. It is used to simplify complex
problems by modeling classes appropriate to the problem.
• An abstract class cannot be instantiated which simply means you
cannot create objects for this type of class.
• It can only be used for inheriting the functionalities.

https://www.edureka.co/blog/python-class/

www.meim.uniparthenope.it

§ Python supports manydifferentkindsofdata
1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

§ each is an object, andevery object has:
• atype
• an internal data representation (primitive orcomposite)
• asetofprocedures for interaction withtheobject

§ an object is an instance of atype
• 1234is an instance of an int
• "hello" is an instanceofastring

OBJECTS

www.meim.uniparthenope.it

OBJECT ORIENTED PROGRAMMING (OOP)
EVERYTHING IN PYTHON IS AN OBJECT (and has a type)
• can create new objects of some type
• can manipulate objects
• can destroy objects

• explicitly using del or just “forget” about them
• python system will reclaim destroyed or inaccessible objects – called

“garbage collection”

www.meim.uniparthenope.it

WHAT ARE OBJECTS?
Objects are a data abstraction that captures…

1. an internal representation
• through data attributes

2. an interface for interacting with object
• through methods (aka procedures/functions)
• defines behaviors but hides implementation

www.meim.uniparthenope.it

EXAMPLE: [1,2,3,4] has type list
• howare lists represented internally? linked list of cells

• how to manipulate lists?
L[i], L[i:j], +
len(), min(), max(), del(L[i])
L.append(),L.extend(),L.count(),L.index(),
L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()

• internal representation should be private
• correct behavior may be compromised if you manipulate internal

representation directly

L = 1 -> 2 -> 3 -> 4 ->

www.meim.uniparthenope.it

ADVANTAGES OF OOP
• bundle data into packages together with procedures that work on

them through well-defined interfaces
• divide-and-conquer development

• implement and test behavior of each class separately
• increased modularity reduces complexity

• classes make it easy to reuse code
• many Python modules define new classes
• each class has a separate environment (no collision on function names)
• inheritance allows subclasses to redefine or extend a selected subset of a superclass’

behavior

www.meim.uniparthenope.it

Make a distinction between creating a class and using an instance of the class
§ creating the class involves
• defining the class name
• defining class attributes
• for example, someone wrote code to implement a list class

§ using the class involves
• creating new instances of objects
• doing operations on the instances

for example: L=[1,2] and len(L)

Implementing the class Using theclass

CREATING AND USING YOUR OWN TYPES
WITH CLASSES

www.meim.uniparthenope.it

use the classkeyword to define a new type

class Coordinate(object):

#define attributes here

§similar to def, indent code to indicate which statements are part of the class
definition
§the word object means that Coordinate is a Python object and
inheritsall its attributes (inheritance next lecture)
• Coordinate is a subclass of object
• object is a superclass of Coordinate

Implementing the class Using theclass

DEFINE YOUR OWN TYPES

www.meim.uniparthenope.it

§ data and procedures that “belong” to the class
§ data attributes
• think of data as other objects that make up the class
• for example, a coordinate is made up of two numbers

§ methods (procedural attributes)
• think of methods as functions that only work with this class
• how to interact with the object
• for example you can define a distance between two coordinate objects but

there is no meaning to a distance between two list objects

WHAT ARE ATTRIBUTES?

www.meim.uniparthenope.it

first have to define how to create an instance of object

init touse a special methodcalled
initialize some data attributes

class Coordinate(object):
def init (self, x, y):

self.x = x

self.y = y

Implementing the class Using theclass

DEFINING HOW TO CREATE AN INSTANCE OF A CLASS

www.meim.uniparthenope.it

c = Coordinate(3,4)
origin = Coordinate(0,0)
print(c.x)
print(origin.x)

§data attributes of an instance are called instance variables
§don’t provide argument for self, Python does this automatically

Implementing the class Using theclass

ACTUALLY CREATING AN INSTANCE OF A CLASS

www.meim.uniparthenope.it

§ Procedural attribute, like a function that works only with this class
§ Python always passes the object as the first argument
• convention is to use self as the name of the first argument of all methods

§ the “.” operator is used to access any attribute
• a data attribute of an object
• a method of an object

WHAT IS A METHOD?

www.meim.uniparthenope.it

class Coordinate(object):
def init (self, x, y):

self.x = x

self.y = y
def distance(self, other):

x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

§otherthanself anddotnotation,methods behavejust like
functions (take params, do operations,return)

Implementing the class Using theclass

DEFINE A METHOD FOR THE Coordinate CLASS

www.meim.uniparthenope.it

HOW TO USE A METHOD

Implementing theclass Using theclass

def distance(self, other):
code here

Using theclass:
§ conventionalway
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(c.distance(zero))

§ equivalentto
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(Coordinate.distance(c, zero))

www.meim.uniparthenope.it

>>> c = Coordinate(3,4)
>>> print(c)
<__main__.Coordinateobject at 0x7fa918510488

• uninformative print representation by defaul
• define a __str__method for a class
• Python calls the __str__ method when used with print on your class object
• you choose what it does! Say that when we print a Coordinate object, want

to show

>>> print(c)
<3,4>

PRINT REPRESENTATION OF AN OBJECT

www.meim.uniparthenope.it

class Coordinate(object):
def init (self, x, y):

self.x = x
self.y = y

def distance(self, other):
x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

def str (s elf):
return "<"+str(self.x)+","+str(self.y)+">"

Implementing the class Using theclass

DEFINING YOUR OWN PRINT METHOD

www.meim.uniparthenope.it

§ can ask for the type of an object instance

>>> c = Coordinate(3,4)
>>> print(c)
<3,4>
>>> print(type(c))
<class main .Coordinate>

§ this makes sensesince

>>> print(Coordinate)
<class main .Coordinate>
>>> print(type(Coordinate))
<type 'type'>

§ use isinstance() to check if an object is a Coordinate
>>> print(isinstance(c, Coordinate))
True

Implementing the class Using theclass

WRAPPING YOUR HEAD AROUND TYPES AND CLASSES

www.meim.uniparthenope.it

SPECIAL OPERATORS
• +,-,==, <,>,len(), print, and manyothers

https://docs.python.org/3/reference/datamodel.html#basic-customization

• likeprint, canoverridethesetoworkwithyourclass

• define them with double underscoresbefore/after

add _(self, other) à self + other
sub _(self, other) à self - other
eq _(self, other) à self == other
lt _(self, other) à self < other
len (self) à len(self)
str (self)

... and others

à print self

https://docs.python.org/3/reference/datamodel.html

www.meim.uniparthenope.it

§ createanew type to representanumber as afraction
§ internal representation is two integers
• numerator
• denominator

§ interface a.k.a. methodsa.k.a how to interact with Fraction objects
• add,subtract
• print representation, convert to afloat
• invert thefraction

§ the codefor this is will be presented during Lab lessons

EXAMPLE: FRACTIONS

www.meim.uniparthenope.it

§ bundle together objects that share
• common attributesand
• procedures that operate on thoseattributes

§use abstraction to makeadistinction between how to implementan object
vs how to use the object
§build layersof object abstractions thatinherit behaviors from other
classes ofobjects
§create our own classes of objects on top ofPython’s basic classes

THE POWER OF OOP

www.meim.uniparthenope.it

2nd Part Inheritance

www.meim.uniparthenope.it

IMPLEMENTING THECLASS vs USING THECLASS

implementinga new object
type with aclass
• define the class
• define dataattributes

(WHAT IS the object)
• define methods

(HOW TO use the object)

using the new object typein
code
• create instances of

the object type
• do operations with them

§write code from two different perspectives

3
6

www.meim.uniparthenope.it

CLASS DEFINITION INSTANCE
OF AN OBJECT TYPE vs OF A CLASS
§ class name is the type
class Coordinate(object)

§ class is defined generically
• use self to refer to some instance

while definingthe class
(self.x – self.y)**2
• self is a parameter to methods in

classdefinition
§class defines data and methods common
acrossall instances

§ instance is one specificobject
coord = Coordinate(1,2)

§data attribute valuesvary between
instances
c1 = Coordinate(1,2)
c2 = Coordinate(3,4)
• c1 and c2have different data attribute

values c1.xand c2.x because they are
different objects

§instance has the structureof theclass

3
7

www.meim.uniparthenope.it

•mimic real life
•group different objects part of thesame type

WHY USE OOP AND CLASSES OF OBJECTS?

www.meim.uniparthenope.it

•mimic real life
•group different objects part of thesame type

WHY USE OOP AND CLASSES OF OBJECTS?

www.meim.uniparthenope.it

§ dataattributes
• how can you represent your object withdata?
• what itis
• for a coordinate: x and yvalues
• for an animal: age,name

§ procedural attributes (behavior/operations/methods)
• how can someone interact with theobject?
• what itdoes
• for a coordinate: find distance between two points
• for an animal: make asound

GROUPS OF OBJECTS HAVE ATTRIBUTES (RECAP)

www.meim.uniparthenope.it

class Animal(object):

def init (self, age):

self.age = age

self.name = None

myanimal = Animal(3)

HOW TO DEFINE A CLASS (RECAP)

www.meim.uniparthenope.it

class Animal(object):
def init (self, age):

self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def str (self):
return "animal:"+str(self.name)+":"+str(self.age)

GETTER AND SETTER METHODS

§gettersand settersshould be used outside ofclassto accessdata attributes

www.meim.uniparthenope.it

§ instantiation creates an instance of anobject
a = Animal(3)

§dot notation used to access attributes (data and methods) though itis better to use
getters and setters to access data attributes

a.age
a.get_age()

AN INSTANCE and DOT NOTATION (RECAP)

www.meim.uniparthenope.it

§ author of class definition may change dataattribute variable names
class Animal(object):

def init (self, age):

self.years = age
def get_age(self):

return self.years

§if you are accessing data attributes outside theclass and class definition changes, may get
errors
§ outside of class, use getters and settersinstead use a.get_age()NOT a.age

• good style
• easy to maintaincode
• prevents bugs

INFORMATION HIDING

www.meim.uniparthenope.it

§ allows you to access data from outsideclass definition
print(a.age)

§ allows you to write to data from outsideclass definition
a.age = 'infinite'

§ allows you to create data attributes for an instancefrom outside classdefinition
a.size = "tiny"

§ it’s notgood styleto do any of these!

PYTHON NOT GREAT AT INFORMATION HIDING

www.meim.uniparthenope.it

§default arguments for formal parameters are used ifno actual argument isgiven
def set_name(self, newname=""):

self.name = newname
§ default argument usedhere

a = Animal(3) a.set_name()

print(a.get_name())
§ argument passed in is usedhere
a = Animal(3)
a.set_name("fluffy")
print(a.get_name())

DEFAULT ARGUMENTS

www.meim.uniparthenope.it

HIERARCHIES

www.meim.uniparthenope.it

Animal

Cat Rabbit

§ parent class

(superclass)
§ childclass

(subclass)
• inherits all data and
behaviorsof parent class
• add more info

• add morebehavior

• overridebehavior

Person

Student

HIERARCHIES

www.meim.uniparthenope.it

class Animal(object):
def init (self, age):

self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def str (self):
return "animal:"+str(self.name)+":"+str(self.age)

INHERITANCE: PARENT CLASS

www.meim.uniparthenope.it

class Cat(Animal):
def speak(self):

print("meow")
def str (self):

return "cat:"+str(self.name)+":"+str(self.age)

§ add new functionality with speak()
• instance of type Cat can be called with new methods
• instance of type Animal throws error if called with Cat’s

new method

§ init is not missing, uses the Animal version

INHERITANCE: SUBCLASS

www.meim.uniparthenope.it

• subclass can have methods with same nameas superclass
• for an instance of a class, look for a method name in current classdefinition
• if not found, look for method name upthehierarchy (in parent, then

grandparent, and soon)
• usefirst method up the hierarchy that you found with that methodname

WHICH METHOD TO USE?

class Person(Animal):
def init (self, name, age):

Animal. init (self, age)
self.set_name(name)
self.friends = []

def get_friends(self):
return self.friends

def add_friend(self, fname):
if fname not in self.friends:

self.friends.append(fname)
def speak(self):

print("hello")
def age_diff(self, other):

diff = self.age - other.age
print(abs(diff), "year difference")

def str (self):
return "person:"+str(self.name)+":"+str(self.age)

import random

class Student(Person):
def init (self, name, age, major=None):

Person. init (self, name, age)
self.major = major

def change_major(self, major):
self.major = major

def speak(self):
r = random.random()
if r < 0.25:

print("i have homework")
elif 0.25 <= r < 0.5:

print("i need sleep")
elif 0.5 <= r < 0.75:

print("i should eat")
else:

print("i am watching tv")
def str (self):

return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)

www.meim.uniparthenope.it

§class variables and their values are shared betweenall instances of aclass
class Rabbit(Animal):

tag = 1

def init (self, age, parent1=None, parent2=None):

Animal. init (self, age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

§ tagusedto give uniqueidto eachnew rabbit instance

CLASS VARIABLES AND THE Rabbit SUBCLASS

www.meim.uniparthenope.it

class Rabbit(Animal):
tag = 1
def init (self, age, parent1=None, parent2=None):

Animal. init (self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

def get_rid(self):
return str(self.rid).zfill(3)

def get_parent1(self):
return self.parent1

def get_parent2(self):
return self.parent2

Rabbit GETTER METHODS

www.meim.uniparthenope.it

WORKING WITH YOUR OWN TYPES
def add (self, other):

returning object of same type as this class

return Rabbit(0,self,other)

• recall Rabbit’s _init _(self, age, parent1=None, parent2=None)

§ define + operator between two Rabbit instances
• define what something like this does: r4 = r1 + r2
• where r1 and r2areRabbit instances
• r4 is anewRabbit instance with age0
• r4 has self asone parent and other asthe other parent
• in init , parent1 andparent2 are of typeRabbit

www.meim.uniparthenope.it

§decide that two rabbits are equal if they have the same two

parents

def eq (self, other):
parents_same = self.parent1.rid == other.parent1.rid \

and self.parent2.rid == other.parent2.rid
parents_opposite = self.parent2.rid == other.parent1.rid \

and self.parent1.rid == other.parent2.rid
return parents_same or parents_opposite

§ compare ids of parents since ids are unique (due toclass var)
§ note you can’t compare objectsdirectly

• for ex. with self.parent1 == other.parent1

• this calls the eq method over and over until call it on None and
gives an AttributeError when it tries to do None.parent1

SPECIAL METHOD TO COMPARE TWO Rabbits

www.meim.uniparthenope.it

§ create your own collections ofdata

§ organize information
§ division of work
§ access information in a consistent manner
§ add layers of complexity
§ like functions, classes are a mechanism for
decomposition and abstraction in programming

OBJECT ORIENTED PROGRAMMING

www.meim.uniparthenope.it

Thank you for your attention
MASTER MEIM 2021-2022

