
www.meim.uniparthenope.it

Python Programming Course
Lesson 4

MASTER MEIM 2021-2022

Iterative Statements

Lesson given by prof. Mariacarla Staffa

Prof. Computer Science at the University of Naples Parthenope

www.meim.uniparthenope.it

Chapter Goals
• To implement while and for loops
• To hand-trace the execution of a program
• To become familiar with common loop algorithms
• To understand nested loops
• To implement programs that read and process data sets
• To use a computer for simulations

In this chapter, you will learn about loop statements in Python, as
well as techniques for writing programs that simulate activities in the

real world.

www.meim.uniparthenope.it

The while Loop

The while Loop

• Examples of loop applications
• Calculating compound interest
• Simulations, event driven programs
• Drawing tiles…

• Compound interest algorithm (Chapter 1)

Steps

www.meim.uniparthenope.it

Planning the while Loop
balance = 10.0
target = 100.0
year = 0
rate = 0.025
while balance < TARGET :

year = year + 1
interest = balance * RATE/100
balance = balance + interest

A loop executes instructions repeatedly while a condition is True.

www.meim.uniparthenope.it

Syntax: while Statement

www.meim.uniparthenope.it

Count-Controlled Loops
• A while loop that is controlled by a counter
counter = 1 # Initialize the counter
while counter <= 10 : # Check the counter
print(counter)
counter = counter + 1 # Update the loop variable

Exercises from Booklet

• Exercise 5.6
• Exercise 5.7

Execution of the Loop

Execution of the Loop (2)

www.meim.uniparthenope.it

while Loop Examples

www.meim.uniparthenope.it

while Loop Examples (2)

www.meim.uniparthenope.it

Common Error: Incorrect Test Condition
• The loop body will only execute if the test condition is True.
• If bal is initialized as less than the TARGET and should grow until it

reaches TARGET
• Which version will execute the loop body?

while bal < TARGET :
year = year + 1
interest = bal * RATE
bal = bal + interest

while bal >= TARGET :
year = year + 1
interest = bal * RATE
bal = bal + interest

www.meim.uniparthenope.it

Common Error: Infinite Loops

• The loop body will execute until the test condition becomes False.
• What if you forget to update the test variable?

• bal is the test variable (TARGET doesn’t change)
• You will loop forever! (or until you stop the program)

while bal < TARGET :
year = year + 1
interest = bal * RATE
bal = bal + interest

www.meim.uniparthenope.it

Common Error: Off-by-One Errors
• A ‘counter’ variable is often used in the test condition
• Your counter can start at 0 or 1, but programmers often start a counter at 0
• If I want to paint all 5 fingers on one hand, when I am done?

• If you start at 0, use “<“ If you start at 1, use “<=“
• 0, 1, 2, 3, 4 1, 2, 3, 4, 5

finger = 0
FINGERS = 5
while finger < FINGERS :

paint finger
finger = finger + 1

finger = 1
FINGERS = 5
while finger <= FINGERS :

paint finger
finger = finger + 1

www.meim.uniparthenope.it

Exercise: sum_digits.py
• Write a program using the while loop to compute the sum of the

first N integer. N is inserted by the user.

www.meim.uniparthenope.it

Sentinel Values

www.meim.uniparthenope.it

Processing Sentinel Values
• Sentinel values are often used:

• When you don’t know how many items are in a list, use a �special� character or
value to signal the “last” item
• For numeric input of positive numbers, it is common to use the value -1

A sentinel value denotes the end of a data set, but it is not part of the data.

salary = 0.0
while salary >= 0 :

salary = float(input())
if salary >= 0.0 :

total = total + salary
count = count + 1

www.meim.uniparthenope.it

Averaging a Set of Values
• Declare and initialize a ‘total’ variable to 0
• Declare and initialize a ‘count’ variable to 0
• Declare and initialize a ‘salary’ variable to 0
• Prompt user with instructions
• Loop until sentinel value is entered

• Save entered value to input variable (‘salary’)
• If salary is not -1 or less (sentinel value)

• Add salary variable to total variable
• Add 1 to count variable

• Make sure you have at least one entry before you divide!
• Divide total by count and output.
• Done!

www.meim.uniparthenope.it

Sentinel.py (1)

Outside the while loop: declare and
initialize variables to use

Input new salary and compare to sentinel

Update running total and
count (to calculate the
average later)

Since salary is initialized to 0, the while loop
statements will execute at least once

Sentinel.py (2)

Prevent divide by 0

Calculate and
output the average
salary using the
total and count
variables

Priming Read

• Some programmers don’t like the “trick” of initializing the input
variable with a value other than a sentinel.

Set salary to a value to ensure that the loop
executes at least once.
salary = 0.0
while salary >= 0 :

salary = float(input("Enter a salary or -1 to finish: "))
while salary >= 0 :

• An alternative is to change the variable with a read before the loop.

Modification Read

• The input operation at the bottom of the loop is used to obtain the
next input.

Priming read
salary = float(input("Enter a salary or -1 to finish: "))
while salary >= 0.0 :

total = total + salary
count = count + 1
Modification read
salary = float(input("Enter a salary or -1 to finish: "))

www.meim.uniparthenope.it

Boolean Variables and Sentinels
• A boolean variable can be used to control a loop

• Sometimes called a ‘flag’ variable

done = False
while not done :

value = float(input("Enter a salary or -1 to
finish: "))
if value < 0.0:

done = True
else :

Process value

Initialize done so that the loop will execute

Set done �flag� to True if sentinel value is found

www.meim.uniparthenope.it

Exercise: id_student_while.py
• Write a program which ask a student to insert his/her id until the id

is not conform to the standard format (“N85005656” as in previous
example)

www.meim.uniparthenope.it

Hand Tracing Loops

www.meim.uniparthenope.it

Hand-Tracing Loops
• Example: Calculate the sum of digits (1+7+2+9)

• Make columns for key variables (n, total, digit)
• Examine the code and number the steps
• Set variables to state before loop begins

www.meim.uniparthenope.it

Tracing Sum of Digits

• Start executing loop body statements changing variable values on a new
line
• Cross out values in previous line

www.meim.uniparthenope.it

Tracing Sum of Digits

• Continue executing loop statements changing variables
• 1729 / 10 leaves 172 (no remainder)

www.meim.uniparthenope.it

Tracing Sum of Digits
• Test condition. If True, execute loop again

• Variable n is 172, Is 172 > 0?, True!

• Make a new line for the second time through and update variables

www.meim.uniparthenope.it

Tracing Sum of Digits
• Third time through

• Variable n is 17 which is still greater than 0

• Execute loop statements and update variables

www.meim.uniparthenope.it

Tracing Sum of Digits
• Fourth loop iteration:

• Variable n is 1 at start of loop. 1 > 0? True
• Executes loop and changes variable n to 0 (1/10 = 0)

www.meim.uniparthenope.it

Tracing Sum of Digits
• Because n is 0, the expression(n > 0) is False
• Loop body is not executed

• Jumps to next statement after the loop body

• Finally prints the sum!

www.meim.uniparthenope.it

Summary of the while Loop
• while loops are very common
• Initialize variables before you test

• The condition is tested BEFORE the loop body
• This is called pre-test
• The condition often uses a counter variable

• Something inside the loop should change one of the variables used in the test

• Watch out for infinite loops!

www.meim.uniparthenope.it

Common Loop Algorithms

www.meim.uniparthenope.it

Common Loop Algorithms
1.Sum and Average Value
2.Counting Matches
3.Prompting until a Match Is Found
4.Maximum and Minimum
5.Comparing Adjacent Values

www.meim.uniparthenope.it

Average Example
total = 0.0
count = 0
inputStr = input("Enter value: ")
while inputStr != "" :

value = float(inputStr)
total = total + value
count = count + 1
inputStr = input("Enter value: ")

if count > 0 :
average = total / count

else :
average = 0.0

Average of Values
• First total the values
• Initialize count to 0

• Increment per
input

• Check for count 0
• Before divide!

www.meim.uniparthenope.it

Sum Example
• Sum of Values

• Initialize total to 0
• Use while loop with sentinel

total = 0.0
inputStr = input("Enter value: ")
while inputStr != "" :

value = float(inputStr)
total = total + value
inputStr = input("Enter value: ")

www.meim.uniparthenope.it

Counting Matches (e.g., Negative Numbers)

negatives = 0
inputStr = input("Enter value: ")
while inputStr != "� :

value = int(inputStr)
if value < 0 :

negatives = negatives + 1
inputStr = input("Enter value: ")

print("There were", negatives,
"negative values.")

• Counting Matches
• Initialize negatives to 0
• Use a while loop
• Add to negatives per match

www.meim.uniparthenope.it

Prompt Until a Match is Found
• Initialize boolean flag to False
• Test sentinel in while loop

• Get input, and compare to range
• If input is in range, change flag to True
• Loop will stop executing

valid = False
while not valid :

value = int(input("Please enter a positive value < 100: "))
if value > 0 and value < 100 :

valid = True
else :

print("Invalid input.")

This is an excellent way to validate use provided inputs

www.meim.uniparthenope.it

Maximum
• Get first input value

• By definition, this is the largest that you have seen so far

• Loop while you have a valid number (non-sentinel)
• Get another input value
• Compare new input to largest (or smallest)
• Update largest if necessary

largest = int(input("Enter a value: "))
inputStr = input("Enter a value: ")
while inputStr != "“ :

value = int(inputStr)
if value > largest :

largest = value
inputStr = input("Enter a value: ")

www.meim.uniparthenope.it

Minimum
• Get first input value

• This is the smallest that you have seen so far!

• Loop while you have a valid number (non-sentinel)
• Get another input value
• Compare new input to largest (or smallest)
• Update smallest if necessary

smallest = int(input("Enter a value: "))
inputStr = input("Enter a value: ")
while inputStr != “ ” :

value = int(inputStr)
if value < smallest :

smallest = value
inputStr = input("Enter a value: ")

www.meim.uniparthenope.it

Comparing Adjacent Values
• Get first input value
• Use while to determine if there are more to check

• Copy input to previous variable
• Get next value into input variable
• Compare input to previous, and output if same

value = int(input("Enter a value: "))
inputStr = input("Enter a value: ")
while inputStr != "� :

previous = value
value = int(inputStr)
if value == previous :

print("Duplicate input")
inputStr = input("Enter a value: ")

www.meim.uniparthenope.it

The for Loop

www.meim.uniparthenope.it

The for Loop
• Uses of a for loop:
• The for loop can be used to iterate over the contents of any
container.
• A container is an object (Like a string) that contains or stores a

collection of elements
• A string is a container that stores the collection of characters in the

string

www.meim.uniparthenope.it

Syntax of a for Statement (Container)
• Using a for loop to iterate over the contents of a container, an element at

a time.

www.meim.uniparthenope.it

An Example of a for Loop

stateName = "Virginia"
i = 0
while i < len(stateName) :

letter = stateName[i]
print(letter)
i = i + 1

while version

stateName = "Virginia"
for letter in stateName :

print(letter) for version

• Note an important difference between the while loop and the for loop.
• In the while loop, the index variable i is assigned 0, 1, and so on.
• In the for loop, the element variable is assigned stateName[0], stateName[1], and so on.

www.meim.uniparthenope.it

The for Loop (2)
• Uses of a for loop:

• A for loop can also be used as a count-controlled loop that iterates over a range of integer values.

i = 1
while i < 10 :

print(i)
i = i + 1

for i in range(1, 10) :
print(i)

while version for version

www.meim.uniparthenope.it

Syntax of a for Statement (Range)
• You can use a for loop as a count-controlled loop to iterate over a range of integer

values
• We use the range function for generating a sequence of integers that less than the

argument that can be used with the for loop

www.meim.uniparthenope.it

Good Examples of for Loops
• Keep the loops simple!

Planning a for Loop

• Print the balance at the end of each year for a
number of years

Investment Example

www.meim.uniparthenope.it

Programming Tip
• Finding the correct lower and upper bounds for a loop can be confusing.

• Should you start at 0 or at 1?
• Should you use <= b or < b as a termination condition?

• Counting is easier for loops with asymmetric bounds.
• The following loops are executed b - a times.

int i = a
while i < b :

. . .
i = i + 1

for i in range(a, b) :
. . .

www.meim.uniparthenope.it

Programming Tip
• The loop with symmetric bounds (“<=”, is executed b - a + 1 times.

• That “+1” is the source of many programming errors.

i = a
while i <= b :

. . .
i = i + 1

For this version of the loop the
�+1� is very noticeable!
for year in range(1, numYears + 1) :

www.meim.uniparthenope.it

Nested Loops

www.meim.uniparthenope.it

Loops Inside of Loops
• We learned how to nest if statements to allow us to make complex

decisions
• Remember that to nest the if statements we need to indent the code block

• Complex problems sometimes require a nested loop, one loop
nested inside another loop
• The nested loop will be indented inside the code block of the first loop

• A good example of using nested loops is when you are processing
cells in a table
• The outer loop iterates over all of the rows in the table
• The inner loop processes the columns in the current row

www.meim.uniparthenope.it

Our Example Problem Statement
• Print a Table Header that contains x1, x2,
x3, and x4

• Print a Table with four columns and ten
rows that contain the powers of x1, x2, x3,
and x4 for x = 1 to 10

www.meim.uniparthenope.it

Applying Nested Loops
• How would you print a table with rows and columns?

• Print top line (header)
• Use a for loop

• Print table body…
• How many rows are in the table?
• How many columns in the table?

• Loop per row
• Loop per column

• In our example there are:
• Four columns in the table
• Ten rows in the table

Pseudocode to Print the Table

Print the table header
for x from 1 to 10
print a new table row
print a new line

• How do we print a table row?
For n from 1 to 4
print xn

• We have to place this loop inside the preceding
loop
• The inner loop is “nested” inside the outer loop

www.meim.uniparthenope.it

Pseudocode to Print the Table
Print the table header:
for x from 1 to 10
for n from 1 to 4
print Xn

print a new line

n è

x
ê

www.meim.uniparthenope.it

Inner Loop

Flowchart of
a Nested Loop

x = 1

x <=
10? n= 1

n <=
4? Print xn

n = n + 1

Print new line

x = x + 1

True

False True

Done

False

www.meim.uniparthenope.it

Exercise: powertable.py
Write a program that given a

integer number x in the range
[1,10] and integer number n
computes the powers from 1 to
n of all the numbers from 1 to x
by presenting them in a tabular
format as shown in figure:

www.meim.uniparthenope.it

Powertable.py

Body of outer loop, x = 1 è 10

Body of inner loop, n = 1 è 4

The end=“” suppresses the new
line, so the numbers are all
printed on the same line

First Exercise

• Open the program:
• powertable.py

• Run the program and review the results
• Make the following changes:

• Change the value of NMAX to 6 and run the program
• What changes in the table?
• Change the value of NMAX back to 4
• Change the value of XMAX to 4
• What changes in the table?

Nested Loop Examples

www.meim.uniparthenope.it

Nested Loop Examples (2)

www.meim.uniparthenope.it

Processing Strings

www.meim.uniparthenope.it

Processing Strings
• A common use of loops is to process or evaluate strings.
• For example, you may need to count the number of occurrences

of one or more characters in a string or verify that the contents of a
string meet certain criteria.

www.meim.uniparthenope.it

String Processing Examples
• Counting Matches
• Finding All Matches
• Finding the First or Last Match
• Validating a String
• Building a New String

www.meim.uniparthenope.it

Counting Matches
• Suppose you need to count the number of uppercase letters contained in a string.

• We can use a for loop to check each character in the string to see if it is upper case

• The loop below sets the variable char equal to each successive character in the string

• Each pass through the loop tests the next character in the string to see if it is
uppercase

uppercase = 0
for char in string :

if char.isupper() :
uppercase = uppercase + 1

www.meim.uniparthenope.it

Counting Vowels
• Suppose you need to count the vowels within a string

• We can use a for loop to check each character in the string to see if it is in the
string of vowels “aeiuo”

• The loop below sets the variable char equal to each successive character in
the string

• Each pass through the loop tests the lower case of the next character in the
string to see if it is in the string “aeiou”

vowels = 0
for char in word :

if char.lower() in "aeiou" :
vowels = vowels + 1

www.meim.uniparthenope.it

Finding All Matches Example
• When you need to examine every character in a string,

independent of its position we can use a for statement to examine
each character
• If we need to print the position of each uppercase letter in a

sentence we can test each character in the string and print the
position of all uppercase characters
• We set the range to be the length of the string

• We test each character
• If it is uppercase we print I,

its position in the string

sentence = input("Enter a sentence: ")
for i in range(len(sentence)) :

if sentence[i].isupper() :
print(i)

www.meim.uniparthenope.it

Finding the First Match
• This example finds the position of the first digit in a string.

found = False
position = 0
while not found and position < len(string) :

if string[position].isdigit() :
found = True

else :
position = position + 1

if found :
print("First digit occurs at position", position)

else :
print("The string does not contain a digit.")

www.meim.uniparthenope.it

Finding the Last Match
• Here is a loop that finds the position of the last digit in the string.

• This approach uses a while loop to start at the last character in a string and
test each value moving from the end of the string to the start of the string
• Position is set to the length of the string - 1
• If the character is not a digit, we decrease position by 1
• Until we find a digit, or process all the characters

found = False
position = len(string) - 1
while not found and position >= 0 :

if string[position].isdigit() :
found = True

else :
position = position - 1

www.meim.uniparthenope.it

Validating a String
• In the United States, telephone numbers consist of three parts––

area code exchange, and line number––which are commonly
specified in the form (###)###-####.

www.meim.uniparthenope.it

Validating a String (code)
• We can examine a string to ensure that it contains a correctly

formatted phone number. (e.g., (703)321-6753)
• The loop test each character to see it it is correct for its position,

or a number
valid = len(string) == 13
position = 0
while valid and position < len(string) :

valid = ((position == 0 and string[position] != "(")
or (position == 4 and string[position] != ")")
or (position == 8 and string[position] != "-")
or (position != 0 and position != 4 and position != 8

and string[position].isdigit())) :
position = position + 1

www.meim.uniparthenope.it

Building a New String
• One of the minor annoyances of online shopping is that many web

sites require you to enter a credit card without spaces or dashes,
which makes double-checking the number rather tedious.
• How hard can it be to remove dashes or spaces from a string?

www.meim.uniparthenope.it

Building a New String (code)
• The contents of a string cannot be changed.

• But nothing prevents us from building a new string.

• Here is a loop that builds a new string containing a credit card number with spaces
and dashes removed:
• We read the credit card number
• We initialize a new string to the empty string
• We test each character in the user input

• If the character is not a space or dash we append it to the new string

userInput = input("Enter a credit card number: ")
creditCardNumber = ""
for char in userInput :

if char != " " and char != "-" :
creditCardNumber = creditCardNumber + char

www.meim.uniparthenope.it

Application: Random Numbers
and Simulations

www.meim.uniparthenope.it

Random Numbers/Simulations
• Games often use random numbers to make things interesting

• Rolling Dice
• Spinning a wheel
• Pick a card

• A simulation usually involves looping through a sequence of
events
• Days
• Events

www.meim.uniparthenope.it

Generating Random Numbers
• The Python library has a random number generator that produces

numbers that appear to be random
• The numbers are not completely random. The numbers are drawn from a sequence of

numbers that does not repeat for a long time
• random() returns a number that is >= 0 and < 1

www.meim.uniparthenope.it

Simulating Die Tosses
• Goal:

• To generate a random integer in a given range we use the randint() function
• Randint has two parameters, the range (inclusive) of numbers generated

www.meim.uniparthenope.it

The Monte Carlo Method
• Used to find approximate solutions to problems that cannot be

precisely solved
• Example: Approximate PI using the relative areas of a circle inside

a square
• Uses simple arithmetic
• Hits are inside circle
• Tries are total number of tries
• Ratio is 4 x Hits / Tries

www.meim.uniparthenope.it

Monte Carlo Example

www.meim.uniparthenope.it

Thank you for your attention
MASTER MEIM 2021-2022

