
www.meim.uniparthenope.it

Python Programming Course
Lesson 2

MASTER MEIM 2021-2022

Variables , Types, Strings

Lesson given by prof. Mariacarla Staffa

Prof. Computer Science at the University of Naples Parthenope

www.meim.uniparthenope.it

1. Introduction
• Numbers and character strings are important data types in any
Python program
• These are the fundamental building blocks we use to build more
complex data structures

• In this lesson, you will learn how to work with numbers and text.
• We will write several simple programs that use them

At the end of the lesson you will be able to

• To declare and initialize variables and constants
• To understand the properties and limitations of integers and

floating-point numbers
• To appreciate the importance of comments and good code layout
• To write arithmetic expressions and assignment statements
• To create programs that read, and process inputs, and display the

results
• To learn how to use Python strings

Contents
2.1 Variables
2.2 Arithmetic
2.3 Problem Solving
2.4 Strings
2.5 Input and Output

www.meim.uniparthenope.it

Variables

Variables
• A variable is a named storage location in a computer program
• There are many different types of variables, each type used to

store different things
• You �define� a variable by telling the compiler:

• What name you will use to refer to it
• The initial value of the variable

• You use an assignment statement to place a value into a variable

www.meim.uniparthenope.it

Variable Definition: assignment syntax
• To define a variable, you must specify an initial value.

• The value on the right of the '=' sign is assigned to the variable on the left

The assignment statement
• Use the assignment statement '=' to place a new value into a

variable
cansPerPack = 6 # define & initializes the variable cansPerPack
• Beware: The “=“ sign is NOT used for comparison:

• It copies the value on the right side into the variable on the left side
• You will learn about the comparison operator later on in this course

Undefined Variables
• You must define a variable before you use it: (i.e. it must be

defined somewhere above the line of code where you first use the
variable)

canVolume = 12 * literPerOunce
literPerOunce = 0.0296

• The correct order for the statements is:
literPerOunce = 0.0296
canVolume = 12 * literPerOunce

An example: soda deal (volume1.py)
• Soft drinks are sold in cans and bottles. A store offers a six-pack of
12-ounce cans for the same price as a two-liter bottle. Which
should you buy? (since 1 ounce is about 0,0296 liter, 12 fluid
ounces equal approximately 0.355 liters.)

List of variables:
Number of cans per pack
Volume of a Bottle
Once per liter
Volume of a can
Volume of a 6-pax cans??

Type of Number
Integer
Integer
float
float

There are three different types for data in python:
1. A whole number (no fractional part) 7 (integer or int)
2. A number with a fraction part 8.88 (float)
3. A sequence of characters "Bob” (string)
4. A Boolean value TRUE/FALSE (reserved keywords)

• The data type is associated with the value, not the variable:
cansPerPack = 6 # int
canVolume = 12.0 # float

Why different types?

Updating a Variable (assigning a value)
• If an existing variable is assigned a new value, that value replaces

the previous contents of the variable.
• For example:

• cansPerPack = 6
• cansPerPack = 8

Updating a Variable (computed)
• Executing the Assignment:

cansPerPack = cansPerPack + 2

Step by Step:
• Step 1: Calculate the right hand side of the assignment. Find the value of

cansPerPack, and add 2 to it.

• Step 2: Store the result in the variable named on the left side of the
assignment operator

Exercise: testing python types
• Open PyCharm (our IDE) and create a new file

• type in the following
• save the file as typetest.py
• Run the program

Testing different types in the same variable
taxRate = 5 # int
print(taxRate)
taxrate = 5.5 # float
print(taxRate)
taxRate = "Non-taxable" # string
print(taxRate)
print(taxRate + 5)

• So…
• Once you have initialized a variable with a value of a particular type you should take great care to keep

storing values of the same type in the variable

A Warning…
• Since the data type is associated with the value and not the variable:

• A variable can be assigned different values at different places in a program

taxRate = 5 # an int

• Then later…

taxRate = 5.5 # a float

• And then

taxRate = “Non- taxable” # a string

• If you use a variable and it has an unexpected type an error will occur in your program

A Minor Change
• Change line 8 to read:

print(taxRate + “??”)

• Save your changes
• Run the program
• What is the result?
• When you use the “+” operator with strings the second argument

is concatenated to the end of the first
• We’ll cover string operations in more detail later in this chapter

Table 1: Number Literals in Python

Types of Literals in Python
Python literals are of several types, and their usage is also pretty
varied. So let’s check them out one by one.
There are five types of literal in Python, which are as follows:
• String Literals
• Numeric Literals
• Boolean Literals
• Literal Collections
• Special Literals

1. String Literals in Python
• Creating a string literal in Python is really easy- enclose the text or the group

of characters in double quotes.

• We have successfully created a string using single quotes and double quotes
in the above code snippet. Terminal

2. Numeric Literals in Python
• Numerical literals in Python are those literals that contain digits only and are

immutable. They are of four types:

1. Integer
The numerical literals that are zero, positive or negative natural numbers and contain no
decimal points are integers.

The different types of integers are:

• Decimal: It contains digits from 0 to 9. The base for decimal values is 10.

• Binary: It contains only two digits- 0 and 1. The base for binary values is 2 and prefixed with
“0b”.

• Octal: It contains the digits from 0 to 7. The base for octal values is 8. In Python, such values
are prefixed with “0o”.

• Hexadecimal: It contains digits from 0 to 9 and alphabets from A to F.

Integer Examples:

• Check out the output for this

• Fractional: Fractional literals contain both whole numbers and decimal points.

• An example of fractional literals will look like this:

• Output

2. Float
The floating-point literals are also known as real literals. Unlike integers, these
contain decimal points. Float literals are primarily of two types:

• Exponential: Exponential literals in Python are represented in the powers of
10. The power of 10 is represented by e or E. An exponential literal has two
parts- the mantissa and the exponent.

Note:
• Mantissa: The digits before the symbol E in an exponential literal is known as the

mantissa. In computing, it denotes the significant digits of the floating-point
numbers.

• Exponent: The digits after the symbol E in an exponential literal are the
exponent. It denotes where the decimal point should be placed.

• Complex: Complex literals are represented by A+Bj. Over here, A is the real
part. And the entire B part, along with j, is the imaginary or complex
part. j here represents the square root of -1, which is nothing but the iota
or i we use in Mathematics.

• The output of the code snippet will be:

• Long: Long literals were nothing but integers with unlimited length. From
Python 2.2 and onwards, the integers that used to overflow were
automatically converted into long ints. Since Python 3.0, the long literal has
been dropped. What was the long data type in Python 2 is now the standard
int type in Python 3.

• Long literals used to be represented with a suffix- l or L. The usage of L was
strongly recommended as l looked a lot like the digit 1. (executed using Python 1.8.)

3. Boolean Literals in Python
• Boolean literals in Python are pretty straight-forward and have only two

values:
• True: True represents the value 1.
• False: False represents the value 0.

• Let’s see an example:

• We can see that we used boolean literals for comparison and based on the
conditions, we received the outputs True and False, respectively.

4. Special Literals in Python
• Python literals have one special literal known as None. This literal

in Python is used to signify that a particular field is not created.
• Python will print None as output when we print the variable with

no value assigned to it. None is also used for end of lists in Python.
• Example

• Output

5. Literals Collections in Python
• If we wish to work with more than one value, then we can go for

literal collections in Python.
• Literal collections in Python are of four types:

1. List
2. Tuple
3. Dictionary
4. Set

1. List
• Lists are a collection of data declared using the square brackets([]), and

commas separate the elements of the list (,). This data can be of different
types. Another important thing to know about lists is that they are mutable.
• Now let’s see an implementation:

• Output

2. Tuple
• The literals that are declared using round brackets and can hold any data type

are tuples. Commas separate the elements of tuples. However, unlike lists,
tuples are immutable.
• Let’s check out a code snippet on tuples:

• Output

3. Dictionary
• Dictionary is a collection of data that stores value in a key-value format. These

are enclosed in curly brackets and separated by commas. Dictionaries are
mutable and can also contain different types of data.
• Check out the below code snippet that shows how a dictionary works

• Output

4. Set
• Set literals are a collection of unordered data that cannot be

modified. It is enclosed within curly brackets and separated by
commas.
• Let’s see the code for this:

• Output

Naming variables

• Variable names should describe the purpose of the variable
• ‘canVolume’ is better than ‘cv’

• Use These Simple Rules
1. Variable names must start with a letter or the underscore (_) character

1. Continue with letters (upper or lower case), digits or the underscore
2. You cannot use other symbols (? or %...) and spaces are not permitted
3. Separate words with ‘camelCase’ notation

1. Use upper case letters to signify word boundaries
4. Don’t use ‘reserved’ Python words (see Appendix C, pages A6 and A7)

Table 2: Variable Names in Python

Programming Tip: Use Descriptive Variable Names

• Choose descriptive variable names
• Which variable name is more self descriptive?

canVolume = 0.35

cv = 0.355

• This is particularly important when programs are written by more
than one person.

Constants: Naming & Style
• In Python a constant is a variable whose value should not be changed after it�s assigned an

initial value.
• It is a good practice to use all UPPER_CASE when naming constants

BOTTLE_VOLUME = 2.0

• It is good style to use named constants to explain numerical values to be used in calculations
• Which is clearer?

totalVolume = bottles * 2

totalVolume = bottles * BOTTLE_VOLUME

• A programmer reading the first statement may not understand the significance of the “2”

• Python will let you change the value of a constant
• Just because you can do it, doesn’t mean you should do it

Constants: Naming & Style

• It is customary to use all UPPER_CASE letters for constants to
distinguish them from variables.
• It is a nice visual way cue

BOTTLE_VOLUME = 2 # Constant

MAX_SIZE = 100 # Constant

taxRate = 5 # Variable

Programming Tips: Python comments
• Use comments at the beginning of each program to clarify details

of the code
• Comments are a courtesy to others and a way to document your

thinking
• Comments to add explanations for humans who read your code.

• The compiler ignores comments.

www.meim.uniparthenope.it

Arithmetic

Basic Arithmetic Operations
• Python supports all of the basic arithmetic operations:

• Addition “+”
• Subtraction “-”
• Multiplication “*”
• Division “/”

• You write your expressions a bit differently

List of Arithmetic Operators

Precedence
• Precedence is similar to Algebra:

• PEMDAS
• Parenthesis, Exponent, Multiply/Divide, Add/Subtract

Unbalanced Parentheses

• Consider the expression
((a + b) * t / 2 * (1 - t)

• What is wrong with the expression?
• Now consider this expression.
(a + b) * t) / (2 * (1 - t)

• This expression has three “(“ and three “)”, but it still is not correct
• At any point in an expression the count of “(“ must be greater than

or equal to the count of “)”
• At the end of the expression the two counts must be the same

Powers
• Double stars ** are used to calculate an exponent

• Analyzing the expression:

• Convert this expression in Python language

Powers
• Double stars ** are used to calculate an exponent

• Analyzing the expression:

• Becomes:
• b * ((1 + r / 100) ** n)

Testing Operators: test_operators.py
• Write a python program to test all the arithmetic operators.

Mixing numeric types

• If you mix integer and floating-point values in an arithmetic
expression, the result is a floating-point value.
• 7 + 4.0 # Yields the floating value 11.0
• Remember from our earlier example:
• If you mix stings with integer or floating point values the result is an error

Floor division

• When you divide two integers with the / operator, you get a floating-
point value. For example,

7 / 4
• Yields 1.75
• We can also perform floor division using the // operator.

• The “//” operator computes the quotient and discards the fractional part

7 // 4
• Evaluates to 1 because 7 divided by 4 is 1.75 with a fractional part of

0.75, which is discarded.

Calculating a remainder

• If you are interested in the remainder of dividing two integers, use
the “%” operator (called modulus):

remainder = 7 % 4
• The value of remainder will be 3
• Sometimes called modulo divide

A Simple Example: pennies_dollars_conversion.py
• Open a new file in the PyCharm IDE:
• Type in the following:

Convert pennies to dollars and cents (1 penny is equal to 0.01 dollar)
pennies = 1729
dollars = pennies // 100 # Calculates the number of dollars
cents = pennies % 100 # Calculates the number of pennies
print("I have", dollars, "and", cents, "cents")

• Save the file
• Run the file
• What is the result?

Integer Division and Remainder Examples
• Handy to use for making change:
• pennies = 1729
• dollars = pennies / 100 # 17
• cents = pennies % 100 # 29

Exercise: vending.py
• Write a program that simulates a vending machine that gives change.
• Ask the user to insert the amount of Dollars he/she uses to pay:

d= int(input(‘’Insert coin:1 for 1$ and 5 for 5$: ‘’))

• Insert the price in pennies of the object the user wants to buy
• Return the change due expressed in dollars and quarters
• Consider that:

PENNIES_PER_DOLLAR = 100
PENNIES_PER_QUARTER = 25

Floating-point to integer conversion

• You can use the function int() and float() to convert between integer
and floating point values:

balance = total + tax # balance: float
dollars = int (balance) # dollars: integer
number = int(input("Enter an integer: ")) # input return a string,

but we want to read it as a integer number

• You lose the fractional part of the floating-point value (no rounding
occurs)

Built in Mathematical Functions
• Built-in functions are a small set of functions that are defined as a part of the

Python language
• They can be used without importing any modules

Calling functions
• Recall that a function is a collection of programming instructions

that carry out a particular task.
• The print() function can display information, but there are many

other functions available in Python.
• When calling a function you must provide the correct number of

arguments
• The program will generate an error message if you don’t

Calling functions that return a value
• Most functions return a value. That is, when the function

completes its task, it passes a value back to the point where the
function was called.
• For example:

• The call abs(-173) returns the value 173.
• The value returned by a function can be stored in a variable:

• distance = abs(x)

• You can use a function call as an argument to the print function
• Go to the python shell window in Wing and type:

print(abs(-173))

Functions from the Math Module

Python libraries (modules)
• A library is a collection of code, written and compiled by someone

else, that is ready for you to use in your program
• A standard library is a library that is considered part of the

language and must be included with any Python system.
• Python�s standard library is organized into modules.

• Related functions and data types are grouped into the same module.
• Functions defined in a module must be explicitly loaded into your

program before they can be used.

Arithmetic Expressions: operators+functions

Using functions from the Math Module:
math_function.py
• For example, to use the sqrt() function, which computes the square

root of its argument:

First include this statement at the top of your

program file.

from math import sqrt

Then you can simply call the function as
y = sqrt(x)

Excercise: arithmetic.py
Read two integers and display the result of:
• Sum
• Difference
• Product
• Average
• Distance
• Minimum
• Maximum
Produce a legible output (use formatting style to show data as in
columns)

Excercise: arithmetic.py
Write in python the following mathematical expressions:

Additional Programming Tips
• Use Spaces in expressions: totalCans = fullCans + emptyCans

• Is easier to read than: totalCans=fullCans+emptyCans
• Other ways to import modules:
from math import, sqrt, sin, cos # imports the functions
from math import * # imports all functions from the module
Import math # imports all functions from the module

• If you use the last style you have to add the module name and a
“.” before each function call: y = math.sqrt(x)

www.meim.uniparthenope.it

Problem Solving

Exercise : traveltime.py
Compute the shift time
• A robot must retrieve an object that is located in a rocky terrain,
next to a road.
• The robot can travel at a higher speed when it is on the road than
it can do on rocky ground, so it will travel a certain stretch of road,
then move in a straight line to the object.
• Calculate the total time it takes for the robot to achieve its goal.

Exercise: Compute the shift time
We need to calculate the total time it takes for the
robot to achieve its goal, based on the following
input data:
• The distance between the robot and the object
in the x direction and in the y direction
(respectively, dx and dy).

• The speed of the robot on the road (s1) and on
rocky terrain (s2).

• The length (l1) of the first section of the
movement (which takes place on the road).

To give a concrete example of the problem, we
use these values: dx=10km, dy=3km, s1=5km/h,
s2=2km/h, l1=6km.

www.meim.uniparthenope.it

Strings

Strings
• Start with some simple definitions:

• Text consists of characters
• Characters are letters, numbers, punctuation marks, spaces, ….
• A string is a sequence of characters

• In Python, string literals are specified by enclosing a sequence of characters within a
matching pair of either single or double quotes.

print("This is a string.", 'So is this.')

• By allowing both types of delimiters, Python makes it easy to include an apostrophe
or quotation mark within a string.
• message = 'He said "Hello"‘
• Remember to use matching pairs of quotes, single with single, double with double

String Operations

String Length

• The number of characters in a string is called the length of the
string. (For example, the length of "Harry" is 5).
• You can compute the length of a string using Python’s len()

function:
length = len("World!") # length is 6

• A string of length 0 is called the empty string. It contains no
characters and is written as "" or ''.

String Concatenation (“+”)

• You can ‘add’ one String onto the end of another
firstName = "Harry"
lastName = "Morgan"
name = firstName + lastName # HarryMorgan
print(“my name is:”, name)
• You wanted a space in between the two names?
name = firstName + " " + lastName # Harry Morgan

Using “+” to concatenate strings is an example of a concept called operator
overloading. The “+” operator performs different functions of variables of

different types

String repetition (“*”)

• You can also produce a string that is the result of repeating a string
multiple times.
• Suppose you need to print a dashed line.
• Instead of specifying a literal string with 50 dashes, you can use the *

operator to create a string that is comprised of the string "-" repeated
50 times.

dashes = "-" * 50
• results in the string "---“

The “*” operator is also overloaded.

Converting Numbers to Strings

• Use the str() function to convert between numbers and strings.
• Open Wing, then open a new file and type in:

balance = 888.88
dollars = 888
balanceAsString = str(balance)
dollarsAsString = str(dollars)
print(balanceAsString)
print(dollarsAsString)

• To turn a string containing a number into a numerical value, we use the int()
and float() functions:

id = int("1729")
price = float("17.29")
print(id)
print(price)

• This conversion is important when the strings come from user input.

• The first char is index zero (0)
• The [] operator returns a char at a given index inside a String:

name = "Harry”
start = name[0]
last = name[4]

Accessing a String
• Each char inside a String has an index number:

0 1 2 3 4 5 6 7 8 9

c h a r s h e r e

0 1 2 3 4
H a r r y

Exercise: initials.py
Given two persons’ names, print their Initials as the example below:
• John
• Margie

•à print to video : J&M

Methods: More clear in future lessons
• In python, an object is a software entity that represents a value with certain behavior.

• The value can be simple, such as a string, or complex, or data file.

• The behavior of an object is given through its methods.
• A method is a collection of programming instructions to carry out a specific task – similar

to a function

• But unlike a function, which is a standalone operation, a method can only be applied to an
object of the type for which it was defined.
• Methods are specific to a type of object
• Functions are general and can accept arguments of different types

• You can apply the upper() method to any string, like this:
name = "John Smith"

uppercaseName = name.upper() # Sets uppercaseName to "JOHN SMITH"

Some Useful String Methods

String Escape Sequences
• How would you print a double quote?

• Preface the " with a “\” inside the double quoted String
print("He said \"Hello\"")

• OK, then how do you print a backslash?
• Preface the \ with another \

System.out.print("�C:\\Temp\\Secret.txt�")

• Special characters inside Strings
• Output a newline with a �\n�

print("*\n**\n***\n")

*
**

Exsercise:
• Given a string print the same string in uppercase (string_upper.py)
• Given an arbitrary sentence containing the word «old», substitute

this word with the word «new» (string_replace.py)

www.meim.uniparthenope.it

Input and Output

Input and Output
• You can read a String from the console with the input() function:

name = input("Please enter your name")

• Converting a String variable to a number can be used if numeric (rather than
string input) is needed

age = int(input("Please enter age: "))

• The above is equivalent to doing it two steps (getting the input and then
converting it to a number):

aString = input("Please enter age: ") # String input
age = int(aString) # Converted int

Formatted output
• Outputting floating point values can look strange:
Price per liter: 1.21997

• To control the output appearance of numeric variables, use
formatted output tools such as:
print("Price per liter %.2f" %(price))
Price per liter: 1.22
print("Price per liter %10.2f" %(price))
Price per liter: 1.22

• The %10.2f is called a format specifier
10 spaces 2 spaces

Syntax: formatting strings

Formatting Values

• %f indicates that a value should
be formatted as a floating-point
number
• %d as a decimal (base-10)
integer
• %s as a string
• once the correct formatting
characters have been identified,
a percent sign (%) is prepended
to them.

Format flag examples
• Left Justify a String:
• print("%-10s" %("Total:"))
• Right justify a number with two decimal places

• print("%10.2f" %(price))

• And you can print multiple values:
• print("%-10s%10.2f" %("Total: ", price))

Exemple: Volume2.py

Format Specifier Examples: formatting.py

Example: formatting.py

• Test different formatting styles

Summary: variables
• A variable is a storage location with a name.
• When defining a variable, you must specify an initial value.
• By convention, variable names should start with a lower case letter.
• An assignment statement stores a new value in a variable,

replacing the previously stored value.

Summary: operators
• The assignment operator = does not denote mathematical

equality.
• Variables whose initial value should not change are typically

capitalized by convention.
• The / operator performs a division yielding a value that may have a

fractional value.
• The // operator performs a division, the remainder is discarded.
• The % operator computes the remainder of a floor division.

Summary: python overview
• The Python library declares many mathematical functions, such as

sqrt() and abs()
• You can convert between integers, floats and strings using the

respective functions: int(), float(), str()
• Python libraries are grouped into modules. Use the import

statement to use methods from a module.
• Use the input() function to read keyboard input in a console

window.

Summary: Strings
• Strings are sequences of characters.
• The len() function yields the number of characters in a String.
• Use the + operator to concatenate Strings; that is, to put them together

to yield a longer String.
• In order to perform a concatenation, the + operator requires both

arguments to be strings. Numbers must be converted to strings using
the str() function.
• String index numbers are counted starting with 0.
• Use the [] operator to extract the elements of a String.
• Use the format specifiers to specify how values should be formatted.

www.meim.uniparthenope.it

Thank you for your attention
MASTER MEIM 2021-2022

