
www.meim.uniparthenope.it

Python Programming Course
Lesson 3

MASTER MEIM 2021-2022

Branching Programs: IF statement

Lesson given by prof. Mariacarla Staffa

Prof. Computer Science at the University of Naples Parthenope

www.meim.uniparthenope.it

Overview
• To implement decisions using the if statement
• To compare integers, floating-point numbers, and Strings
• To write statements using the Boolean data type
• To develop strategies for testing your programs
• To validate user input

In this part of the lesson, you will learn how to program
simple and complex decisions. You will apply what you

learn to the task of checking user input.

www.meim.uniparthenope.it

The if Statement
• A computer program often needs to make decisions based on

input, or circumstances
• For example, buildings often ‘skip’ the 13th floor, and elevators

should too
• The 14th floor is really the 13th floor
• So every floor above 12 is really ‘floor ’

• If floor > 12, Actual floor = floor - 1

• The two keywords of the if statement are:
• if
• else

The if statement allows a program to
carry out different actions depending on
the nature of the data to be processed.

www.meim.uniparthenope.it

Flowchart of the if Statement
• One of the two branches is executed once

• True (if) branch or False (else) branch

www.meim.uniparthenope.it

Flowchart with only a True Branch

• An if statement may not need a ‘False’ (else) branch

www.meim.uniparthenope.it

Syntax 3.1: The if Statement

www.meim.uniparthenope.it

Exercise: elevatorsim.py
• Write a program that simulates an elevator panel that skips the

13th floor
• Given a floor in input
• Adjust the floor if necessary
• print ‘’The elevator will travel the the actual floor ….’’

www.meim.uniparthenope.it

Compound Statements
• Some constructs in Python are compound statements including the IF.

• compound statements span multiple lines and consist of a header and a
statement block

• Compound statements require a colon “:” at the end of the header.

• The statement block is a group of one or more statements, all indented to the
same column

• The statement block starts on the line after the header and ends at the first
statement indented less than the first statement in the block

www.meim.uniparthenope.it

Compound Statements
• Statement blocks can be nested inside other types of blocks (we

will learn about more blocks later)
• Statement blocks signal that one or more statements are part of a

given compound statement
• In the case of the if construct the statement block specifies:

• The instructions that are executed if the condition is true
• Or skipped if the condition is false

Statement blocks are visual cues that allow you to follow the login
and flow of a program

www.meim.uniparthenope.it

Tips on Indenting Blocks
• Let Wing do the indenting for you…

This is referred to as “block structured” code. Indenting consistently is not only
syntactically required in Python, it also makes code much easier to follow.

www.meim.uniparthenope.it

A Common Error
• Avoid duplication in branches

• If the same code is duplicated in each branch then move it out of the if
statement.

www.meim.uniparthenope.it

Relational Operators
• Every if statement has a condition

• Usually compares two values with an operator

if floor > 13 :
..

if floor >= 13 :
..

if floor < 13 :
..

if floor <= 13 :
..

if floor == 13 :
..

www.meim.uniparthenope.it

Assignment vs. Equality Testing

• Assignment: makes something true.

floor = 13

if floor == 13 :

• Equality testing: checks if something is true.

www.meim.uniparthenope.it

Exercise: compare.py
Comparing Strings
• Checking if two strings are equal

if name1 == name2 :
print("The strings are identical")

if name1 != name2 :
print("The strings are not identical")

• Checking if two strings are not equal

www.meim.uniparthenope.it

Lexicographical Order
• To compare Strings in ‘dictionary’ like order:

string1 < string2

• Notes
• All UPPERCASE letters come before lowercase
• ‘space’ comes before all other printable characters
• Digits (0-9) come before all letters
• The order check refer to the Basic Latin (ASCII) Subset of Unicode

www.meim.uniparthenope.it

Relational Operator Examples (1)

www.meim.uniparthenope.it

Common Error (Floating Point)
• Floating-point numbers have only a limited precision, and

calculations can introduce roundoff errors.
• You must take these inevitable roundoffs into account when

comparing floating point numbers.

www.meim.uniparthenope.it

Common Error (Floating Point, 2)
• For example, the following code multiplies the square root of 2 by

itself.
• Ideally, we expect to get the answer 2:

r = math.sqrt(2.0)
if r * r == 2.0 :

print("sqrt(2.0) squared is 2.0")
else :

print("sqrt(2.0) squared is not 2.0 but", r * r)

Output:
sqrt(2.0) squared is not 2.0 but 2.0000000000000004

www.meim.uniparthenope.it

The Use of EPSILON
• Use a very small value to compare the difference to determine if

floating-point values are ‘close enough’
• The magnitude of their difference should be less than some threshold
• Mathematically, we would write that x and y are close enough if:

EPSILON = 1E-14
r = math.sqrt(2.0)
if abs(r * r - 2.0) < EPSILON :

print("sqrt(2.0) squared is approximately 2.0")

www.meim.uniparthenope.it

Operator Precedence

• The comparison operators have lower precedence than arithmetic
operators

• Calculations are done before the comparison
• Normally your calculations are on the ‘right side’ of the comparison or assignment

operator

actualFloor = floor + 1

Calculations

if floor > height + 1 :

www.meim.uniparthenope.it

Exercise: sale.py
A shop gives an 8 percent discount on all computer accessory
purchases if the price is less than $128, and a 16 percent discount if
the price is at least $128.
Write a program that:
• Ask the original price
• Determine the discount rate
• Compute and print the discount

www.meim.uniparthenope.it

The Sale Example
• Open the file:

• sale.py

• Run the program several time using different values
• Use values less than 128
• Use values greater that 128
• Enter 128

• What results do you get?

if originalPrice < 128 :
discountRate = 0.92

else :
discountRate = 0.84

discountedPrice = discountRate *
originalPrice

www.meim.uniparthenope.it

Nested Branches wine.py
• You can nest an if inside either branch of an if statement.
• Simple example: Ordering drinks

• Ask the customer for their drink order
• if customer orders wine

• Ask customer for his/her age
• if customer’s age is 21 or over

• Serve wine
• Else

• Politely explain the law to the customer
• Else

• Serve customers a non-alcoholic drink

www.meim.uniparthenope.it

Alternative multiple

www.meim.uniparthenope.it

3.4 Multiple Alternatives

• What if you have more than two branches?
• Count the branches for the following earthquake effect example:

• 8 (or greater)
• 7 to 7.99
• 6 to 6.99
• 4.5 to 5.99
• Less than 4.5

When using multiple if statements,
test the general conditions after the
more specific conditions.

www.meim.uniparthenope.it

Flowchart of Multiway Branching

>= 8.0? Most Structures Fall
True

False

>= 7.0? Many Buildings Destroyed
True

False

>= 6.0? Many buildings considerably
damaged, some collapse

True

False

>= 4.5? Damage to poorly constructed
buildings

True

False
No destruction of buildings

www.meim.uniparthenope.it

elif Statement
• Short for Else, if…
• As soon as one on the test conditions succeeds, the statement

block is executed
• No other tests are attempted

• If none of the test conditions succeed the final else clause is
executed

www.meim.uniparthenope.it

if, elif Multiway Branching

if richter >= 8.0 : # Handle the ‘special case’ first
print("Most structures fall")

elif richter >= 7.0 :
print("Many buildings destroyed")

elif richter >= 6.0 :
print("Many buildings damaged, some collapse")

elif richter >= 4.5 :
print("Damage to poorly constructed buildings")

else : # so that the ‘general case’ can be handled last
print("No destruction of buildings")

www.meim.uniparthenope.it

What is Wrong With This Code?

if richter >= 8.0 :
print("Most structures fall")

if richter >= 7.0 :
print("Many buildings destroyed")

if richter >= 6.0 :
print("Many buildings damaged, some collapse")

if richter >= 4.5 :
print("Damage to poorly constructed buildings")

www.meim.uniparthenope.it

Exercise: earthquake.py
Write a program that:
Enter a magnitude on the Richter scale and Print:
• ‘’Most structures fall” if the magnitude is >=8.0
• ‘’Many buildings destroyed’’ if the magnitude is >=7.0
• ‘'Many buildings considerably damaged’’, some collapse» if the

magnitude is >=6.0
• ‘’Damage to poorly constructed buildings’’ if the magnitude is

>=4.5
• ‘’No destruction of buildings’’ in the other cases

www.meim.uniparthenope.it

Boolean Variables and Operators

www.meim.uniparthenope.it

Boolean Variables
• Boolean Variables

• A Boolean variable is often called a flag because it can be either up (true) or down
(false)

• boolean is a Python data type
• failed = True

• Boolean variables can be either True or False

• There are two Boolean Operators: and, or
• They are used to combine multiple conditions

www.meim.uniparthenope.it

Combined Conditions: and
• Combining two conditions is often used in range checking

• Is a value between two other values?

• Both sides of the and must be true for the result to be true
if temp > 0 and temp < 100 :

print("Liquid")

www.meim.uniparthenope.it

Combined Conditions: or
• We use or if only one of two conditions need to be true

• Use a compound conditional with an or:

• If either condition is true
• The result is true

if temp <= 0 or temp >= 100
:
print("Not liquid")

www.meim.uniparthenope.it

The not operator: not
• If you need to invert a boolean variable or comparison, precede it

with not

• If you are using not, try to use simpler logic:

if not attending or grade < 60 :
print("Drop?")

if attending and not(grade < 60) :
print("Stay")

if attending and grade >= 60 :
print("Stay")

www.meim.uniparthenope.it

The not operator: inequality !
• A slightly different operator is used for the not when checking for

inequality rather than negation.
• Example inequality:

• The password that the user entered is not equal to the password on file.
• if userPassword != filePassword :

www.meim.uniparthenope.it

and Flowchart
• This is often called ‘range checking’

• Used to validate that the input is between two values

if temp > 0 and temp < 100 :
print("Liquid")

www.meim.uniparthenope.it

or flowchart
• Another form of ‘range checking’

• Checks if value is outside a range

if temp <= 0 or temp >= 100 :
print("Not Liquid")

www.meim.uniparthenope.it

Comparison Example
• Open the file:

• Compare2.py

• Run the program with several inputs

www.meim.uniparthenope.it

Boolean Operator Examples

www.meim.uniparthenope.it

Done!

Short-circuit Evaluation: and
• Combined conditions are evaluated from left to right

• If the left half of an and condition is false, why look further?

if temp > 0 and temp < 100 :
print("Liquid")

www.meim.uniparthenope.it

Short-circuit evaluation: or
• If the left half of the or is true, why look further?

if temp <= 0 or temp >= 100 :
print("Not Liquid")

Done!

www.meim.uniparthenope.it

De Morgan’s law
• De Morgan’s law tells you how to negate and and or conditions:

• not(A and B) is the same as notA or notB
• not(A or B) is the same as notA and notB

• Example: Shipping is higher to AK and HI

• To simplify conditions with negations of and or or expressions, it’s
a good idea to apply De Morgan’s law to move the negations to
the innermost level.

if (country != "USA"
and state != "AK"
and state != "HI") :
shippingCharge = 20.00

if not(country=="USA"
or state=="AK"
or state=="HI") :
shippingCharge = 20.00

www.meim.uniparthenope.it

String Analysis

www.meim.uniparthenope.it

Analyzing Strings – The in Operator
• Sometimes it’s necessary to analyze or ask certain questions about

a particular string.
• Sometimes it is necessary to determine if a string contains a given substring. That is, one

string contains an exact match of another string.
• Given this code segment,
name = "John Wayne"

• the expression
"Way" in name

• yields True because the substring "Way" occurs within the string stored in variable name.
• The not in operator is the inverse on the in operator

www.meim.uniparthenope.it

Substring: Suffixes
• Suppose you are given the name of a file and need to ensure that

it has the correct extension
if filename.endswith(".html") :

print("This is an HTML file.")
• The endswith() string method is applied to the string stored in

filename and returns True if the string ends with the substring
".html" and False otherwise.

www.meim.uniparthenope.it

Operations for Testing Substrings

www.meim.uniparthenope.it

Exercise: substring.py
Write a program that:
• Ask for a string and for a substring
• Check if the substring is contained in the string.
• If yes:

• Count the occurrences of substring in string
• Indicate whether the string start or finish with the substring

• If no:
• Print “the *substring* is not contained in *string*”

www.meim.uniparthenope.it

Methods: Testing String Characteristics (1)

www.meim.uniparthenope.it

Methods for Testing String Characteristics (2)

www.meim.uniparthenope.it

Comparing and Analyzing Strings (1)

www.meim.uniparthenope.it

Exercise: id_student.py
• Write a program that:
• Ask for a id_student. By taking in mind that a student id must be

composed of a first uppercase Letter, the number “85” and a
sequence of other 6 random numbers, verify the correctness of the
id.
• Try with these ids: N87001324, N85003456, n85006734,

N8500NN89, N8500

www.meim.uniparthenope.it

Summary: if Statement
• The if statement allows a program to carry out different actions

depending on the nature of the data to be processed.
• Relational operators (< <= > >= == !=) are used to compare

numbers and Strings.
• Strings are compared in lexicographic order.
• Multiple if statements can be combined to evaluate complex

decisions.
• When using multiple if statements, test general conditions after

more specific conditions.

www.meim.uniparthenope.it

Summary: Flowcharts and Testing

• When a decision statement is contained inside the branch of another
decision statement, the statements are nested.
• Nested decisions are required for problems that have two levels of

decision making.
• Flow charts are made up of elements for tasks, input/output, and

decisions.
• Each branch of a decision can contain tasks and further decisions.
• Never point an arrow inside another branch.
• Each branch of your program should be covered by a test case.
• It is a good idea to design test cases before implementing a program.

www.meim.uniparthenope.it

Summary: Boolean

• The type boolean has two values, true and false.
• Python has two Boolean operators that combine conditions: and and or.
• To invert a condition, use the not operator.
• When checking for equality use the ! operator.
• The and and or operators are computed lazily:

• As soon as the truth value is determined, no further conditions are evaluated.
• De Morgan’s law tells you how to negate and and or conditions.

www.meim.uniparthenope.it

Thank you for your attention
MASTER MEIM 2021-2022

